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Abstract
A large proportion of algal production and carbon export occurs after snowmelt and before ice melt in the Arctic Ocean. To 
determine the magnitude of under-ice export fluxes over the Chukchi Plateau (CP), a total of 25 sediment trap deployments 
were completed at two ice camps during the annual field survey of the Korean IBRV Araon in 2018: a first ice camp (CP1) 
conducted from August 17 to 19 and a second ice camp (CP2) conducted from August 20 to 22. Chlorophyll a (chl a) and 
particulate organic carbon (POC) fluxes were measured at 2, 5, 10 and 30 m under ice, and zooplankton collected in the 
sediment traps were enumerated and identified. Both chl a and POC fluxes were the highest at 5 m under ice at CP2, likely 
due to enhanced fluxes of the sea ice algae Melosira arctica and to a potential higher release of particulate matter from a 
thinner sea ice cover. Whereas Calanus glacialis/marshallae were dominant at all depths and both sites, the large numbers 
of individuals observed at 10 m at CP1 likely enhanced zooplankton grazing pressure at that site, further contributing to 
the high spatial variability in under-ice export fluxes. Overall, under-ice fluxes obtained in August 2018 highlighted the 
importance of M. arctica aggregates as a source of carbon for pelagic consumers and for carbon export during summer over 
the Chukchi Plateau.
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1  Introduction

In the Arctic Ocean, high seasonal variation in sunlight and 
ice conditions regulates primary production both within and 
under the sea ice in the upper water column (Fortier et al. 
2002; Leu et al. 2015). Sea ice algae growth starts at the bot-
tom of the ice when incident solar radiation is sufficient, and 
ends with their release into the water column during snow 
and ice melt (Cota 1991; Juul-Pedersen et al. 2008; Camp-
bell et al. 2015). Concurrently, the increased irradiance and 
the haline stratification resulting from snow and sea ice melt 
rapidly trigger the onset of a pelagic algal bloom, which may 
also take place under sea ice cover (Legendre et al. 1981; 
Strass and Nöthig 1996; Mundy et al. 2009; Arrigo et al. 
2012). Sea ice and pelagic algae subsequently either transfer 
carbon to pelagic grazers or are rapidly exported toward the 

seafloor (Tremblay et al. 1989; Michel et al. 1996; Nadaï 
et al. 2021).

Sea ice algae generally dominate algal export and con-
tribute to a large proportion of particulate organic carbon 
(POC) fluxes over the deep basins (Gosselin et al. 1997; 
Zernova et al. 2000; Boetius et al. 2013; Lalande et al. 
2019). By contrast, sea ice algae do not contribute sig-
nificantly to algal and POC fluxes on Arctic shelves (Juul-
Pedersen et al. 2010). In addition to algal cells, POC fluxes 
are usually composed of zooplankton fecal pellets, organic 
aggregates, and ice-rafted particulate matter (Michel et al. 
1996; Fortier et al. 2002). Importantly, zooplankton are 
important for the regulation of POC export through graz-
ing on algal cells and production of fast-sinking fecal 
pellets, simultaneously attenuating and enhancing POC 
fluxes (Fortier et al. 1994). Therefore, spatial and tempo-
ral variations in algal and zooplankton production lead to 
large variations in the composition and magnitude of POC 
fluxes (Michel et al. 1996; Fortier et al. 2002). In addition 
to natural variability, the recent anthropogenically induced 
decline in sea ice and the resulting increase in incident 
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light recently observed in the Arctic Ocean (Serreze et al. 
2007; Comiso 2012; Nicolaus et al. 2012) may modify the 
magnitude, timing, and duration of algal growth and the 
seasonal development and composition of the zooplankton 
community, with poorly known implications for the bio-
logical carbon pump.

As a relative large portion of algal production and 
POC export in the Arctic Ocean occurs after snowmelt 
and before ice melt, and therefore, before possible detec-
tion by satellites (Mundy et al. 2009; Arrigo et al. 2012; 
Lalande et al. 2019; Nadaï et al. 2021), in situ under-ice 
measurements are critical to accurately estimate the poten-
tial importance of POC export to the biological carbon 
pump during sea ice melt. In this context, the objective 
of the present study was to evaluate spatial variations in 
the magnitude and composition of POC fluxes at a high 
spatial resolution under sea ice. To attain this objective, 
a total of 25 short-term drifting sediment traps deploy-
ments were completed at two ice camp sites visited during 
August 2018 over the rarely sampled Chukchi Plateau, a 
wide ridge extending from the Chukchi Sea shelf between 
the Mendeleev Ridge and the Northwind Ridge in the 
Pacific Arctic region (Fig. 1). In addition to POC fluxes, 
under-ice fluxes of chlorophyll a (chl a), an indicator of 
algal production, were also measured, and zooplankton 
collected in the sediment traps were quantified and identi-
fied to estimate the impact of grazing on under-ice fluxes. 
Overall, these measurements provide insights into the bio-
logical properties influencing the spatial variability of the 
magnitude of under-ice production and export in a rapidly 
changing but relatively little studied region of the Arctic 
Ocean.

