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Abstract Hypertension is a major risk factor for cardiovascu-
lar diseases. Optimizing blood pressure results in an overall
health outcome. Over the years, the gut microbiota has been
found to play a significant role in host metabolic processes,
immunity, and physiology. Dietary strategies have therefore
become a target for restoring disturbed gut microbiota to treat
metabolic diseases. Probiotics and their fermented products
have been shown in many studies to lower blood pressure
by suppressing nitrogen oxide production in microphages,
reducing reactive oxygen species, and enhancing dietary cal-
cium absorption. Other studies have shown that hypertension
could be caused by many factors including hypercholesterol-
emia, chronic inflammation, and inconsistent modulation of
the renin-angiotensin system. This review discusses the anti-
hypertensive roles of probiotics and their fermented products
via the reduction of serum cholesterol levels, anti-inflamma-
tion, and inhibition of angiotensin-converting enzyme. The
ability of recombinant probiotics to reduce high blood pres-
sure has also been discussed.
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Introduction

Hypertension (high blood pressure) is an important disease
characterized by a sustained systolic blood pressure (BP) val-
ue of ≥140 mmHg and a diastolic pressure of ≥90 mmHg
(140/90) in young persons. Meanwhile, BP increases with
age and hence only elderly people ≥60 years with BPs above
150/90mmHgmay require treatment [1].Many obese persons
have high BP. In obesity, the increased visceral adiposity may
physically compress the kidneys leading to impaired renal-
pressure natriuresis and high BP [2]. Therefore, control of
BP in obesity requires that the bodymass index is first reduced
[3, 4]. If left untreated, hypertension can lead to insufficient
blood supply to vital organs, which can cause myocardial
infarction, stroke, and eventually death. Common treatment
regimens are aimed at reducing BP which eventually reduces
the associated risks [5]. Current guidelines for managing arte-
rial BP involve proper life style measures such as exercise and
diet (reduced salt intake and low fat diets rich in vegetables)
[6, 7]. Hypertension may be primary or secondary. The causes
of primary hypertension, which accounts for about 95% of all
hypertensive cases, remain elusive [8]. However, secondary
hypertension may be as a result of pregnancy, diseases such as
Cushing’s syndrome, kidney malfunction as well as a side
effect of various drugs. Several risk factors that increase the
risks of primary hypertension include hypercholesterolemia,
inflammation, sleep apnea, and obesity [9]. A number of path-
ways such as the fluid and electrolyte balance pathway, the
renin-angiotensin system (RAS), the kinin-kallikrein system,
the neutral endopeptidase system, and the endothelin-
converting enzyme system are known to control human BP
[10]. Of the physiological mechanisms of hypertension, the
renin-angiotensin system has attracted much scientific atten-
tion. The RAS is maintained by two proteases, renin, and
angiotensin-converting enzyme (ACE). Renin (EC
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3.4.23.15) hydrolyzes the Leu10-Val11 peptide bond of
angiotensinogen (a 55-kDa protein produced in the liver) to
produce angiotensin I (Ang I), an inactive decapeptide. ACE
(EC 3.4.15.1), a transmembrane metallopeptidase, then
cleaves a dipeptide from the C-terminal of angiotensin I to
produce angiotensin II (Ang II) [11]. Ang II then binds to
angiotensin type 1 (AT1) receptors to cause vasoconstriction
in vascular smooth muscle cells (VSMC) or to angiotensin
type 2 receptors (AT2) in endothelial and VSMC to cause
vasodilation by triggering the release of nitric oxide (NO), a
vasodilator [10]. In disease conditions, the activity of renin
and/or ACE may increase to cause an increase in BP. Also,
pathologic conditions may upregulate AT1 to reduce NO pro-
duction leading to elevated BP [12]. Alternatively, ACE inac-
tivates bradykinin (a nanopeptide vasodilator) by cleaving a
dipeptide from the C-terminal [13]. Active bradykinin binds to
its receptors (B1 and B2) to induce NO generation. Over the
years, several studies have demonstrated the role of gut mi-
crobiota in themaintenance of physiological homeostasis such
as BP [14]. Different studies have shown that imbalances in
the richness, the reciprocal abundance, and the presence and/
or localization of normal gut bacteria species are associated
with hypertension. The changes result in a decrease in acetate-
and butyrate-producing bacteria and a marked increase in
Firmicutes/Bacteroidetes ratio [14, 15]. This has raised scien-
tific interest about the use of dietary intervention to correct gut
microbiota disturbances and to control high BP. Probiotics are
known to exert health effects when administered in adequate
quantities. Studies on the ability of probiotic bacteria alone
(e.g., probiotic capsules) [6, 16, 17] and the ability of
probiotics in combination with their fermented products to
control high BP [18] have shown positive effects. Recent
studies have discovered new functional properties of
probiotics that affect BP. Probiotic Lactobacillus rhamnosus
GG, Lactobacillus helveticus, Lactobacillus gasseri,
Lactobacillus reuteri, and Bifidobacterium have been found
to induce NO production in microphages when the bacteria
are present in adequate quantities [19, 20]. They therefore
enhance vasodilation and could reduce high BP. Other
probiotics such as VSL#3 (a cocktail of Lactobacillus casei,
Lactobacillus plantarum, Lactobacillus acidophilus,
Lactobacillus delbrueckii subsp. Bulgaricus, Bifidobacterium
longum , Lac tobac i l l u s B i f i dobac t e r ium breve ,
Bifidobacterium infantis, and Streptococcus salivarius subsp.
Thermophilus) and L. breves have been found to reduce the
levels of polyamines in tissues [21, 22]. Reduction of poly-
amines in the vasculature is known to reduce BP. Another
mechanism by which probiotic bacteria may decrease BP is
by their antioxidant abilities. Lactobacillus fermentum E-3 and
E-18, L. gasseri, and S. thermophilus produce superoxide dis-
mutase [23–25] while S. thermophilus 821, B. longum 15708,
L. plantarum KCTC 3099, L. helveticus CD6, and
L. rhamnosus GG have strong metal chelating abilities [26,

