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Abstract The gastrointestinal tract of pigs is densely popu-
lated with microorganisms that closely interact with the host
and with ingested feed. Gut microbiota benefits the host by
providing nutrients from dietary substrates andmodulating the
development and function of the digestive and immune sys-
tems. An optimized gastrointestinal microbiome is crucial for
pigs’ health, and establishment of the microbiome in piglets is
especially important for growth and disease resistance.
However, the microbiome in the gastrointestinal tract of pig-
lets is immature and easily influenced by the environment.
Supplementing the microbiome of piglets with probiotic bac-
teria such as Lactobacillus could help create an optimized
microbiome by improving the abundance and number of
lactobacilli and other indigenous probiotic bacteria.
Dominant indigenous probiotic bacteria could improve pig-
lets’ growth and immunity through certain cascade signal
transduction pathways. The piglet body provides a permissive
habitat and nutrients for bacterial colonization and growth. In
return, probiotic bacteria produce prebiotics such as short-
chain fatty acids and bacteriocins that benefit piglets by en-
hancing their growth and reducing their risk of enteric

infection by pathogens. A comprehensive understanding of
the interactions between piglets and members of their gut mi-
crobiota will help develop new dietary interventions that can
enhance piglets’ growth, protect piglets from enteric diseases
caused by pathogenic bacteria, and maximize host feed
utilization.
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Introduction

Microbiota in the gastrointestinal (GI) tract is an important
environmental factor for health [1], because it has evolution-
arily conserved roles in the metabolism, immunity, develop-
ment, and behavior of the host [2, 3]. There is huge diversity in
the bacterial species that constitute the intestinal microbiota:
approximately 160 species of bacteria are present within every
individual [4]. Considerable efforts have focused on catalog-
ing the human gut microbiome and its relationship to complex
diseases [5–7]. Many of these studies have been conducted in
model organisms. Societal pressure to reduce the number of
non-human primates and dogs used in biomedical research
has led to an increase in the use of pigs. Pigs are easy to keep
and collecting samples from pigs is simple. In addition, the
anatomy and physiology of pigs have notable similarities to
humans. These factors have helped to establish pigs as a mod-
el organism in research fields [8]. However, studies on the gut
microbiota of pigs, and especially piglets, have been limited.
In addition, factors that affect establishment of intervention on
the gut microbiota in piglets and its relationship to pathogen
defense have not been satisfactorily reported. The objective of
this reviewwas to evaluate the effect and potential mechanism
of probiotic Lactobacillus supplementation in piglets and to
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provide the basis for supplementation of probiotic bacteria in
human infants.

Probiotics contain live microorganisms and spores, and
when administered in adequate amounts, confer health bene-
fits to the host [9, 10]. The benefits of probiotic application in
humans and animals include inhibition of pathogens [11, 12],
improved digestive function [13], and modulation of immune
responses [14, 15]. In animal agriculture, probiotics are
thought to be an important potential alternative to the use of
antibiotic growth promoters (AGP) [16, 17]. When used in
piglets, probiotics have been demonstrated to promote growth
performance at levels similar to AGPs [18] and to reduce
gastrointestinal colonization by pathogens [19].

Lactobacillus

Lactobacillus species are common probiotics, and they play
important roles in pathogen defense and improved immunity
in piglets [20–22]. The number of described species in the
genus Lactobacillus has increased considerably during the last
10–15 years. There are currently 151 described Lactobacillus
species [23]. A recent study [24] using next-generation se-
quencing technology identified Lactobacillus as a core fecal
microbiota across the growth stages of pigs. Swine fecal mi-
crobiota was found to change significantly across growth
stages, but populations of the core members were stable.
Furthermore, Niu et al. [25] found that Lactobacillus is one
of the most dominant genera, accounting for approximately
15% of 16S rRNA gene sequences from porcine intestinal
samples, regardless of age. In addition, the most important
end product of fermentation by lactobacilli is lactic acid,
which is crucial for piglets’ health.

