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Abstract Previous study showed that dietary Bacillus
licheniformis (B. licheniformis) administration contributes to
the improvement of laying performance and egg quality in
laying hens. In this study, we aimed to further evaluate its
underlying mechanisms. Three hundred sixty Hy-Line
Variety W-36 hens (28 weeks of age) were randomized into
four groups, each group with six replications (n = 15). The
control group received the basal diet and the treatment groups
received the same basal diets supplemented with 0.01, 0.03,
and 0.06% B. licheniformis powder (2 × 1010 cfu/g) for an 8-
week trial. The results demonstrate that B. licheniformis sig-
nificantly enhance the intestinal barrier functions via decreas-
ing gut permeability, promoting mucin-2 transcription, and
regulating inflammatory cytokines. The systemic immunity
of layers in B. licheniformis treatment groups is improved
through modulating the specific and non-specific immunity.
In addition, gene expressions of hormone receptors, including
estrogen receptor α, estrogen receptor β, and follicle-
stimulating hormone receptor, are also regulated by
B. licheniformis. Meanwhile, compared with the control,
B. licheniformis significantly increase gonadotropin-
releasing hormone level, but markedly reduce ghrelin and
inhibin secretions. Overall, our data suggest that dietary inclu-
sion of B. licheniformis can improve the intestinal barrier
function and systemic immunity and regulate reproductive

hormone secretions, which contribute to better laying perfor-
mance and egg quality of hens.
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Introduction

Inclusion of probiotics in diets for layers is preferred to replace
antibiotics [1] and improve growth performance, feed conver-
sion efficiency, and egg quality [2–4]. It is reported that
probiotics have beneficial impacts on the poultry performance
by synthesizing vitamins [5], inducing the digestive enzyme
[6], utilizing undigestible carbohydrates [7], stimulating lactic
acid, and releasing bacteriocins [8]. Several probiotics, such as
Lactobacillus, Streptococcus, Saccharomyces, Aspergillus,
and Bacillus, have been selected and applied in poultry pro-
duction [9]. However, Bacillus, the spore-forming bacteria,
are ideally suited as feed additives, because they have higher
resistance to harsh environments [10] and have the ability to
produce a variety of enzymes including protease, amylase,
and lipase [11]. Bacillus licheniformis, which has been broad-
ly applied in livestock and aquaculture as growth promoter
and competitive exclusion agent [12, 13], has demonstrated
a positive effect in aiding nutrient digestion and absorption in
the host’s body [13, 14], inhibiting the growth and reproduc-
tion of pathogens by producing antimicrobial active sub-
stances and reacting with oxygen that retards the growth and
reproduction of pathogens [15].

In our previous s tudy, we found that die ta ry
B. licheniformis supplementation effectively improves laying
performance and egg quality by increasing eggshell thickness
and strength in a dose-dependent manner in laying hens via
decreasing the stress response, up-regulating the growth
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hormones, and improving intestinal mucosal structure [16]. In
recent years, it has been reported that probiotics also benefit
animals by enhancing intestinal barrier function and positively
modulating the immune system [17]. However, to our knowl-
edge, little research has been conducted on related mecha-
nisms of B. licheniformis in improving laying performance
and egg quality in layers in the respect of immunity and gut
health. The objective of this study is to further explore the
effects of dietary B. licheniformis supplementation on laying
hens and its molecular mechanisms in terms of gut barrier, the
systemic immunity, and hormone gene expression.

Materials and Methods

Birds and Management

The experiment was carried out in accordance with the
Chinese guidelines for animal welfare and approved by the
Animal Welfare Committee of Animal Science College,
Zhejiang University. The birds and management is referred
to Lei et al. [16]. Briefly, a total of 360 Hy-Line Variety
W-36 hens, 28 weeks of age, were randomly divided into four
groups, each group with six replications and each replication
with 15 hens.

