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Abstract Microorganisms synthesize several compounds

with antimicrobial activity in order to compete or defend

themselves against others and ensure their survival. In this

line, the cell wall is a major protective barrier whose integrity

is essential for many vital bacterial processes. Probably for

this reason, it represents a ‘hot spot’ as a target for many

antibiotics and antimicrobial peptides such as bacteriocins.

Bacteriocins have largely been recognized by their pore-

forming ability that collapses the selective permeability of

the cytoplasmic membrane. However, in the last few years,

many bacteriocins have been shown to inhibit cell wall

biosyntheis alone, or in a concerted action with pore for-

mation like nisin. Examples of cell wall-active bacteriocins

are found in both Gram-negative and Gram-positive bacteria

and include a wide diversity of structures such as nisin-like

and mersacidin-like lipid II-binding bacteriocins, two-pep-

tide lantibiotics, and non-modified bacteriocins. In this

review, we summarize the current knowledge on these

antimicrobial peptides as well as the role, composition, and

biosynthesis of the bacterial cell wall as their target. More-

over, even though bacteriocins have been a matter of interest

as natural food antimicrobials, we propose them as suitable

tools to provide new means to improve biotechnologically

relevant microorganisms.
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Introduction

All living organisms produce some kind of inhibiting

substances as part of their defense or immune system in

order to thrive in a competing niche. In particular, micro-

bial antagonism is well documented, and the production of

antimicrobials includes antibiotics, lytic enzymes, and low-

molecular-weight metabolites such as organic acids, toxins,

and bacteriocins.

Bacteriocins are ribosomally synthesized antimicrobial

peptides or proteins produced by bacteria with inhibitory

(bactericidal or bacteriostatic) activity against species clo-

sely related to the producer (narrow spectrum), or active

beyond the genus boundary (broad spectrum). Although

bacteriocin production is not an essential trait in bacteria, it is

evolutionary maintained and widely distributed, even though

it entails biological costs. Indeed, it is estimated that around

99 % of bacterial species produce bacteriocins, and even

within a species, different bacteriocins can be synthesized

[72, 113]. Some bacteriocins have been shown to be involved

in competition among bacterial strains, niche colonization,

and in quorum sensing and communication [32, 34, 51, 118].

Bacteriocins comprise a very heterogenous group

regarding their primary structure and physicochemical

properties. Likewise, there is a plethora of modes of action

targeting DNA replication, transcription, translation, enzy-

matic reactions, cell wall biosynthesis, or the cytoplasmic

membrane. Disruption of the selective permeability of the

membrane by pore formation is a common inhibitory

mechanism for cationic antimicrobial peptides, which are

virtually produced by all forms of life [146], including many

bacteriocins synthesized by Gram-positive bacteria (i.e.

pore-forming bacteriocins). However, a striking feature of

pore-forming bacteriocins, when compared to their eukary-

otic counterparts, is their high specific activity at the
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nanomolar range and their relatively limited spectrum of

activity. This is explained now by the increasing evidence

that many of the pore-forming bacteriocins make target-

mediated pores rather than being membrane disruptors. This

holds true for several non-modified bacteriocins that use the

membrane-associated component of the mannose-phospho-

transferase system as a specific receptor [40, 72]. Another

example is the use of the cell wall precursor lipid II as a

docking molecule for pore formation, combining the inhi-

bition of cell wall biosynthesis with the formation of pores

[19, 23]. Moreover, several non-pore-forming bacteriocins

targeting the cell wall have been described able to either

hinder cell wall biosynthesis or hydrolyze pre-existing

peptidoglycan.

Based on its essential nature, the biosynthetic pathway

of the cell wall has been, and still is, a validated target in

antibiotic development [25, 129]. In view of the need of

novel antimicrobials, cell wall-active bacteriocins are

foreseen as a source of novel structures and activities

which may represent new leads for antibiotic development.

This review will focus on cell wall-active bacteriocins

synthesized by both Gram-positive and Gram-negative

bacteria. Moreover, examples are given on how these

bacteriocins may be used as tools to improve biotechno-

logical processes by enhancing the performance of the

microorganisms involved.

Bacteriocin Diversity and Classification: A Constant

Debate

Bacteriocin production is a widespread trait among bacte-

ria, and some species of Archaea also produce their own

bacteriocin-like compounds called archaeocins [100, 113].

These are reported to be very resistant to extreme condi-

tions with very promising applications. However, little is

known about their mode of action and they will not be

covered in this review.

Among bacteriocins synthesized by Gram-negative bac-

teria, colicins and microcins, produced by Escherichia coli

and mostly active against Gram-negative microorganisms,

have been extensively studied. Colicins are large proteins

(25–80 kDa), usually plasmid-borne that encodes a toxin

gene, an immunity gene, and, in some cases, a stress-induced

lysis gene. The latter encodes a protein that lyses the pro-

ducer cell to release the colicin into the environment. When

this gene is absent, the bacteriocin is actively transported

across the membrane. Expression of colicin genes is regu-

lated by the DNA-damage SOS response, but it can also be

influenced by other global regulatory networks [28]. Colicin

production leads to the death of the producing cell and they

are lethal for close-related strains which are recognized by

the bacteriocin, being the producer strain immune to them.