27]. These properties may enable probiotics to regulate vascu-
lar contraction and relaxation. Added to these, it has been
reported that probiotics enhance dietary calcium ion absorption
in the gut. They produce short chain fatty acids and lactic acid
which reduce gut pH and increase dietary calcium solubility
and absorption [28]. Other probiotics such as L. breves en-
hance dietary transepithelial calcium transport by increasing
TRPV6 (a membrane calcium channel) expression in the gut
[29]. In hypertensive patients, dietary calcium absorption leads
to a calcium-induced suppression of renin and inhibition of
extracellular calcium uptake resulting in a lowered BP [30].

Since controlling the risk factors associated with primary
hypertension is critical in preventing and/managing the dis-
ease, the following section discusses our current knowledge
on the roles of probiotics and their fermented products in
controlling cholesterol levels, inflammation, and the renin-
angiotensin system in the effort to reduce hypertension. The
potential of recombinant antihypertensive probiotics to reduce
BP has also been discussed.

Probiotics, Hypercholesterolemia, and Hypertension

There is a large pool of evidence to show that high BP and high
total cholesterol are linked [31–33]. In fact, a positive cross-
sectional relation has been found between dietary cholesterol
intake and systolic BP (SBP) as well as diastolic BP (DBP)
[31]. Hypertension is more prevalent in hypercholesterolemic
subjects relative to normolipid subjects. Also, high BP has been
found to be induced when the total blood cholesterol level ex-
ceeds 6.4 mmol/l [8]. Excess blood cholesterol is deposited on
the arterial walls making them hardened and narrowed with
cholesterol plaque [34]. The heart therefore strains to pump
blood through the narrowed arteries and BP becomes abnormal-
ly high. In a study to investigate the ability of serum cholesterol
to independently affect BP levels, Ferrara et al. [35] examined
73 patients with sustained newly discovered and never-treated
hypertension. After grouping the patients according to their se-
rum cholesterol levels, they observed that BP at rest and during
24-h monitoring was similar in the three groups but increased
with increasing serum cholesterol during sympathetic stimula-
tion. Also, intima-media layer of the carotid arteries was signif-
icantly thickened in the groups with higher cholesterol levels
relative to those of lower cholesterol levels. These results indi-
cate that cholesterol levels alone can influence BP.