Inhibition of Pathogens

In order to cause infections in piglets, enteric pathogens need
to first attach to and then breach the intestinal epithelial barrier
[26]. In healthy piglets, commensal bacterial communities in
the GI tract colonize intestinal mucosa and form a layer of
bacteria covering the mucosal surface. By occupying a diverse
array of adherence niches along the GI tract, this layer of
dense and complex microbial communities can effectively
block the attachment and subsequent colonization by most
invading enteric pathogens [27]. This phenomenon is called
competitive exclusion [28]. The ability of probiotic
lactobacilli to reduce colonization of bacterial pathogens in
the gastrointestinal tract is very important for piglets’ health.
Probiotic lactobacilli exclude pathogens from attaching tomu-
cosal surfaces through competition for shared binding sites
[29, 30] and steric interference of protein adhesins located
on the surface of pathogenic bacteria [31, 32]. In addition to

preventing adhesion, an in vitro study demonstrated the vary-
ing ability of Lactobacillus (L.) acidophilus TMC 0356 and
Lactobacillus rhamnosus TMC 0503 to displace Salmonella
typhimurium, Cronobacter sakazakii, Clostridium difficile,
and Escherichia coli which were already adherent to human
epithelial cells [33]. Inhibition of pathogen adherence is also
seen in a pig intestinal mucosa model [34]. These studies
demonstrate probiotic strain and host-specific inhibition of
pathogens, highlighting the need for case-by-case selection
of probiotic cultures to reduce adherence of specific patho-
gens. The production of pathogen-inhibiting compounds is a
well understood probiotic mechanism [35]. Neal-McKinney
et al. [36] demonstrated that the production of lactic acid by
Lactobacillus cultures is an important mechanism for the re-
duction of Campylobacter jejuni in livestock animals.
Hydrogen peroxide production by Lactobacillus has also been
shown to inhibit Salmonella [37].

Enhancement of Barrier Function

The intestinal epithelium is specialized to ensure optimal ab-
sorption of nutritional compounds, yet at the same time to
exclude and neutralize or detoxify harmful components of
the intestinal contents including microorganisms. In a healthy
gut these functions are optimized and a healthy epithelium is
essential to maintaining a healthy gut [38]. The epithelial lin-
ing consists of a single layer of epithelial cells covered by
layers of mucus produced by specialized goblet cells.
Epithelial cells are joined together by cell junctions such as
tight junctions (TJs). TJs play a major role in preventing mol-
ecules from entering the epithelium between cells [39].
Various stressors may cause weakening of TJs and increase
un-regulated paracellular transport of macromolecules into the
mucosa. The uncontrolled diffusion of intraluminal toxins,
antigens, and enteric microbiota to the underlying tissue re-
sults in local and systemic inflammation. The potential of
lactobacilli to strengthen the epithelial barrier can be evaluated
in vitro by determining the trans-epithelial electrical resistance
(TER) in epithelial monolayer cell lines such as Caco-2 or
HT29 epithelial cells. TER is dependent on the paracellular
flux of ions which is regulated primarily by TJs. Stimulation
of TJs may be caused by short-chain fatty acids produced by
lactobacilli [40]. Fermentation products of lactobacilli from
various types of prebiotic carbohydrates increased TER in
Caco-2 monolayers, and the effect was strain and prebiotic
dependent.

Improvement of barrier function by lactobacilli and the
consequences for disease have been demonstrated in animal
models [41]. Stress, especially in the early weaning stage of
piglets, induces changes in gut microbiota and the gut epithe-
lial barrier [42, 43]. Previous studies have indicated that
stress greatly affects the gastrointestinal microflora,
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decreasing total Lactobacillus populations in severely
stressed animals, and thus providing an opportunity for
overgrowth of pathogens [44]. In support of this, Bateup
et al. [45] found that the composition of Lactobacillus
populations, especially in the stomach and caecal con-
tents of 24-day-old pigs, showed evidence of instability
during this stressful period.

Improvement of Immunity

The immune system of the intestinal tract, referred to as the
gut-associated lymphoid tissues (GALT), contains the largest
pool of immunocompetent cells in the human body [46]. The
major function of the GALT is to control our relationship with
the microbiota. A central strategy is to minimize contact be-
tween microorganisms and the epithelial cell surface, thereby
limiting tissue inflammation and microbial translocation [47].
Commensal microorganisms that penetrate the epithelial bar-
rier will be rapidly phagocytosed and destroyed by intestinal
macrophages. This dialogue between the gut microbiota and
the immune system allows the host to tolerate a large amount
of antigens in the gut. Intestinal bacteria at the mucosal surface
can create signals called microbial-associated molecular pat-
terns (MAMPs) that stimulate pattern recognition receptors.
For example, toll-like receptors (TLR), expressed on the sur-
face of epithelial cells, trigger a cascade of immunological
defense mechanisms including the production of antimicrobi-
al peptides, pro- and anti-inflammatory cytokines, or triggers
for apoptosis [48]. In turn, to protect their ecological niche, a
dominant action of the healthy microbiota on the immune
system is to reinforce barrier immunity and therefore their
own containment.