All colicins share as to their mode of action common steps

that involve the recognition of their cognate receptors in the

outer membrane of target cells, translocation across the outer

membrane, and activation of their toxic effect. A great

variety of killing mechanisms have been described such as

membrane pore formation (e.g. colicin A), DNA nuclease

activity (colicin E2), and the inhibition of the biosynthesis of

proteins (colicins E3, E5, D), peptidoglycan, and the lipo-

polysaccharide O-antigen (colicin M) [5, 24, 28, 54, 113].

By contrast, microcins are smaller (\10 kDa), they are not

lethal against the producing cell and their regulation is SOS-

independent. Gene clusters are located either in plasmids or in

the chromosome and consist of structural and immunity genes

and those coding for transport or modification enzymes [95].

Two main sub-classes, I and II, have been established

depending on their post-translational modifications, gene

cluster organization, and the sequence of the leader peptide,

showing great structural heterogeneity [24, 42, 54]. Their

synthesis is activated under specific stress conditions, and,

once synthesized, they are actively transported outside the cell

either by microcin-specific or by general transporters. Some

microcins recognize specific receptors in the target cell, usu-

ally involved in uptaking essential nutrients. Others are syn-

thesized as harmless peptides which are further processed and

activated within the target cell [43]. Their killing mechanism

is not fully understood, but, in some cases, disruption of the

cell membrane polarity [79], transcription inhibition by

binding to RNA polymerases [39], or translation inhibition

[93] have been documented.

On the other hand, bacteriocins produced by Gram-posi-

tive bacteria are usually small, heat-stable cationic peptides

with high isoelectric points. They are active preferably

against a wide panel of Gram-positive microorganisms,

including food-borne and spoilage bacteria. This feature has

been the main driving force of bacteriocin research, partic-

ularly of those produced by the food-related lactic acid

bacteria as for their use as natural preservatives in food [33,

46]. Bacteriocin gene clusters can be plasmid or chromo-

somally encoded, and some are localized in transposons, as

described for nisin [65]. The gene clusters basically consist

of the structural gene and those involved in immunity. Genes

specifying modification enzymes are also present in some

cases. Moreover, Gram-positive microorganisms have

evolved specific regulation mechanisms related to bacte-

riocin synthesis and transport [61, 76, 113].

Owing to the great variety of chemical and structural

properties of bacteriocins, several classification schemes

have been proposed based on different criteria such as

molecular weight, producing microorganism, structure, or

mode of action, although it still remains controversial and a

universal classification is an issue for on-going discussions

[36, 73, 97, 110]. The classification proposed by Heng and

Tagg [62] integrates bacteriocins produced by both Gram-
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positive and Gram-negative bacteria and establishes four

main classes.

Class I or lantibiotics encompasses small (\15 kDa),

heat-stable, post-translational-modified peptides containing

amino acids such as lanthionine, ß-methyl-lanthionine,

and dehydrated amino acids, which form distinctive intra-

molecular structural rings. Class I is sub-classified in 3

sub-classes: the linear I-a, represented by cationic and pore-

forming peptides; the globular I-b, non-cationic peptides that

inhibit enzymatic reactions; and the multi-component I-c,

composed by two peptides, both needed to be fully active.

Class II bacteriocins are defined as small (\15 kDa), heat-

stable, and non-post-translational-modified, usually amphi-

philic and/or hydrophobic. They are sub-classified into three

sub-classes: Pediocin-like II-a, characterized by a conserved

N-terminal sequence YGNGV/L and a stabilizing disulfide

bond, highly active against Listeria and other genera such as

Enterococcus, Lactobacillus, Pediococcus or Clostridium,

among others; sub-class II-b represents a miscellaneous

group of linear non-pediocin-like peptides; and sub-class II-c

comprises multi-component bacteriocins. Another group,

class III, is composed by large ([30 kDa) heat-labile pro-

teins, which are sub-divided into sub-class III-a or bacteri-

olytic proteins, and sub-class III-b or non-lytic, which are

generally active on cytosolic targets. Finally, class IV

includes circular proteins characterized by a head-to-tail

covalent bond. Examples of cell wall-active bacteriocins are

shown in Table 1.

The Bacterial Cell Wall

The cell wall represents the first barrier between the bac-

terial cells and their environment. It preserves the integrity

of the cell by maintaining a defined and stable cell shape; it

is needed to counteract the inner osmotic pressure and

represents an assembly scaffold for other surface macro-

structures such as polysaccharides, S-layers, flagella, and

secretion systems [64, 124]. Moreover, the cell wall is a

dynamic structure that participates also in cell growth and

cell division [108, 142]. This structure is, therefore, crucial

for survival, and as such, it is targeted by several antibi-

otics, bacteriophages, and bacteriocins.