Over the years, metabolic disease has been shown to have a
direct link with a shift in the balance of the microbiota
[36–38]. Many studies have demonstrated the cholesterol-
lowering effects of probiotic consumptions in humans
[39–42] which may consequently lower the risk of high BP.
In a randomized controlled trial, administration of L. reuteri
NCIMB 30242 capsules to 127 volunteers decreased LDL-
cholesterol by 11.64% (P < 0.001), total cholesterol by
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9.14%, (P < 0.001), non-HDL-cholesterol by 11.30%
(P < 0.001), and apoB-100 by 8.41% (P = 0.002) relative to
placebo [43]. Also in a double double-blind, placebo-con-
trolled, randomized, parallel-arm, multi-center study, a yogurt
formulation of L. reuteri NCIMB 30242 reduced LDL-
cholesterol by 8.92% (P = 0.016), total cholesterol by 4.81%
(P = 0.031), and non-HDL-cholesterol by 6.01% (P = 0.029)
over placebo [44]. Though the actual mechanism by which
probiotics reduce cholesterol is not clear, a few hypotheses
have been proposed. Probiotics from the genera
Lactobacillus, Lactococcus, and Bifidobacterium have been
found to express bile salt hydroxylases (BSH) which may
reduce serum cholesterol levels in humans [45, 46]. BSH hy-
drolyzes conjugated bile acids to liberate free primary bile
acids which are excreted in feces [47]. Probiotics with active
BSH may therefore reduce cholesterol levels by increasing
free bile salt production from cholesterol in their colonized
area thus reducing cholesterol-associated problems.
However, since overproduction of bile salts can lead to bile
acid malabsorption, gastrointestinal problems, and gallstones
[48], extensive in vivo studies are required to ascertain the
safety of probiotic BSH cholesterol reduction. Other
probiotics such as L. acidophilus, L. bulgaricus, and L. casei
ATCC 393 possess both intracellular and extracellular choles-
terol reductase with which they reduce cholesterol into
coprostanol [49]. Probiotics also metabolize prebiotics
(nondigestible food ingredients that selectively stimulate the
growth and/or activity of one or a limited number of resident
colonic bacterial species) to produce short chain fatty acids
(SCFAs) which play an important role in cholesterol reduc-
tion. For instance, Marcil et al. [50] reported that butyrate may
inhibit cholesterol biosynthesis by inhibiting DL-3-hydroxy-
3-methyl-glutaryl-CoA reductase activity. Ooi et al. [51] in a
randomized, double-blind, placebo-controlled, and parallel-
designed study observed that 12 weeks consumption of L.
gasseri CHO-220 and inulin reduced total cholesterol by
7.84% and low-density lipoprotein cholesterol by 9.27% in
32 hypercholesterolemic men and women. The probiotics
and the SCFAs produced from inulin may have played vital
roles in cholesterol reduction in the patients. Several other
hypotheses such as binding of cholesterol to probiotic cellular
surface and subsequent incorporation into their cell membrane
to influence their membrane fluidity [52] and coprecipitation
of cholesterol with deconjugated bile have been proposed as
possible mechanisms by which probiotics reduce cholesterol
and prevent cholesterol-associated diseases such as high BP
[45]. Since reduction in total and low-density lipoprotein cho-
lesterol reduce BP [53, 54], the administration of cholesterol-
lowering probiotics may be effective in protecting against or
reducing high BP. However, it is important that the mecha-
nism by which these probiotics reduce cholesterol levels in
humans be established in light of the host-microbial crosstalk
and other biochemical networks that underlie BP.