2 � Materials and Methods

2.1 � Study Sites

Ice camps were set up on two drifting first-year ice floes 
with extensive melt ponds visited at the northernmost 
sites reached over the Chukchi Plateau (CP) during the 
ARA09B expedition on board the Korean IBRV Araon to 
the Pacific Arctic region in August 2018 (Fig. 1). The first 
ice floe (CP1) visited from August 17 to 19 consisted of a 
mix of flat and distorted first-year ice covered by a thin snow 
layer and refrozen meltponds (Veyssière et al. 2022). The 
second ice floe (CP2) visited from August 20 to 22 was also 
composed of first-year ice covered by refrozen meltponds 
(Veyssière et al. 2022). While a thin, melting snow cover was 
observed at both sites, the CP1 ice floe was overall thicker 
(0.70–1.25 m) than the CP2 ice floe (0.40–0.88 m; Veyssière 
et al. 2022). Images obtained from the under-ice deployment 
of a remotely operated vehicle showed sea ice algae fila-
ments at both sites (Fig. 2).

2.2 � CTD‑Rosette Measurements

Vertical profiles of water temperature, salinity, and flu-
orescence-derived chlorophyll were obtained at the sta-
tions sampled immediately after the completion of each ice 
camp through SBE 911plus CTD casts (Sea-Bird Scientific, 
USA) equipped with a fluorescence sensor. Seawater sam-
ples collected at discrete depths in the upper 100 m using 
a rosette system holding 10 L Niskin bottles were analyzed 
for nutrients and concentrations of suspended chl a and 
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Fig. 1   a Location of the two ice camps visited over the Chukchi Pla-
teau in the Pacific Arctic region, and b satellite-derived daily sea ice 
concentration on 19 August 2018 retrieved at a 3.125 km resolution 

from the AMSR2 satellite data archive of the University of Bremen 
(https://​seaice.​uni-​bremen.​de/​data/​amsr2)
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POC. Seawater samples were transferred into 50 mL coni-
cal tubes stored at 4 ºC prior to nutrient analyses. Nitrate 
(NO3

−) + nitrite (NO2
−), silica (SiO2), and phosphate 

(PO4
3−) concentrations were measured using standard col-

orimetric methods adapted for use with a four-channel con-
tinuous auto-analyzer (QuAAtro; Seal Analytical, USA). 
Seawater samples for POC measurements were collected 
into pre-rinsed amber polyethylene bottles. Subsamples 
(500 mL–1 L) were then filtered onto 47 mm diameter What-
man GF/F filters pre-combusted at 550 °C for 6 h and stored 
at − 80 °C until laboratory analyses. Seawater subsamples 
(300–500 mL) were also filtered onboard through a cascade 
connection filtration system containing a 20 μm nylon mesh, 
a 2 μm Whatman Nuclepore filter, and a 0.7 μm Whatman 
GF/F filter to determine the chl a concentration of micro-
phytoplankton (> 20 μm), nanophytoplankton (2–20 μm), 
and picophytoplankton (< 2 μm) following Sieburth et al. 
(1978). Each filter was extracted in 90% acetone in the dark 
for 12 to 24 h before fluorescence was measured using a 

pre-calibrated Trilogy Turner Designs fluorometer to deter-
mine chl a concentrations following Parsons et al. (1984). 
The relation between total chl a concentrations obtained 
from seawater subsamples and fluorescence-derived chl a 
values obtained at the same depths was used to adjust the 
offset in CTD-derived fluorescence measurements.

2.3 � Sediment Trap Deployments

Short-term sediment traps deployed at CP1 and CP2 con-
sisted of cylindrical tubes (2.1 or 3.5 L) with height:diameter 
ratios larger than 8 to reduce turbulent mixing (Knauer and 
Asper 1989). A total of 25 sediment traps were deployed 
under ice or in open water at depths ranging from 5 to 30 m 
at CP1, and at depths ranging from 2 to 10 m at CP2 (Fig. 1; 
Table 1). Each sediment trap was attached to a single line 
and deployed in individual ice holes made with an auger at 
distances ranging from 1 to 18 m from each other for periods 
ranging from 30 to 54.5 h (Table 1). At CP2, three sediment 

Fig. 2   Sea ice algae images 
obtained using a digital imagery 
system (GoPro HERO 4) 
mounted on a remotely-operated 
vehicle deployed under ice 
(a–d) at CP1 and (e–f) at CP2 
over the Chukchi Plateau during 
August 2018
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traps were also attached on three distinct lines anchored to 
the Araon approximately 5 m away from the ice floe edge 
and deployed in open water at 5 m depth for 36.5 h (Table 1). 
All sediment traps were weighted to remain vertical in the 
water column and filled with a solution of filtered seawater, 
formalin, and borate to preserve samples. Upon recovery, 
sediment trap samples were transferred into plastic bags and 
stored at 4 °C. Prior to subsampling, recognizable zooplank-
ton were removed with forceps from samples obtained at 2, 
5, and 10 m and preserved in a formalin solution. Subsam-
ples for POC and particulate nitrogen (PN) measurements 
(1.2–2 L) were filtered onto 47 mm Whatman GF/F filters 
pre-combusted at 550 °C for 6 h and stored at 80 °C until 
laboratory analyses. Subsamples (300 mL) were filtered 
onto Whatman GF/F filters and extracted in 90% acetone 
for 24 h in the dark prior to fluorescence measurement using 
the same pre-calibrated Trilogy Turner Designs fluorometer 
used for CTD-derived measurements.