The bacterial cell wall is composed basically by pepti-

doglycan (PG), anionic polymers, proteins, and polysac-

charides. The PG structure is formed by a network of linear

glycan strands made up of alternating N-acetylglucosamine

(NAG) and N-acetylmuramic acid (NAM) covalently

linked by b1-4 glycosidic bonds. Linked to NAM, there is a

pentapeptide chain L-Ala–D-Glu–X–D-Ala–D-Ala, where

X represents a diamino acid, usually a meso-diaminopim-

elic acid (DAP) in most Gram-negative or L-Lys in

Gram-positive bacteria. The glycan strands are further

cross-linked via the pentapeptide either directly or through

a short peptide bridge, depending on the species. Since the

peptides are localized helically along the sugar strand,

cross-links are made in all directions, forming a multilay-

ered three-dimensional network [116].

PG is present in all bacteria, except in Mycoplasmas,

Planctomyces, and the genera Rickettsia and Chlamidiae

[140]. A scheme of the CW structure of Gram-positive and

Gram-negative bacteria is shown in Fig. 1. In Gram-posi-

tive bacteria, the PG represents the 90 % of the total cell

wall. Anionic polymers such as teichoic acids (or lipotei-

choic acids when anchored to the cytoplasmic membrane)

are also major constituents. Proteins can be either cova-

lently linked to PG or associated through cell wall-binding

domains. In Gram-negative microorganisms, the PG is a

thin layer that accounts only for the 10 % of the CW, being

the external membrane the outermost structure. The lipo-

polysaccharide (LPS) is the major constituent that con-

tributes to the structural integrity of the cell and acts as a

protective barrier.

The biosynthesis of PG is a multistage process beginning

in the cytoplasm where the UDP-NAG and UDP-NAM-

pentapeptide units are synthesized. Still in the cytoplasm but

on the membrane side, lipid I is synthesized by the addition

of the UDP-NAM-pentapeptide unit to the lipid carrier un-

decaprenyl phosphate. Subsequently, UDP-NAG is trans-

ferred to lipid I, yielding lipid II [137]. The PG monomer is

translocated through the membrane, and, once in the peri-

plasm, it is polymerized into the growing PG chain by the

penicillin-binding proteins (PBPs), with glycosyltransferase

and/or transpeptidase activities [122]. The lipid carrier is

recycled to be used in a new cycle of PG synthesis.

Despite the fact that the basic chemical architecture of

the PG is similar in bacteria, no species keeps its PG in an

unmodified state and may vary even within the same spe-

cies depending on growth conditions [139]. Modification of

the PG may occur along synthesis and maturation (e.g.

degree of cross-linking) but also by the activity of partic-

ular enzymes, very often involved in resistance to antimi-

crobials. This is the case of PG O-acetylation accounting

for resistance to lysozyme [8, 31, 50] or the presence of

D-lactate, D-Ser or Gly instead of D-Ala in the last position

of the pentapeptide in some vancomycin-resistant bacteria

[112].

Lipid II-binding Bacteriocins

Several antibiotics are known to target the different steps of

cell wall biosynthesis. Particularly, the cell wall precursor

lipid II is very often targeted, and different recognition

domains for several antibiotics have been described [18,

129]. Moreover, it has been recently described that some
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defensins, antimicrobial peptides produced by animals,

plants, and fungi, also target lipid II to exert their anti-

bacterial activity [126, 128]. In the case of bacteriocins,

many have been described to bind to lipid II, including

pore- and non-pore-forming lantibiotics, non-modified

bacteriocins, two-peptide bacteriocins, and some Gram-

negative colicins (Fig. 2). In particular examples, potent

inhibitory activities comparable to leading antibiotics such

as vancomycin have been described [69].

Nisin and Nisin-like Bacteriocins

The lantibiotic nisin A is the most studied Gram-positive

bacteriocin. It is a 3.3 kDa, elongated, amphiphilic, and

positively charged peptide with a wide spectrum of activ-

ity, inhibiting several Gram-positive and also some Gram-

negative bacteria, provided that the external membrane is

disrupted [133]. Several natural nisin variants, produced by

Lactococcus lactis (nisin A, Z, F, and Q) and by

Table 1 Examples of cell wall-active bacteriocins

Bacteriocin Classa Singular features Reference

Nisin Ia Linear lantibiotic Combines lipid II-mediated pore formation and

inhibition of CW biosynthesis

[19]

Mersacidin Ib Globular lantibiotic Inhibits transglycosylation during CW biosynthesis [22]

Plantaricin C Ia/Ib Globular pore-forming lantibiotic Shares structural/functional features with both nisin

and mersacidin

[143]

Nukacin ISK-1 Ia/Ib Globular non-pore-forming lantibiotic Binds to lipid II-accumulating CW precursors [2]