Probiotics, Inflammation, and Hypertension

Several studies have suggested the role of inflammation in the
pathophysiology of hypertension in both human and experi-
mental animal models [55–57]. Even though the relationship
between inflammatory cytokines and hypertension is incon-
stant among different ethnic groups [58, 59], there is still rea-
son to believe that inflammation and hypertension may be
linked. Sessol et al. [60] followed a study involving 20,525
females (≥45 years) for a median of 7.8 years and observed
that 5365 of the participants developed hypertension and these
were those who had high levels of C-reactive protein (CRP),
an inflammatory cytokine. It was also observed that CRP was
significantly linked with a high risk of developing hyperten-
sion even in individuals with very low levels of baseline BP
(<140/<90 mmHg) and no traditional CVD risk factors. Also,
Niskanen et al. [61] after following 379middle-agedmenwith
no evidence of diabetes or hypertension at baseline for 11 years
reported that subjects with CRP levels ≥3 mg/l were 3.6 times
more likely to develop hypertension than men with levels
≤1.0 mg/l (P 0.001). Many other markers of vascular inflam-
mation and thrombosis such as IL-6, TNF-α, endothelin-1,
and ICAM-1 have been shown to have a positive correlation
with hypertension [62]. A potential mechanism by which in-
flammation may promote hypertension is by causing endothe-
lial dysfunction. Endothelial dysfunction can lead to an in-
crease in systemic vascular resistance and reduce nitric oxide
availability [63] resulting in increased BP. In another study to
find any association between inflammation and hypertension,
Guzik et al. [64] found that mice lacking T and B cells (RAG-
1 deficient mice) do not develop hypertension after Ang II and
desoxycorticosterone acetate salt infusion. However, adoptive
transfer of T cells but not B cells restored the hypertensive
effect in the mice. By mRNA analysis, T and natural killer
(NK) cells have been shown to express renin, the renin recep-
tor, angiotensinogen, and ACE. T cells also express AT1 and
AT2 receptors [65] and hence, a direct relationship may exist
between inflammation and high BP. Trott et al. [66] have
suggested how inflammation and high BP may be related.
They hypothesized that the RAS, oxidative stress, salt, and
other hypertensive stimuli may cause protein modification
and the modified proteins may serve as neoantigens. The
neoantigens cause the activation of T cells and T cell-derived
signals to promote the entry of inflammatory cells into blood
vessels and the kidneys resulting in the release of cytokines.
Together with water and salt retention in the kidney, T cells
promote vasoconstriction in the blood vessels and this can
elevate BP. Many different studies have however reported a
relationship between gut dysbiosis and inflammation [67, 68].
An in c r e a s e i n t h e l eve l s o f Ve i l l one l l a c e a e ,
Enterobacteriaceae, Pasteurellacaea, and Fusobacteriaceae
and a decrease in Erysipelotrichales, Bacteroidales, and
Clostridiales levels have been shown to be strongly linked
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with inflammation [69, 70]. Therefore, many studies have
conducted to show the potential of probiotics to mitigate the
condition. Probiotics such as B. infantis 35624 are known for
their ability to induce T regulatory (TREG) cells [71]. TREG

cells maintain tolerance to self-antigens and their depletion
can result in inflammation and autoimmune diseases [72,
73]. Probiotic B. infantis promotes an increased production
of CD25+Foxp3+ lymphocytes in murine models which pro-
tect against lipopolysaccharide or pathogen-induced NFκB
activation [74]. B. infantis also stimulates human dendritic
cells and selectively enhances the upregulation of Foxp3 ex-
pression in naïve lymphocytes [74]. It has also been reported
that B. infantis induced the production of high levels of
Foxp3+ TREG cells and interleukin-10 (IL-10) within periph-
eral blood of human volunteers who consumedB. infantis [75]
and hence may reduce inflammations. A combination of L.
casei, Bifidobacterium breve, and galactooligosaccharides
[76] and B. longum (alone) [77] have also been shown to
reduced serum CRP levels and improve the overall clinical
appearance of patients with chronic inflammation.
Administration of L. acidophilus ATCC 4356 [78], L.
helveticus NS8 [79], and L. rhamnosus (LGG) [80] has also
been reported to increase the production of IL-10 while
inhibiting the production of proinflammatory cytokines inmu-
rine models, and this may play a role in inhibiting the onset of
hypertension. Recently, Gomez-Guzman et al. [6] observed
that administration of probiotics (L. fermentum CECT5716
(LC40) or Lactobacillus coryniformis CECT5711 (K8) plus
L. gasseri CECT5714 (LC9) (1:1)) for 5 weeks reduced vas-
cular reactive oxygen species levels in spontaneous hyperten-
sive rats (SHR) by reducing NADPH oxidase activity. The
probiotic treatment also significantly improved endothelial re-
laxation induced by acetylcholine in SHR rats and resulted in
a reduction in SBP (13.4 ± 1.9 and 14.7 ± 1.9%) by LC40 and
K8/LC9, respectively, with no significant changes in the heart
rate. They also observed significant increase in the levels of
Lactobacillus sp. and reduced the numbers of Bacteroides and
Clostridium sp. relative to the control group indicating the
ability of the probiotics to promote an increase in the levels
of certain beneficial bacteria required for lowering BP.
Though many probiotics are known to have immunomodula-
tory effects, the effects may be strain specific [81]. Therefore,
it is important that probiotics that trigger specific immune
response involved in BP regulation be identified and devel-
oped for managing hypertension.