Bacterial Strain and Diet

B. licheniformis strain was obtained from China General
Microbiological Culture Collection Center (CGMCC1.3448)
and prepared by Microbiology and Genetic Engineering
Laboratory, Institute of Feed Sciences, Zhejiang University,
China. B. licheniformis was cultured in Luria-Bertani media,
kept at 37 °C for 24 h, and shaken at 180 r/min. Bacteria
suspensions were centrifuged to obtain pure bacterial cells at
5000 g for 10min at 4 °C. Subsequently, bacteria were washed
twice with sterile 0.85% (8.5 g/L) sodium chloride solution.
The culture purity and identification were constantly checked
by the spreading plate method [18]. B. licheniformis powders
(2 × 1010 cfu/g) were added to the basal diet at levels of 0.01,
0.03, and 0.06% to form the three types of treatment diets.
Starch was used to dilute B. licheniformis, and the same
amount of starch was also added to each group to compensate
for the difference in nutrient composition of the diets. B.
licheniformis powders were stored at room temperature. The
composition and nutrition of the basal experimental diet can
be found in our previous study [16]. Diets were stored in a dry
and well-ventilated storeroom.

Sample Collection

At the end of the experiment, no hens died. Birds were fasted
for 12 h [19, 20] and blood samples of 12 hens (two birds per

replicate) were drawn from the axillary vein into vacuum
tubes (5 mL) containing coagulant. After centrifugation for
10 min at 4 °C (3000×g, Centrifuge 5804R, Eppendorf,
Germany), pure serum samples were obtained. The ovaries
and mid-jejunum segments were carefully dissected and
rinsed with sterilized saline. Jejunal mucosa was gently
scraped off. All the samples were placed in liquid nitrogen
immediately and stored at −70 °C till further analysis.

RNA Extraction and RT-qPCR

The RNA extraction and RT-qPCR were referred to previous
research [21]. Briefly, total RNAwas extracted using RNAiso
Plus method (TaKaRa, Dalian, China). Complementary DNA
(cDNA) was synthesized from 1 μg of total RNA using M-
MLV reverse transcriptase (TaKaRa, Dalian, China).
Transcriptional changes were then identified by quantitative
PCR, which was performed using the Premix Ex TaqTM with
SYBRGreen (TaKaRa, Dalian, China) and the ABI 7500 Fast
Real-Time PCR system (Applied Biosystemics, Carlsbad,
CA, USA). The thermocycle protocol lasted for 30 s at
95 °C, followed by 40 cycles of 5-s denaturation at 95 °C,
34-s annealing/extension at 60 °C, and then a final melting
curve analysis to monitor purity of the PCR product. Primer
sequences are presented in Table 1. The 2−ΔΔCt method was
used to estimate mRNA abundance. ΔCt isCt, target−Ct, reference

and ΔΔCt is ΔCt, treatment−ΔCt, control [21]. Relative gene ex-
pression levels were normalized to those of the eukaryotic
reference gene β-actin.

ELISA

Levels of immunoglobulin A (IgA), immunoglobulin G
(IgG), interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-10, and tumor
necrosis factor α (TNF-α) were quantified using a sandwich
ELISA kit (Komabiotech Ltd., Seoul, Korea) according to
instructions. Briefly, serum samples were pipetted into wells
coated with antibodies specific for IgA, IgG, IL-1β, IL-2, IL-
4, IL-6, IL-10, and TNF-α. After incubation, biotinylated
monoclonal secondary antibiotics were added, followed by
streptavidin-peroxidase. After incubation and washing, the
bound cytokines were visualized by developing the peroxi-
dase reaction through the addition of H2O2 and the absorben-
cy of each well was determined by SpectraMax M5 (MD,
USA) [22].

Statistical Analysis

Data were statistically analyzed by one-way ANOVA proce-
dure of SPSS 16.0 for Windows (SPSS Inc., Chicago, IL).
When significant differences were found (P < 0.05), Tukey’s
test was further performed. Statements of significance were
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based on P < 0.05. The data were expressed as the
means ± SEM.