Lacticin 3147 Ic Multi-component lantibiotic Combines pore formation and inhibition of CW

biosynthesis in each peptide

[144]

Haloduracin Ic Multi-component lantibiotic Combines pore formation and inhibition of CW

biosynthesis in each peptide

[102]

Lactococcin 972 IIIa Heat-sensitive Binds to lipid II blocking the incorporation of CW

precursors at the septum

[84]

Colicin M IIIb Non-lytic large protein Hydrolyses lipid II [106]

Lysostaphin IIIa Bacteriolytic large protein Glycilglycine endopeptidase at the cross-bridge of

staphylococcal PG

[55]

Zoozin A IIIa Bacteriolytic large protein Endopeptidase at the peptide side chain [48]

Millericin B IIIa Bacteriolytic large protein Endopeptidase at the peptide side chain and cross-

bridge

[10]

Pesticin IIIa Bacteriolytic large protein Hydrolyses glycan chains [107]

CW, cell wall; PG, peptidoglycan
a According to Heng and Tagg [62]

Teichoic acid
Lipoteichoic acid

NAM

NAG

1-4 glycosidic bond

Cross-bridge

Phospholipid
Membrane protein

P
G

C
M

Gram-positive Gram-negative

P
G

C
M

O
M

PorinLPS
O-polysaccharyde

Lipid A

Fig. 1 Scheme of the structure

of the cell wall of Gram-positive

(left) and Gram-negative (right)
bacteria. CM, cytoplasmic

membrane; PG, peptidoglycan;

OM, outer membrane; NAG,

N-acetylglucosamine; NAM,

N-acetylmuramic acid; LPS,

lipopolysaccharide
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Streptococcus uberis (nisin U), have been isolated. Early

work on the mode of action of nisin already suggested that

cell wall biosynthesis was inhibited [111], and, later on, it

was experimentally confirmed that nisin makes use of lipid

II as a docking molecule for pore formation [19, 23]. Lipid

II is an integral part of the pore which is made up of 8

molecules of nisin and 4 of lipid II [59]. The combination

of both inhibition of cell wall biosynthesis and pore for-

mation is the basis of the potent activity of nisin. Binding

to lipid II also implies that the cell wall precursor is de-

localized from the sites where is needed for cell wall bio-

synthesis, interfering with cell growth and cell division [60,

68]. Moreover, binding to lipid II is also needed for

effective membrane disruption in germinated spores to

inhibit spore outgrowth from several pathogenic Gram-

positive bacteria [56, 90]. Nisin has also been reported to

activate cell wall hydrolytic enzymes, particularly in

staphylococci at the septum level, by displacing them from

the teichoic and lipoteichoic acids [12, 13].

The N-terminus of nisin, specifically rings A and B,

forms an essential binding cage, which interacts with the

pyrophosphate moiety of lipid II via hydrogen bonds, [67]

and the C-terminus is essential for pore formation [145].

Their contribution to bacterial killing has been assessed by

using mutated nisin versions [145]. Interestingly, specific

mutations on the hinge region resulted in nisin variants

with enhanced activity [45].

The nisin-like lipid II-binding structural motif is present

in many pore-forming lantibiotics such as gallidermin and

epidermin [15], mutacin 1140 [132], subtilin [105], and

bovicin HC5 [104], whose interaction with lipid II has been

experimentally demonstrated. Of note, the pore-forming

ability of these nisin-like lipid II-binding peptides seems to

be strongly dependent on membrane thickness and com-

position and determines the inhibitory spectra of these

lantibiotics. Thereby, in order to evaluate the contribution

of pore formation to the mode of action of these and other

bacteriocins, special care must be taken when choosing a

particular susceptible strain [138].

Mersacidin and Mersacidin-like Lantibiotics

Mersacidin is a small 1.8-kDa globular uncharged lantibiotic

produced by Bacillus HIL Y-84,54728 [30]. It is active against

a variety of Gram-positive bacteria and, remarkably, against

methicillin-resistant Staphylococcus aureus (MRSA) with

comparatively higher activity than vancomycin in animal

models [30, 74, 98]. Mersacidin is not a pore-forming bacte-

riocin. Instead, it strongly inhibits the transglycosylation step

during cell wall biosynthesis by binding to lipid II without

Lipid II

CM

CYTOPLASM

PERIPLASM

NISIN
MERSACIDIN

PLANTARICIN C

NUKACIN ISK-1
LACTICIN 3147

HALODURACIN
LACTOCOCCIN 972

COLICIN M

LYSOSTAPHIN

ZOOCIN A

MILLERICIN B

PESTICIN

L-Ala

D-Glu
L-Lys

D-Ala

L-Ala
D-Glu
L-Lys

D-Ala
(Gly)5

Staphylococcal PGStreptococcal PG

-

L-Ala
D-iGln

-Lys

-Ala

L-Ala
D-iGln
L-Lys

D-Ala
(L-Ala)2-3

pore
P

P 
P P 

PG

D

L

P P
P

P 

Fig. 2 Mode of action of some cell wall-active bacteriocins. Square
N-acetylglucosamine. Triangle N-acetylmuramic acid. CM, cytoplas-

mic membrane; PG, peptidoglycan. Within the PG, b1-4 glycosidic

bonds (horizontal lines) and cross-bridges (vertical lines). Boxes
detailed muropeptide composition of streptococcal (left) and staph-

ylococcal (right) peptidoglycan
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affecting the biosynthesis of DNA, RNA, or proteins [21, 22].