Probiotics, RAS, and Hypertension

The health benefits and clinical effects associated with probi-
otic fermented foods have been known for ages. Most studies
on the ability of probiotics to reducing BP have been elucidat-
ed through fermentation of food products in order to release

bioactive peptides, such as the ACE inhibitory peptides that
play a crucial role in inhibiting the RAS (Table 1). Probiotic
fermented foods tend to be more effective in significantly
reducing SBP or DBP compared to probiotics alone [17].
This is probably because some of the biopeptides released
through fermentation are also active against high BP [18, 83,
84] and hence the combined effect is higher than that observed
from probiotics alone. Nevertheless, even a small reduction in
high BP can have significant health implications and cardio-
vascular consequences [85]. The fermentation method ex-
ploits the proteolytic systems of probiotic bacteria to hydro-
lyze food proteins and to release bioactive peptides (Fig. 1).
Food-derived antihypertensive peptides may be safe [86] and
have no side effects as those caused by synthetic drugs.
Synthetic antihypertensive drugs are known to cause
dysgeusia, dizziness, headache, angioedema, and cough [87,
88].

Lactic Acid Bacteria Proteolytic Systems

Lactic acid bacteria (LAB) possess cell-envelope proteinase
(CEP) with which they initiate milk protein hydrolysis into
oligopeptides [89]. CEPs are serine proteases and belong to
the subtilisin family. They are anchored to the cell wall via
sortase A (SrtA). The type of CEP in LAB may be strain and
specie dependent. However, the most abundant CEP in LAB
is prtH3 and is present in over 80% of LAB strains followed
by prtH and prtH4 [90]. The CEP genes in lactobacilli are
genome encoded while those in lactococci are either genome
or plasmid encoded. CEPs are synthesized as preproteins of
about 2000 residues with several functional domains: a prepro
(PP) domain, A, B, helix (H), S domains, a catalytic serine
protease domain (PR), and a cell wall spacer domain (W) [91,
92]. CEP activation requires the maturation of PrtM (PrtM1
and PrtM2). PrtM1 is required for PrtH activation while
PrtM2 is involved in the activation of other CEPs [90].

Peptides produced by CEP hydrolysis are transported into
LAB cells for further hydrolysis (Fig. 1). Dipeptides are
transported by Opp transport systems, tripeptides, and
tetrapeptides (containing hydrophobic branched-chain amino
acids) by Dpp transport systems while oligopeptides (hydro-
philic and charged) are transported by the DtpT transport sys-
tem [93]. Only one peptide transporter (DtpT) has however
been identified in L. reuteri [94]. Various peptidases in LAB
cells hydrolyze the absorbed peptides to release essential ami-
no acids.

Four main LAB endopeptidases have been characterized
namely PepO, PepF, PepG, and PepE [93]. PepO is a mono-
meric metalloprotease that can hydrolyze peptides from 5 up
to 35 amino acid residues. Three paralogous genes encode
PepO namely pepO, pepO2, and pepO3. PepF hydrolyzes
peptides containing 7~17 amino acids and has a broad
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specificity. It is encoded by pepF, pepF1, and pepF2. Two
paralogous genes have been reported for PepE in lactobacilli
(pepE and pepE2). PepG and PepE are however absent in
lactococci and streptococci [90]. Four LAB exopeptidases
have been identified based on their specificities. They are
aminopeptidases, dipeptides, tripeptidases, and proline-
specific proteases. There are three classes of aminopeptidases
based on their specificities (broad specificity, specific amino-
peptidases for acidic or basic amino acids, and those specific
for hydrophobic or aromatic residues). PepC and PepN are
aminopeptidases with broad specificity and are present in all
genomes. PepC, a member of the C1 family of cysteine pep-
tidases, is specific for basic, acidic, hydrophobic/uncharged,
and aromatic residues. Some studies have shown that antihy-
pertensive peptides containing aromatic amino acids at the C-
terminus and those with hydrophobic side chains have

enhanced effects [95]; therefore, overexpressing the pepC
gene in lactic acid bacteria could yield large amounts of
ACE inhibitory peptides when used to ferment high protein
foods. PepN on the other hand preferentially hydrolyzes basic
residues followed by hydrophobic or uncharged residues [93].