Results

The Transcript Level of Genes Related to Intestinal
Physical Barrier Function

We previously demonstrated that B. licheniformis lead to the
improvement of intestinal mucosa structure [16]. In the pres-
ence of an intact epithelial cell layer, the paracellular pathway
between cells must be sealed. This function is achieved by
physical barrier, especially by tight junctions [23]. Besides,
mucin 2 (MUC2) is the most abundant mucin, which creates
the first line of defense against microbial encroachment [24].

Hence, here, we focused on the transcriptions of genes
encoding tight junctions and mucin (MUC) in jejunal mucosa
to further explore the physical barriers of layers. Figure 1a
shows that B. licheniformis at three dosages all significantly
increase claudin 1 (CLDN-1) gene expressions, while only
0.03% B. licheniformis up-regulate the claudin 2 (CLDN-2)
levels. Although 0.01 and 0.03% B. licheniformis have no
obvious effects on zonula occludens 1 (ZO-1) and occluding
1 (OCLIN-1), 0.06% B. licheniformis markedly elevate their
expressions. In addition, B. licheniformis at three dosages dra-
matically up-regulate MUC2 expressions as well (Fig. 1b).

The Transcript Level of Genes Related to the Intestinal
Immunological Barrier Function

Compared to the control group, the IL-6 and TNF-α transcrip-
tions in jejunal mucosa of 0.01, 0.03, and 0.06%
B. licheniformis groups show no significant changes. While,
IL-1β expression in 0.03% B. licheniformis group is signifi-
cantly decreased and this is reversed to normal when the
B. licheniformis dosage reaches to 0.06% (Fig. 2a).
Moreover, IL-10 and IL-4 mRNA expressions of all the
B. licheniformis treatments are also elevated, but 0.01%
B. licheniformis do not alter the IL-4 transcript level signifi-
cantly (Fig. 2b).

The Transcript Level of Genes Encoding Hormones
and Hormone Receptors

Our previous findings indicate that B. licheniformis at three
dosages can significantly enhance levels of estradiol (E2) and
follicle-stimulating hormone (FSH) [16]. We therefore inves-
tigated the mRNA expression of genes encoding estrogen re-
ceptor (ESR) and FSH receptor (FSHR) to further verify the
impact of B. licheniformis on hormone secretions. Figure 3a
shows that 0.01 and 0.03% B. licheniformis dramatically up-
regulate ESRα and ESRβ expressions respectively, while
0.06% B. licheniformis decrease FSHR transcript levels mark-
edly. Furthermore, B. licheniformis of three concentrations
significantly increase gonadotropin-releasing hormone
(GnRH) expressions and decrease inhibin (INH) transcrip-
tions compared with the control group, while 0.03 and
0.06% B. licheniformis down-regulate Ghrelin levels signifi-
cantly in a dose-dependent manner (Fig. 3b).

The Systemic Immunity

The effects of B. licheniformis on immunoglobulin and cyto-
kine levels in serum are also evaluated. Results reveal that
compared to the control group, 0.01% B. licheniformis have
no obvious impact on IgA and IgG levels. However, 0.01%
B. licheniformis significantly decrease IL-1β, IL-6, and
TNF-α levels but increase IL-4 secretions. Further, 0.03%