The structure of the complex mersacidin–lipid II has not been

solved. However, NMR analyses revealed that mersacidin

possesses a dynamic conformation able to suffer structural

changes depending on the environmental conditions, thus

modulating the distribution of the charged residues, which

affects the effective interaction with lipid II [66]. Moreover,

mersacidin activity is enhanced by calcium ions in vivo,

promoting its interaction with the negatively charged surface

of the cytoplasmic membrane [16].

Mersacidin and related lantibiotics are characterized by

the presence of an interwined tioether bridge within the

conserved TxS/TxE/DC motif, being the glutamate residue

essential for the inhibitory activity, as shown by site-

directed mutagenesis [134]. This pattern is conserved in

other lantibiotics, indicating a putative inhibitory activity

of these bacteriocins based on lipid II-binding [14].

Among mersacidin-like lantibiotics, inhibition of cell

wall biosynthesis has been demonstrated for plantaricin C

and nukacin ISK-1 [70, 143]. Moreover, the lantibiotic pla-

nosporicin was discovered during a screening for inhibitors

of peptidoglycan inhibitors [29]. There are several lantibi-

otics whose structure resembles that of plantaricin C and

nukacin ISK-1 (i.e. the lacticin 481 group). They all have

their particular inhibitory spectra, and their activity could

rely also on lipid II-binding and pore formation [7, 14, 41].

Plantaricin C is a 3.5-kDa bacteriocin, synthesized by Lac-

tobacillus plantarum LL441, which displays inhibitory activity

against a wide range of Gram-positive bacteria, including food-

borne pathogens, such as Staphylococcus, Streptococcus,

Clostridium, or Bacillus [52]. It shares structural features with

nisin and mersacidin; it has a highly positively charged

N-terminus, which may facilitate the interaction with the neg-

atively charged cytoplasmic membrane, and a ring and compact

conformation in the C-terminus, resembling the mersacidin

lipid II-binding motif [136]. Accordingly, plantaricin C is able

to form pores in model membranes and intact cells of particular

bacterial species but it is also a potent inhibitor of cell wall

biosynthesis forming a tighter complex with lipid II when

compared to mersacidin [53, 143].

Nukacin ISK-1 is a 2.9-kDa lantibiotic produced by

Staphylococcus warneri ISK-1 with a N-terminal linear

domain and a globular C-terminus, essential for the antimi-

crobial activity, which holds the mersacidin-like lipid II-

binding motif TxS/TxD/EC [71, 121]. Nukacin ISK-1 is

bacteriostatic and unable to form pores. Instead, it binds to

lipid II leading to the accumulation of cell wall precursors

inside the cell. Treated cells show a reduced thickness of the

cell wall and incomplete septa [2]. Immunity has been asso-

ciated with the cooperative role of the ABC transporter

NukFEG and the lantibiotic-binding immunity protein NukH,

which may block the bacteriocin before reaching its

target [101].

Two-peptide Lantibiotics

A growing class of lipid II-binding molecules is constituted

by two-peptide lantibiotics or class Ic according to the

Heng and Tagg’s classification [62]. In these systems, two

pre-peptides are ribosomally synthesized as inactive forms

(LanA1 and LanA2), which are later enzymatically modi-

fied into their mature forms, the a-peptide carrying a

mersacidin-like lipid II domain and an elongate positively

charged ß-peptide involved in pore formation. Both pep-

tides are encoded by their corresponding structural genes,

act synergistically usually in a 1:1 ratio, and are required

for full activity. This distribution of specialized killing

mechanisms in two peptides has been described for lacticin

3147 [144] and haloduracin [102] and may hold true for

other closely related two-peptide lantibiotics [99].