The aminopeptidase PepS preferentially hydrolyzes aro-
matic residues and has been identified in Pediococcus
pentosaceus, S. thermophilus, Leuconostoc mesenteroides,
L. casei, and Lactobacillus sakei. PepA (glutamyl aminopep-
tidases) prefers to hydrolyze Glu and Asp residues. PepA has
been identified in Lactobacillus, Streptococci, and
Lactococcus but absent in Pediococcus and Oenococcus
strains [89]. LAB tripeptidases usually have broad specific-
ities for tripeptides but preferentially hydrolyze those contain-
ing hydrophobic amino acids. They however do not cleave
tripeptides with proline residues. The tripeptidase PepT is
found in all LAB strains and the pepT gene may occur as
two paralogous genes in some strains such as L. acidophilus,
L. gasseri, Lactobacillus johnsonii, and Lactobacillus
sanfranciscensis [96]. Good quantities of isoleucyl-prolyl-
proline (IPP) and valine-prolyl-proline (VPP) (the most pop-
ular anti-ACE peptides) may therefore be obtained in food
fermented with LAB with overexpressed pepT genes or by
treating the substrates with PepT tripeptidases. IPP and VPP
have been shown to be resistant to gastrointestinal digestion
and significantly reduce BP in both animal and humans [97].
The rigid structure of proline has been described to lock the
carboxyl group into a conformation favorable for interaction
with the positively charged residue at the active site of ACE to
cause inhibition [98]. Therefore, overexpression of PepT in
LAB could also yield other short peptides with proline at their
C-terminus with anti-ACE activities. LAB also possess dipep-
tidases that cleave only dipeptides into amino acids as shown
in Fig. 1. These peptidases may be highly specific or have
broad specificity. Peptidases in the PepD and PepV families
hydrolyze a large variety of dipeptides. PepD genes are het-
erogeneously distributed in LAB genomes. The PepL dipep-
tidase however is highly specific for Leu and Ala residues and
has only been identified in L. delbrueckii [94].

Proline-specific peptidases hydrolyze proline residues from
the N-terminal of peptides. PepR is a broad spectrum prolinase
with a broad specificity for dipeptides including Met-Ala,
Leu-Leu, and Leu-Gly-Gly [99] while the proline
iminopeptidase (PepI) preferentially cleaves proline residues
at the N-terminal of tripeptides [100]. PepP cleaves N-
terminal amino acids that are directly linked to proline resi-
dues in oligopeptides. One pepP gene is ubiquitous in LAB
genomes except in L. sakei and P. pentosaceus. PepQ is also
present in all LAB strains as a copy per genome except for
L. delbrueckii subsp. Bulgaricus which have two pepQ
paralogs. While one paralogue is located in a separate cluster,
the other is clustered with other orthologues. The proline-
specific endopeptidase PepX is also ubiquitous in all LAB

Fig. 1 The LAB proteolytic systems. (A) Extracellular components: PrtP
(a cellular envelope proteinase) requires PrtM, (proteinase maturation
protein) for maturation; Opp (an oligopeptide permease) transports
oligopeptides into the cell; DtpT (an ion linked transporter for di- and
tripeptides), and Opt (an ABC transporter for peptides). (B) Intracellular
peptidases: general (PepN, PepC) and specific (PepX, PepQ) peptidases
and amino acid catabolic enzymes (carboxylase, aminotransferases, etc.)
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as one gene per genome [101, 102]. However, LAB strains
from dairy environments may have two PepX peptidase ho-
mologues [94].

Although probiotics and their fermented foods reduce high
BP in SHRs, results in human studies are controversial. A
meta-analysis of the effects of lactotripeptides IPP and VPP
showed that the lactotripeptides could significantly reduce BP
in Asians (Japanese) but only slightly in Caucasians [97, 103,
104]. In these studies, however, most of the individual studies
were conducted on small populations making it difficult to
statistically detect small effects [104]. Studies using larger
populations are required to overcome such barriers. No study
has yet reported the ability of live probiotics alone to reduce
high BP in humans though such studies are required to estab-
lish the direct effects of probiotics in mitigating the condition.