Table 1 Gene name, primer sequences

Gene Primer sequence

β-actin F:5′GAGAAATTGTGCGTGACATCA3′
R:5′CCTGAACCTCTCATTGCCA3′

Cldn-1 F:5′TACTTTCCTGCTCCTGTCC3′
R:5′AAGGCGTTAATGTCAATCC3′

Cldn-2 F:5′CAAGGACCGAGTGGCAGTG3′
F: 5′TTTGATGGAGGGCTGAGGA3′

ZO-1 F:5′GCCTCCTGAGTTTGATAGTGG3′
R:5′CTCGGCAGACCTTGAAATAGA3′

OCLN-1 F:5′AATGCTTTCTCAGCCAGCGTAT3′
R:5′GCAAGCGTGGAGGCAACA3′

MUC2 F:5′ACGACTTTGACGGACACTGCT3′
R:5′AGGGGACGTTCTCGGTGAT3′

TNF-α F:5′CTCCGCAGTACTCAGGACAGC3′
R:5′TCAGAGCATCAACGCAAAAGG3′

IL-1 F:5′TTCCGCTACACCCGCTCACA3′
R:5′TGCCGCTCATCACACACGAC3′

IL-4 F:5′TGATCTTTGGCTGTATTTCGG3′
R:5′ACTCCTGGGTCTCAGTTGGGG3′

IL-6 F:5′ATGAACTTCACCGAGGGCTGCGAGG3′
R:5′CCTCGCAGCCCTCGGTGAAGTTCAT3′

IL-10 R:5′ACTTAACATCCAACTGCTCAGC3′
R:5′CATCCATCTTCTCGAACGTCTC3′

ESRα F:5′CTCTCACCCTTCATCCATCACC′3
R:5′CCTCACAAGACCAGACCCCATA3′

ESRβ F:5′AAGAAGAGAACGCTGTGGGTAT3′
R:5′CTCGGTGAATGGTTTGCTAGGA3′

FSHR F:5′CCAATGCCACAGAACTGAGATT3′
R:5′CTTATGGACGACGGGTAAAAAG3′

GnRH F:5′TGCTTGGCTCAACACTGGTCTT3′
R:5′TCCTTTCTTCTGGCTTCTCCTT3′

Ghrelin F:5′GCTCTGGCTGGCTCTAGTTTTT3′
R:5′TTCTGTGCCTCGGCGATGTAAT3′

INH F:5′CAAAAGGATGTGAGGAGGGTGC3′
R:5′CCGAGGGCTGGAAGAGGTAAGT3′

F forward, R reverse
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B. licheniformis administration significantly elevates IgG and
IL-4 concentrations, but drops the secretions of IL-1β and IL-
6. As the dose of B. licheniformis increases to 0.06%, IL-1β
and IL-6 levels are significantly down-regulated, while IL-4
concentration is enhanced (Table 2). But no significant differ-
ences of IgA and IgG are found in the 0.06% B. licheniformis
group.

Discussion

There is growing evidence that proves that the consumption of
probiotics can improve the egg production and egg quality of
laying hens [25–27]. In our previous research, B. licheniformis
administration is able to enhance the laying performance and
up-regulate the secretions of hormones and antioxidases [16].
Here, results reinforce the published data on gene level and
provide novel evidence for the multifaceted mode of
B. licheniformis on the egg production and egg quality, includ-
ing the intestinal barrier and immune functions.

Intestinal epithelia form a functional barrier that separates
the intestine from the outside world, and this requires the

formation of tight junctions that allow cells to adhere tightly
to each other and control the intestinal permeability [28]. Tight
junctions are composed of numerous structural and functional
proteins, such as CLDN, ZO, and OCLN. It has long been
reported that probiotics can play a role in enhancing intestinal
barrier functions. VSL#3 probiotics decrease colonic epitheli-
al permeability by increasing expressions of ZO-1 and OCLN
in rats [29] and Escherichia coli Nissle 1917 also inhibit gut
leakage by enhancing ZO-1 expression in mice [30].
Moreover, Streptococcus thermophilus and Lactobacillus
acidophilus can augment the OCLN level to avoid E. coli
invasion in intestinal epithelial cells [31]. In the present study,
we got similar results. The transcript levels of all the tested
tight junctions are up-regulated by B. licheniformis and this
effect is more obvious when B. licheniformis is at a higher
dosage. Besides, the highly glycosylated mucins secreted by
goblet cells also create an important defense line against mi-
crobial encroachment [24]. Among them, MUC2, the most
abundant mucin, plays an essential part in the organization
of the intestinal mucous layers at the epithelial surface of the
intestine [32]. Recent report has demonstrated that VSL#3
administration enhancesMUC2 secretion and gene expression
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in rat colonic loops effectively [33]. Our results also reveal
that B. licheniformis treatment dramatically increases jejunal
MUC2 gene expression in a dose-dependent manner, imply-
ing the inhibition of epithelial cell adherence for enteric path-
ogens. It is known that compromised intestinal epithelial in-
tegrity may facilitate the invasion of endotoxins from gut mi-
crobes, resulting in a local imbalance of anti- and pro-
inflammatory molecules in the intestines [25]. Thus, the im-
proved gut physical barrier induced by B. licheniformis raises
the possibility that it may also participate in enhancing the
intestinal immunological barrier function. According to
Shimazu et al. [34] and Perdigon et al. [35], probiotics
down-regulate gene expressions of pro-inflammatory cyto-
kines in porcine intestinal epithelial cells and stimulate the
gut immune cells to release IL-4 and IL-10. Our findings are
consistent with these findings in that we demonstrate
B. licheniformis also significantly decrease the expression of
pro-inflammatory cytokines IL-1β and TNF-α but increase
the transcriptions of anti-inflammatory cytokines IL-4 and
IL-10. The main function of anti-inflammatory cytokines is
to limit and ultimately terminate inflammatory responses [36].
Over-production of pro-inflammatory cytokines has an ad-
verse effect on intestinal mucosal integrity [37]. Recent