Lacticin 3147 is synthesized by L. lactis ssp. lactis

DPC3147 and it is highly active against Gram-positive

bacteria, including food-borne pathogens such as Listeria

monocytogenes and Bacillus cereus or relevant pathogens

such as MRSA [91, 119, 120]. Lacticin 3147 structure was

resolved by Martin et al. [83] and it is composed by LtnA1

(3.3 kDa), the globular-type lantibiotic with a mersacidin-

like lipid II-binding motif, and LtnA2 (2.8 kDa), a positively

charged elongated-type lantibiotic. Both peptides are needed

for high inhibitory activity at nanomolar concentration [96,

144]. LtnA1 has been shown to be a strong inhibitor of cell

wall biosynthesis in in vitro assays. The interaction with lipid

II appears to stabilize LtnA1 promoting its interaction with

LtnA2, capable of pore formation [91, 144]. Potassium

release assays showed that LtnA1 should be present before

the final action of LtnA2, demonstrating that LtnA1 and

LtnA2 act in a sequential manner in a 1:1 ratio, an event

which has been frequently found for other two-peptide

bacteriocins ([96] and references therein). Mutagenesis

assays showed that the rings of LtnA1 involved in lipid II

binding, the glutamate residue in this region, as well as the

rings in LtnA2 involved in the interaction of the two pep-

tides, are essential for activity [35]. In addition to this, the

presence of calcium ions, or in general a positively charged

environment, was proved to enhance the antimicrobial

activity of lacticin 3147 as LtnA1 binds to whole cells only

when it is surrounded by positive charges, either calcium or

the positively charged partner LtnA2 [16]. It is worth-noting

that the inhibitory activity is also strain-dependent [96].

Haloduracin is produced by the alkaliphilic Bacillus

halodurans C-125, has inhibitory activity against several

Gram-positive bacteria, and also inhibits spore outgrowth

of Bacillus anthracis [80], being its effectiveness strain-

dependent [103]. It is composed of two lantibiotic-type

peptides, Hala (2.8 kDa) and Halb (2.3 kDa) [92], which

act synergistically at a nanomolar concentration. Hala
contains several overlapping rings and the lipid II-binding
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motif present in mersacidin, actagardine, and LtnA of

lacticin 3147, while Halb shows a more elongated struc-

ture. Hala binds to lipid II and inhibits transglycosylation

by PBP1 during PG biosynthesis. This complex promotes

binding of Halb that forms pores in the membrane [102].

This sequential mechanism of action, suggested to occur in

a lipid II/Hala/Halb (1:2:2) ratio, is similar to that of lac-

ticin 3147 despite having significant structural differences

[102, 103].

Lactococcin 972

Lactococcin 972 (Lcn972) is a 7.5 kDa, cationic and highly

active bacteriocin synthesized by L. lactis IPLA972. So far,

it is the first non-lantibiotic that does not target the cyto-

plasmic membrane, that is, it does not make pores [86].

Rather, it inhibits PG biosynthesis by binding specifically

to lipid II. Lcn972 activity was antagonized in vivo by lipid

II, and not by other cell wall precursors. Lcn972 also co-

precipitated with micelles containing lipid II and interfered

in vitro with the enzymatic reactions of PBP2 (polymeri-

zation of PG) and FemX, both enzymes that use lipid II as a

substrate [84]. In contrast to other lipid II-binding bacte-

riocins, Lcn972 shows two particular features: first, it

seems to block the incorporation of cell wall precursors at

the septum; and second, it possesses a narrow activity

spectrum, being active exclusively against lactococci under

active division [85]. The existence of a putative co-target

has been proposed to explain this targeted mode of action.

Another striking feature is that Lcn972 is easily inactivated

by heat, anticipating a complex structure–function relation-

ship. Lcn972 was claimed to be a homodimer based on the

results of in-gel bioassays in which the inhibitory activity

appeared to be linked to a 15-kDa band, instead of the

expected 7.5 kDa [86]. However, recent experimental data

revealed that this aberrant migration occurred only in the

presence of glycerol that stabilizes the folded form of Lcn972

and preliminary NMR data further discard the presence of

such a homodimer (Turner D., personal communication).

The lack of homology between Lcn972 and other lipid

II-binding peptides suggests that Lcn972 carries a novel

lipid II-binding motif. Interestingly, there are more than

100 hits in the public databases that are related to Lcn972,

building the protein family Pfam09683.

Colicin M

Within Gram-negative bacteriocins, colicin M, a 29.5-kDa

protein synthesized by E. coli, is a unique colicin that inter-

feres with the biosynthesis of PG and the O-antigen of the LPS

in susceptible E. coli strains [57, 58, 123]. Colicin M is

imported in susceptible cells by recognizing the ferrichrome

receptor FhuA and actively translocated into the periplasm to

exert its antimicrobial activity [17, 130]. Its narrow activity

spectrum is due to the species-specific condition of the

receptors and the translocation mechanisms involved. It has a

phosphoesterase activity which degrades lipid II, specifically

cleaving the phosphodiester bond between the lipid moiety

and the pyrophosphoryl group [44, 57], in a magnesium-

dependent manner [4]. Consequently, the lipid carrier C-55

cannot be recycled in new PG synthesis rounds nor in the

synthesis of the O-antigen. Interestingly, Patin et al. [106]

have demonstrated that colicin M can hydrolyze in vitro and

in vivo any lipid II molecule regardless the composition of the

peptide side chain, thus representing a good candidate to study

cell wall degradation in bacteria.