Most of probiotic effector molecules are present in the bac-
terial cell envelope, which is the first side to interact with host
intestinal cells [49, 50]. In lactobacilli the cytoplasmic mem-
brane is covered by pentapeptide stem-connected layers of
peptidoglycan, which has been shown to modulate immune
responses [51, 52]. This layer also serves as a platform
for anchoring cell surface molecules, such as wall
teichoic acids, wall polysaccharides, and surface pro-
teins [53–55]. In lactobacilli, the disaccharide unit of
peptidoglycan can undergo a wide range of modifica-
tions, which have important consequences for bacterial
physiology. In addition to peptidoglycan, all lactobacilli
produce lipoteichoic acid, which contains di-acylated
and/or tri-acylated glycolipids [56, 57] that are thought
to signal via the heterodimeric TLR complexes TLR-2/6
and TLR-2/1, respectively [58].

In addition to cell wall associated molecules, bacterial ge-
nomic DNA can also interact with the host. TLR-9 recognizes
bacterial genomic DNA, which, unlike eukaryotic DNA, con-
tains a high frequency of unmethylated CpG motifs [59].

Different species of lactic acid bacteria might differ in their
capacity to elicit TLR-9 signaling due to differences in C+G
composition and the frequency of stimulatory motifs in the
DNA. The expression of TLR-9 by immune cells is intracel-
lular and endosomal, and in polarized epithelial cells, it is
expressed on both the apical and basolateral membranes. In
polarized epithelial cells, TLR-9 has been shown to have
tolerogenic effects to chronic TLR challenges depending on
the location of the stimulus [60].

Considering the immature microbiota composition in the
GI tract and the inadequate immune system of piglets, supple-
mentation with lactobacilli could effectively activate the body
to establish immunity to defend against infection of
pathogens.

Modification of the Microbiota Composition

Probiotic lactobacilli can be used in piglets to support the
development of a stable microbiota, to prevent diarrheal dis-
eases. During the weaning and post-weaning periods,
lactobacilli are used in pigs to modulate the gastrointestinal
microbiota to prevent post-weaning diarrhea and stimulate
growth. Yang et al. [61] showed that Lactobacillus plantarum
significantly decreased E. coli and aerobe counts and in-
creased lactobacilli and anaerobe counts in the digesta and
mucosa of most sections of the GI tract compared with a
control group. Liu et al. [62] reported that Lactobacillus
reuteri I5007 plays a positive role in gut development in pig-
lets by modulating microbial composition and intestinal de-
velopment. Denaturing gradient gel electrophoresis revealed
that L. reuteri I5007 affected the colonic microbial communi-
ties on day 14, in particular, and reduced numbers of
Clostridium spp. In weaning pigs, administration of
L. reuteri BSA131 decreased the number of enterobacteria
in the feces [63]. The mechanism that contributes to the selec-
tive stimulation of bacterial groups by lactobacilli supplemen-
tation relates to cross-feeding. Cross-feeding is the phenome-
non of partial degradation products being released by primary
degraders that stimulate the growth of other bacterial groups.
For instance, lactate produced by lactobacilli can be converted
by lactate-utilizing bacteria, such as Eubacterium and
Anaerostipes, to produce butyrate [64]. Other butyrate-
producing bacteria, such as Faecalibacterium prausnitzii and
Roseburia spp., mostly belong to the Firmicutes phylum and
convert acetate into butyrate [65, 66]. A stimulation of
F. prausnitzii was observed after dietary intervention with in-
ulin (10 g/day for 16 days) in healthy subjects [67]. This
mechanism also explains the butyrogenic effect observed after
Lactobacillus administration. Lactobacilli do not produce bu-
tyrate but provide lactate or acetate for cross-feeding to those
other bacterial groups.
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Function of Short-Chain Fatty Acids