Recombinant Probiotics with Antihypertensive
Effects

ACE inhibitory peptides released after probiotic fermentation
are usually difficult to purify from the digested mixture. Also,
capitalizing on the proteolytic ability of probiotics alone does
not guarantee high quantities of ACE inhibitory peptides since
the bacteria are living organisms and hence the type and quan-
tity of the enzymes produced are difficult to control. This
therefore makes the production of ACE inhibitory peptides
by this method hardly reproducible. For these reasons, several
studies have focused on producing recombinant probiotics
that express ACE inhibitory peptides. Rao et al. [105] de-
signed and expressed the antihypertensive peptide multimer
AHPM by cloning the peptide sequence into the plasmid
pGEX-3X and expressing it in Escherichia coli BL21. The
recombinant AHPM fused with glutathione S-transferase
(GST) and the proteins were expressed as inclusion bodies
forming 35% of the total intracellular protein. A large quantity
(399 mg/l) of the pure soluble GST-AHPM was obtained.
They then cloned the ACE inhibitory peptide multimer
AHPM-2 into pET32a and expressed it in E. coli. The
expressed fusion Trx-AHPM-2 obtained after purification
was subjected to simulated gastrointestinal digestion and the
hydrolysate showed a strong ACE inhibitory activity
(IC50 = 4.5 ± 0.3 μg/ml) [106]. Huang et al. [107] also used
the plasmid pET-30a (+) bearing the anti-ACE peptide IYPR
for protein expression in E. coli strains DH5а and BL21
(DE3). The recombinant protein accounted for 31% of the
cellular protein with an IC50 value of 61 mg/l. The peptides
reduced SBP significantly in SHRs after a single oral admin-
istration. These studies prove the possibility of producing
large quantities of ACE inhibitory peptides for use as
nutraceuticals using recombinant technology. Live recombi-
nant probiotics have also been applied in BP lowering studies.
In a quest to study the in vivo effect of recombinant

antihypertensive probiotics, Yang et al. [16] transformed
L. plantarumNC8 with pSIP409 plasmid-bearing ACE inhib-
itory peptides YFP and TFP originally obtained by chymo-
tryptic hydrolysis of yellowfin sole (Limanda aspera) frame
protein [108]. Rats fed with the recombinant probiotic strains
had significantly reduced SBP relative to those who consumed
L. plantarum (wild type) and PBS controls. The antihyperten-
sive function of recombinant probiotic was maintained for at
least 10 days (the SBP of the RLP-treated rats was
181.517 ± 2.312 mmHg, that of the L. plantarum treated rats
was 195.876 ± 2.109 mmHg, and that of the PBS control rats
was 197.376 ± 4.982 mmHg on the 24th day (P < 0.05)).
Although recombinant probiotics could be effective in lower-
ing BP, it is challenging to clone short peptides (especially di-
and tripeptides). More studies are required to ascertain the
possible safety concerns that may arise from consuming re-
combinant probiotics before they can be used in human
studies.

Conclusion

The evidence that high BP is associated with gut
dysbiosis makes it important to establish the ability of
probiotics to reduce high BP in humans. However,
though many probiotics and their fermented foods re-
duce high BP in SHRs, the results are conflicting in
humans. Yet, the evidence that probiotics and their
fermented products effectively reduce inflammation and
hypercholesterolemia and affect the RAS (all of which
have links with high BP) could support their application
in improving cardiovascular health. Enhancing the pro-
teolytic ability of probiotics by genetic engineering will
be essential in increasing the levels of anti-ACE pep-
tides in fermented foods. Recombinant probiotics could
be a cheap and dependable source of antihypertensive
peptides since the use of wild probiotics is tedious and
may not be reproducible. Taken together, dietary inter-
ventions to correct gut dysbiosis and/or the consumption
of fermented foods containing antihypertensive peptides
could be novel nutritional therapeutic strategies for hy-
pertension. As our knowledge about the hypotensive
effects of probiotics grows, the mechanism by which
they work is worth exploring. Also, a better understand-
ing of the gut microbiota-host crosstalk and other net-
works underlying the control of BP will be critical in
promoting the use of antihypertensive probiotics and
their products.
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