The structure of colicin M revealed a complex folded

conformation challenging the identification of the typical

colicin domains [147]. However, the high identity observed

in the C-terminus of colicin M and other orthologs in

several species of Burkholderia, Pectobacterium, and vir-

ulent Pseudomonas supports the notion that the catalytic

domain resides in this region, while the N-terminus and the

central region are likely involved in target receptor rec-

ognition and translocation, respectively [5, 109, 147].

Cell Wall-degrading Bacteriocins

Several large and heat-sensitive proteins synthesized by

bacteria that hydrolyze the cell wall have been described.

They are comprised into class IIIa (so-called bacterioly-

sins), although their classification as bacteriocins is con-

troversial [36, 62]. Bacteriolysins are usually organized in

modules bearing catalytic activities and target recognition

domains, resembling those present in bacteriophage end-

olysins [63] and streptococcal fratricins [9]. Immunity

proteins are encoded in the vicinity of the structural genes

and they often encode FemABX-like proteins, peptidyl

transferases, that catalyze the incorporation of amino

acid(s) into the interchain peptide bridge of the PG [11,

48]. Examples of class IIIa bacteriolysins are listed in

Table 1 and some examples are given below.

Lysostaphin

Lysostaphin may be the most studied bacteriolytic bacte-

riocin with regard to clinical applications. It is a 27-kDa

metallo-enzyme firstly identified in Staphylococcus simu-

lans [125] and highly specific against S. aureus [3, 55]. Its

mature form displays an N-terminal domain responsible for

the catalytic activity, and a C-terminal involved in binding

to the target PG [3]. Lysostaphin is a glycylglycine endo-

peptidase targeting the pentaglycine cross-bridge of the PG

in many staphylococci [55], cleaving specifically between

the third and the fourth Gly residues [127]. Producer strains
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do not have specific immunity genes; instead, they are

resistant due to the plasmid-encoded gene lif, involved in

the addition of serine residues to the pentaglycine bridge

that prevents hydrolysis by lysostaphin [38, 135]. Several

authors have proposed lysostaphin as an effective thera-

peutic agent against S. aureus or as a tool to detect this

pathogen in food matrices ([77] and references therein).

Zoocin A

Zoozin A is a 30-kDa endopeptidase synthesized by

Streptococcus equi subsp. zooepidemicus 4881 that

hydrolyzes the bond between the terminal D-alanine of the

peptide side chain and the L-alanine of the cross-bridge in

the PG of sensitive streptococci [49]. It carries two func-

tional domains: the catalytic N-terminus, showing high

similarity to other PG endopeptidases such as lysostaphin,

and the C-terminal domain involved in PG recognition and

binding [1]. Immunity relies on zif, involved in the addition

of alanine residues to the cross-bridge, making it longer

and more resistant to hydrolysis. Zif shows high similarity

with FemABX-like proteins [48, 117].

Millericin B

Millericin B is a 28-kDa PG hydrolase synthesized by Strep-

tococcus milleri NMSCC 061 with inhibitory activity against

a wide range of Gram-positive bacteria. Its endopeptidase

activity cleaves at both the peptide side chain and the cross-

bridge [10]. Beukes and Hastings [11] have identified three

genes putatively involved in immunity and export. milF and

tRNAleu incorporate leucine residues into the cross-bridge

that hinder hydrolysis. milT is homologous to ABC trans-

porters and is likely involved in millericin export.

Pesticin

Within Gram-negatives, PG hydrolytic enzymes are also

found. For example, pesticin is a 39.9-kDa bacteriocin

synthesized by Yersinia pestis, which kills other Yersinia

species and some E. coli strains [28]. The genetic organi-

zation and its three-domain structural architecture resemble

that of colicins featuring an N-terminal translocation

domain, a central receptor binding domain, and the

C-terminal activity domain. The activity domain has a

similar folding to lysozyme-related proteins such as the

archetypal phage T4 lysin [107]. Although they differ in

sequence, both T4 lysozyme and pesticin share the same

enzymatic activity, cleaving the b1-4 glycosidic bond

between NAM and NAG in the PG chain [141]. Like

colicin M, pesticin’s receptor is the outer membrane iron-

siderophore transporter FyuA which also plays a role as

virulent factor of many pathogens. Immunity to pesticin

relies on Pim, a protein which specifically recognizes a

sequence located in the catalytic domain.

The modular organization of pesticin allowed designing

a hybrid bacteriocin composed by the FyuA receptor

domain and a foreign phage-related muramidase domain,

not recognized by the immunity protein Pim. This hybrid

bacteriocin is able to penetrate across the outer membrane

and effectively kill pesticin producers and several Gram-

negative bacteria [81].

Cell Wall-active Bacteriocins as Biotechnological Tools

Bacteriocins have mainly been considered as food biopre-

servatives, particularly those produced by lactic acid bacteria

(LAB). In fact, more than 700 patents related to LAB bac-

teriocins have been registered and more than 400 are linked

to the improvement of food quality, probiotics for animal

feed, and mastitis treatment [46, 94]. The potential of LAB

bacteriocins in food biopreservation relies basically on the

traditional role of these bacteria as starters in food fermen-

tations and their GRAS (Generally Regarded As Safe) status.