Short-chain fatty acids (SCFA) are the major anions within the
intestinal lumen and are mainly produced by anaerobic fer-
mentation of undigested carbohydrates and, to a lesser extent,
proteins [68, 69]. Most of the SCFA formed by intestinal
bacteria are rapidly absorbed and used to some degree as en-
ergy substrates by mucosal epithelial cells. In this way, SCFA
provide about 10% of the daily caloric requirements in
humans [70], with butyrate being the preferred energy source
for the colonocytes. Readily fermentable dietary fiber has
been shown to stimulate epithelial cell proliferation in the
intestine only in the presence of gut bacteria, suggesting that
the end products of fermentation are responsible for this effect
[71]. Increased SCFA synthesis also contributes to host ho-
meostasis by acidifying the luminal pH, which inhibits the
growth of pathogens [72], reduces the formation of secondary
bile acids [73], and impairs the activity of specific enzymes
such as proteases. Furthermore, SCFA have been shown to
possess anti-inflammatory capacities, affect satiety hormones,
and play a role in insulin resistance [74]. SCFA are speculated
to have a role in prevention of some human pathological con-
ditions such as ulcerative colitis and colon carcinogenesis.
Diversion colitis, which occurs in diverted segments of the
large bowel excluded from fecal transit, improves after treat-
ment with a local perfusion of SCFA [75].

Many health benefits in and outside the gut have been
attributed to increased production of SCFA by stimulated ben-
eficial bacteria. Simple acidification of the colonic lumen by
the production of SCFA can explain some of the observed
benefits of prebiotics. In addition, SCFA are considered as a
class of bacterial products that mediate the interactions be-
tween the diet, the intestinal microbiota, and the host. Two
major SCFA signaling mechanisms have been identified: the
inhibition of histone deacetylase and the activation of G-
protein coupled receptors [76]. In addition, SCFA easily enter
the cells through passive diffusion or receptor-mediated trans-
port and can internally act at other sites [77, 78]. The trans-
duction pathway of butyrate-induced apoptosis has been
shown to involve the activation of the caspase cascade.
Butyrate activates p38 mitogen-activated protein kinase (p38
MAPK), which in turn up-regulates expression and receptor
activity of the peroxisome proliferator activated receptor gam-
ma (PPARγ). PPARγ activates caspase-8 and caspase-9 lead-
ing to increased caspase-3 activity which will eventually result
in cell death [79]. Activation of PPARγ has been effective
in the prophylaxis, and to a lesser extent, in the treat-
ment of several animal models of acute or chronic co-
litis [80, 81]. PPARγ plays a fundamentally important
role in the immune response through its ability to inhib-
it the expression of inflammatory cytokines and to di-
rect the differentiation of immune cells towards anti-
inflammatory phenotypes [82, 83].

Protective Function of Other Metabolites
from Lactobacilli

The intestinal mucosa is the interface between the internal and
external environments and forms a crucial line of defense to
prevent luminal pathogens and harmful substances from en-
tering into the internal milieu. This barrier function is ensured
by protection mechanisms at multiple levels [84]. Certain pro-
biotic lactobacilli have the ability to secrete antimicrobial sub-
stances, such as bacteriocins and organic acids, which inhibit
the growth of other bacteria. The production of bacteriocins
by probiotic lactobacilli has the potential to prevent gastroin-
testinal infection in humans. A direct challenge study in mice
demonstrated that bacteriocin production by Lactobacillus
salivariusUCC118 reduced counts of Listeria monocytogenes
by 80% in the liver and spleen of infected mice relative to a
negative control [85]. L. salivarius UCC118 also protected
mice from infection by S typhimurium, but the protection
was not bacteriocin mediated. While bacteriocin production
by probiotic cultures is hoped to be an important alternative to
antibiotics in the treatment of bacterial infections, the effec-
tiveness of this mechanism has not yet been evaluated in
humans.

Supplementation of lactobacilli results in a decrease of the
colonic luminal pH due to the production of lacto acid, which
affects the composition of the microbiota due to the differen-
tial sensitivity of bacterial species to acidic pH. Bacteroides
spp. are relatively sensitive to mildly acidic pH, whereas
Firmicutes spp. and bifidobacteria are more acid tolerant and
are therefore less affected by a decrease in pH [86]. Because of
special physiological characteristics, piglet guts lack enough
acid to help food metabolism. Hence, supplementation with
lactobacilli could effectively promote metabolism and nutri-
tion absorption.

The secretion ofmucus and immunoglobulinA by different
epithelial cells minimizes the chances for direct contact of
bacteria with epithelial cells. Commensal species have been
shown to limit pathogen colonization through competition for
nutrients and adhesion sites, a process called colonization re-
sistance [87]. Lactobacillus GG could prevent cytokine-
induced apoptosis and inhibit pro-apoptotic p38/MAPK acti-
vation [88, 89]. These factors are also able to modulate hydro-
gen peroxide induced damage in Caco-2 cells [90]. Other
molecules produced by lactobacilli have been found to have
important characteristics. An analysis of genomic se-
quences from Lactobacillus strains predicts a broad
group of bacteriocins that are active against Gram-
positive bacteria such as L. salivarius UCC118. A class
II bacteriocin produced by Lactobacillus strains also has
the ability to protect mice against infection with
L. monocytogenes [85]. Several other lactobacilli have
been tested in different in vivo and in vitro tests with
positive results [91, 92].
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Need for Caution