studies have indicated that most pro-inflammatory cytokines
induce a pathologic opening of the intestinal physical barrier
and increase intestinal epithelial permeability [38]. Since it is
suggested that intestinal damage may lead to the decreased
egg production and quality in chickens [39], we speculate that
the enhancement of intestinal, physical, immunological barri-
er functions caused byB. licheniformis can lead to the increase
of intestinal health of laying hens, contributing to the improve-
ment of laying performance and egg quality.

Faults in establishing intestinal immunity can lead to dis-
ease, inducing local and often also systemic inflammation
[40]. Therefore, the enhanced gut immunological barrier in-
spired us to determine the systemic immunity. Evidence sug-
gest that one of the putative effects of probiotics is the alter-
ation of immune function [41, 42], and in recent decades,
probiotics have been used in animals and humans to modulate
the humoral immunity in order to enhance the disease resis-
tance capacity [42, 43]. Lactobacilli treatment leads to higher
antibody production in chickens [44, 45]. Multi-strain
probiotics and yeast can increase egg production and egg
quality while increasing the antibody titer in serum as well
[46]. Our results demonstrate thatB. licheniformis supplemen-
tation significantly increases IgG level in serum, but no

E
S
R

F
S
H
R

0

1

2

3

4

0

0.01

0.03

0.06

b

a

b
b

b

b

a

b
ab

a

bc
c

re
la

ti
ve

  m
R

N
A

 e
xp

re
ss

io
n

G
n
R
H

G
h
r
e
li
n

IN
H

0

1

2

3

0

0.01

0.03

0.06

c

a

ab

b

a

ab

bc

c

a

b
b b

re
la

ti
ve

  m
R

N
A

 e
xp

re
ss

io
n

a b

E
S
R

Fig. 3 Effects of B. licheniformis supplementation on mRNA
expressions of genes encoding hormone receptors (a) and hormones (b)
in ovary of laying hens. Total RNAwas extracted and the expressions of
ESRα, ESRβ, FSHR, GnRH, Ghrelin, and INH were measured by real-

time PCR. Data are expressed as mean ± SEM from three independent
experiments. Different letters indicate values significantly different
(P < 0.05) among the groups

Table 2 Effects of Bacillus licheniformis on immunoglobulin and inflammatory factor secretions

B. licheniformis levels (%) IgA (g/mL) IgG (μg/mL) IL-1β (pg/mL) IL-2 (ng/L) IL-6 (ng/L) TNF-α (ng/L) IL-4 (ng/L) IL-10 (pg/mL)

0 23.0 ± 4.2 9.5 ± 2.4b 26.6 ± 3.5a 53.1 ± 8 29.6 ± 5.9a 66.9 ± 2.5a 21.1 ± 3.4b 79.6 ± 23.0

0.01 21.1 ± 2.9 11.0 ± 1.6ab 14.5 ± 1.7b 48.7 ± 8.4 16.6 ± 1.1b 49.5 ± 1.3b 60.4 ± 11.7a 61.7 ± 10.8