Moreover, the bacteriocins they produce do not have a toxic

effect on eukaryotic cells [46, 82] and they have a wider

spectrum of activity compared to those produced by Gram-

negative bacteria, impairing the development of food-borne

pathogens. Accordingly, several LAB bacteriocins are

commercialized in several countries as food biopreserva-

tives. Their application as biopreservatives in food has been

extensively reviewed elsewhere [46, 47, 94, 97].

From a clinical point of view, the development of

pathogens such as vancomycin-resistant enterococci (VRE)

and MRSA is of particular concern to animal and public

health agencies worldwide. In this line, bacteriocins such

as nisin, lacticin 3147, mersacidin, or lysostaphin have also

been considered as an alternative to traditional antibiotics

[6, 37, 74, 75, 131].

Besides the applications of bacteriocins based on their

antibiotic activities, cell wall-active bacteriocins may be

also very useful to study cell wall biology and, particularly,

the response to cell envelope stress in relevant microor-

ganisms. As outlined below, this approach has been

exemplified by the role of the cell wall-active bacteriocin

Lcn972 in understanding the molecular mechanisms that

govern the response of the industrially relevant L. lactis to

cell wall damaging. The generated knowledge has provided

a basis for improving L. lactis performance in food fer-

mentations (Fig. 3).

Lactococcus lactis is the main component of the mes-

ophilic starter cultures used in cheese manufacturing, and

robust strains are continuously demanded to improve the

yield of industrial fermentations and guarantee the optimal

characteristics of the final fermented product [20]. In the
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dairy environment, L. lactis must tolerate diverse stress

conditions either during starter manufacture or along the

fermentation process. Thus, the knowledge on how L. lactis

monitors cell wall integrity and develops appropriate

responses is, without a doubt, relevant to optimize its

performance and robustness. In this context, the tran-

scriptional response of L. lactis to Lcn972 helped to

identify CesSR as the main two-component system (TCS)

that orchestrates the primary line of defense to cell wall

damage in this microorganism [87]. Several genes in L.

lactis were identified as members of the CesR regulon, and

among them, llmg0169 and the operon llmg2164-2163,

encoding a putative membrane protein and a Psp-like

protein, respectively, were highly induced. These genes

could be further correlated to a higher survival of L. lactis

under technological stress such as low pH, heat, or NaCl,

among others, and have been proposed as biomarkers for

strain robustness [114] (Fig. 3).

The characterization of resistant mutants to cell wall-

active bacteriocins of industrially relevant microorganisms

may also help to select more robust strains and reveal

interesting mechanisms by which they become better

adapted to their industrial use. For instance, a recent work

has shown that L. lactis is able to shorten the peptide chain

of its muropeptides to counteract the activity of Lcn972.

Remarkably, these mutants were also insensitive to other

dairy preservatives such as lysozyme and nisin, and to

some bacteriophages which are a major threat in dairy

fermentations [115].

There are as well examples of biotechnological appli-

cations derived from the current knowledge on cell wall-

active bacteriocins. CesSR and its orthologues in other

Gram-positives such as LiaSR in B. subtilis and VraSR in

S. aureus were shown to be specifically induced by lipid II

binders such as nisin, bacitracin, and vancomycin [78, 87,

88]. This feature has been further exploited to develop HTS

(High-throughput screening) reporter systems to identify

cell wall-active compounds and monitor the stress response

they trigger. These methods were designed with the aim to

be easy handling, quick and applicable to high amount of

samples. A reporter B. subtilis strain was created by fusing

the promoter of the TCS LiaSR to the lacZ gene, thus

expressing beta-galactosidase as response to antibiotics

interfering with the lipid II cycle [89]. Qualitative assays

were performed with agar diffusion tests, and quantifica-

tion was possible in liquid cultures in microtiter plates, thus

enabling to screen and identify lipid II-interfering com-

pounds [26]. Similarly, the promoter of llmg0169, the most

up-regulated gene after CesSR activation in L. lactis, was

fused to the gene encoding the green fluorescence protein

(GFP), and a microtiter fluorescence-based assay was

developed to monitor cell envelope response in L. lactis

under specific conditions [27].

In view of these highlighted reports, cell wall-active

bacteriocins are envisaged, not only as effective antimi-

crobials, but also as tools to get a deeper knowledge on the

genetic and physiological consequences of cell wall dam-

age in bacteria. Understanding bacterial regulatory
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mechanisms involved in stress responses may ultimately

lead to a rational selection of industrially relevant micro-

organisms for specific applications.
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Pesticin displays muramidase activity. J Bacteriol 179(5):

1580–1583

142. Wheeler R, Mesnage S, Boneca IG, Hobbs JK, Foster SJ (2011)

Super-resolution microscopy reveals cell wall dynamics and

peptidoglycan architecture in ovococcal bacteria. Mol Microbiol

82(5):1096–1109
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