Because of special physiological characteristics of piglets
such as a scarcity of acids secreted by the stomach, as well
as immature microbiomes and immune systems, supplemen-
tation of lactobacilli could effectively enhance the GI tract
environment by inducing an optimal composition of microbi-
ota, improving intestinal barrier function, and improving im-
munity for defense against pathogen infection. However, the
results of feeding Lactobacillus spp. to pigs are inconsistent,
with some reports showing no difference in growth perfor-
mance of weaning pigs fed diets with and without lactobacilli
[93]. It is known that lactobacilli have strain-specific charac-
teristics, and that these may affect specific interactions be-
tween bacterial populations and the host. First, the strain was
non-indigenous to the farm and may not have possessed the
ecological attributes necessary for long-term association with
these pigs. Second, the strain was initially predominant in the
GI of piglets and may not have been suitably adapted for life
in the gastrointestinal milieu of older pigs. Hence, when iso-
lating probiotic bacteria, we should consider the animal spe-
cies. The probiotic bacteria isolated from an animal species
should be use in the certain species in application of the pro-
biotic production. Also, the probiotic bacteria isolated from
animals in certain growth period should used in such growth
period of animal, which could play efficient roles.

The microbiome in the GI tract of piglets is immature,
especially in neonatal animals. Providing probiotic bacteria
to neonatal animals to establish a healthy gastrointestinal
microbiome would be helpful [8]. Supplementation of probi-
otic bacteria for animals with disorders of the GI tract occurred
caused by stress or pathogen infection also could be impor-
tant, to reconstitute healthy microbiomes. However, the doses
for supplementation are unknown and require further research.

For special human group such as premature infants and
hypoimmunity persons, usage of probiotic product needs at-
tention for their adverse reactions, for generalized infection,
excessive immune stimulation, gene transfer, or untoward ef-
fect of gastrointestinal [94, 95].

Future Prospects

Other strains of probiotics also have been used in neonatal
animals including species of Bifidobacterium, Lactobacillus,
Streptococcus, Saccharomyces, Aspergillus, and Bacillus.
Bifidobacterium is the predominant genus of the gut microbi-
ota of infants [96]. Owing to their recognized benefits to hu-
man health, bifidobacteria also play an important role in the
health of neonatal piglets. Therefore, combined use of multi-
ple strains of probiotic bacteria may lead to larger improve-
ments compared to single strains [97].

Considering the beneficial effects of prebiotics such as ol-
igosaccharides, active peptides, and other biologically essen-
tial microelements, combined use of probiotic bacteria and
prebiotics in piglets may enhance the useful effects.
Combined use of organic Chromium and probiotic Bacillus
subtilis KT260179 might have a greater effect on regulating
animal model mouse body metabolism [98]. Use of probiotic
cheese, flaxseed, and other prebiotics is a good dietary sup-
plement for piglets before weaning, helping them to adapt to
changes in diet more easily and reducing the likelihood of
chronic diseases [99, 100].

Culture-dependent methods combined with meta-omics
approaches can link proteins and metabolic pathways to func-
tions and probiotic properties of selected strains, which consist
of the application of high-throughput culture conditions to the
study of the body microbiota and uses matrix-assisted laser
desorption/ionization–time of flight or 16S rRNA amplifica-
tion and sequencing for the identification of growing colonies
[101]. Culturomics revolutionized the understanding of the
relationships among the human microbiome, health, and dis-
eases and generated a number of sequences that can be
assigned to a known microorganism.

Conclusion

The production of piglets has entered an era when the use of
antibiotics is increasingly banned. Probiotics, which are a po-
tential alternative to in feed antibiotics, can expect a promising
future. Besides, the selection of excellent strains and improved
processing techniques, more research, especially in the form
of well-designed animal trials, is needed to evaluate the effi-
cacy. More studies are also needed to explore the mechanisms
of action of lactobacilli in piglets. With evolving knowledge,
effective use of lactobacilli will be possible in the future.

GI, gastrointestinal; TJs, tight junctions; TER, trans-
epithelial electrical resistance; GALT, gut-associated lym-
phoid tissues; MAMPs, microbial-associated molecular pat-
terns; TLR, toll-like receptors; SCFA, short-chain fatty acids.
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