0.03 24.7 ± 4.6 15.9 ± 3.7a 11.9 ± 0.9b 39.9 ± 8.3 15.0 ± 1.8b 57.7 ± 1.8a 61.4 ± 12.7a 72.1 ± 21.3

0.06 20.2 ± 1.6 12.6 ± 1.6ab 16.1 ± 2.4b 37.6 ± 7.9 17.4 ± 1.6b 61.1 ± 5.4a 66.2 ± 7.8a 99.2 ± 15.1

Data are expressed as mean ± SEM from six independent experiments. Different letters indicate values significantly different (P < 0.05) among the
groups

296 Probiotics & Antimicro. Prot. (2017) 9:292–299



significant differences are found for IgA concentration.
Further, Klasing reported that excessive amounts of cytokines
may decrease feed intake and increase energy expenditure,
thereby reducing the performance of livestock [47]. Here,
we find that levels of pro-inflammatory cytokines IL-1β and
IL-6 are significantly reduced in all the B. licheniformis treat-
ment groups. However, TNF-α concentrations are only de-
creased with 0.01% B. licheniformis treatment but returned
to normal when the levels of B. licheniformis in the diet in-
crease to 0.03 and 0.06%. On the contrary, the levels of anti-
inflammatory cytokine IL-4 are markedly induced in all the
probiotic groups, although IL-10 is only slightly enhanced
when the concentration of B. licheniformis reaches to 0.06%.
As it has been demonstrated that immunity changes are critical
to the laying performance of hens [48, 49], we summarize that
B. licheniformis can enhance the laying performance of layers
by regulating immune function.

In birds, the onset of breeding involves the activation of
various hormones. Estrogens play a fundamental role in the
regulation of female sexual differentiation and reproduction.
ESRs show an appropriate expression profile in the develop-
ing embryo [50]. The present study demonstrates that
B. licheniformis increase ESRα and ESRβ transcript levels,
but this effect is not observed in the 0.06% B. licheniformis
group. FSH is a pituitary glycoprotein hormone, which can
stimulate and regulate ovarian follicular development and egg
production in chicken. FSH signal transduction is mediated by
the FSHR [51]. In this study, 0.01 and 0.03% B. licheniformis
have no obvious influence on FSHR transcriptions, but 0.06%
B. licheniformis significantly down-regulate FSHR gene ex-
pressions. Although the FSHR expressions are reduced, FSH
levels are much higher with B. licheniformis treatment [16].
Taken together, B. licheniformis can improve egg production
and quality via increasing E2, FSH concentrations [16], and
ESR expressions.

Besides the hormone receptors, we also detected the
mRNA expressions of hormone genes GnRH, Ghrelin, and
INH. Present findings suggest that GnRH gene expressions
enhanced with B. licheniformis treatments, but Ghrelin and
INH transcriptions decreased. The secretions of GnRH from
the hypothalamus stimulate the release of luteinizing hormone
(LH) and FSH, which in turn activates gonadal development
and release of sex steroids, including E2 and testosterone [52]
to regulate reproductive functions [53]. Ghrelin is a gut-brain
peptide that functions in the regulation of growth hormone
release and food intake [54]. Reports have demonstrated that
Ghrelin production can inhibit the secretion of estrogen and
GnRH [55, 56]. INH is a dimeric glycoprotein and is impor-
tant for regulation of dominant follicle development [57]. The
deletion of the α-subunit gene of INH markedly elevates se-
rum concentrations of FSH and causes gonadal tumors in
immature mice [57–60]. Therefore, the altered expressions
of genes encoding GnRH, Ghrelin, and INH caused by

B. licheniformis are important for the improvement of repro-
ductive performance.

In summary, present experiments indicate that dietary
B. licheniformis administration improves egg production and
egg quality in laying hens via mechanisms as follows: (1)
enhancing jejunal physical and immunological barriers, (2)
regulating systemic immunity, (3) promoting gene expression
of ESR and (4) positively modulating expression of genes
encoding the hormones that are related to ovulation.
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