2.4 � Laboratory Analyses

Zooplankton previously removed from the sediment trap 
samples were enumerated and identified to the lowest 
taxonomic level possible using a microscope. Filters for 
POC and PN measurements were freeze-dried before being 
exposed to hydrochloric acid (HCl) fumes during 24 h to 
remove inorganic carbon prior to measurements on a CHN 
elemental analyzer (vario Macro cube, Elementar, Ger-
many). Acetanilide was used as a standard and the preci-
sion of these measurements was ± 4% (Jung et al. 2020). 

Student’s t-tests were used to evaluate the difference in 
POC and chl a fluxes between ice camp sites.

3 � Results

3.1 � Water Column Properties

Low water temperature (< − 1.2°C) and low salinity (< 29) 
were recorded in the upper water column above a thermo-
cline and halocline measured at 40–45 m at CP1 and at 
28–38 m at CP2 (Fig. 3a and b). Peaks in fluorescence-
derived chlorophyll concentrations (> 0.6 mg m−3) were 
also observed at the pycnocline depths at CP1 and CP2 
(Fig. 3c). Nutrients were depleted or had very low con-
centrations above the pycnocline at both sites (Fig. 3d–f). 
Suspended POC concentration profiles were similar at both 
sites, with peak POC concentration values > 0.5 μmol L−1 
observed at 47 m at CP1 and at 36 m at CP2 (Fig. 3g).

Peaks in suspended chl a concentrations (> 0.5 μg L−1) 
were observed at 44 m at CP1 and at 34 m at CP2, similar 
to the fluorescence measurements (Fig. 4). The relative 
proportion of microphytoplankton (> 20 μm) in the total 
chl a concentrations remained below 25% and gradually 
decreased from the surface to the subsurface chl a maxi-
mum (SCM) depth at both sites. More than 50% of the chl 
a measured at the SCM depth was attributed to picophy-
toplankton (< 2 μm) at both sites (Fig. 4).

Table 1   Short-term sediment trap deployment information, with asterisks indicating open water sediment trap deployments

Ice camp Latitude (°N) Longitude (°W) Deployment date Recovery date Water depth (m) Trap depth (m) Sampling period (h)

CP1 79°12.869 164°08.760 17 Aug 2018 19 Aug 2018 1903 5, 10, 30 51–54.5
CP2 78°21.655 167°47.389 20 Aug 2018 22 Aug 2018 556 2, 5*, 10 30–33, 36.5*
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fill gaps between the discrete data
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3.2 � Export Fluxes

Under-ice POC fluxes were the lowest at 30  m at 
CP1 (208  mg  m−2 d−1) and the highest at 5  m at CP2 
(1604 mg m−2 d−1; Fig. 5a). Except for the lowest POC fluxes 

recorded at one of the CP2 open water sites (259 mg m−2 
d−1), POC fluxes at 5 m were higher at CP2 (838–1604 mg 
C m−2 d−1) than at CP1 (421–780 mg C m−2 d−1; p < 0.05). 
By contrast, under-ice POC fluxes at 10 m were lower at 
CP2 (269–527 mg m−2 d−1) than at CP1 (629–772 mg m−2 

Fig. 4   Suspended chlorophyll a 
(chl a) concentrations and rela-
tive contribution of size-frac-
tionated chl a concentrations 
obtained at the completion of 
two ice camps over the Chukchi 
Plateau during August 2018. 
Dotted lines are used to fill gaps 
between the discrete data
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d−1; p < 0.05). The C:N ratio of the sinking particles was 
the lowest at 30 m at CP1 (3.1) and the highest at 10 m 
at CP2 (15.2; Fig. 5b). At CP1, C:N ratio values displayed 
larger variations at 5 m (4.8–8.2) than at 10 m (5.5–6.8), 
while at CP2, the largest variations in C:N ratio values were 
recorded at 10 m (5.4–15.3). Similar to POC fluxes, chl 
a fluxes at 5 m were higher at CP2 (28–102 μg m−2 d−1) 
than at CP1 (17–40 μg m−2 d−1; p < 0.05; Fig. 5c). Con-
trary to POC fluxes, chl a fluxes obtained at 10 m at CP1 

(19–41 μg m−2 d−1) and CP2 (20–63 μg m−2 d−1) were not 
statistically different.

3.3 � Zooplankton

Nearly all the zooplankton collected in the sediment traps 
were copepods (Fig. 6). The average number of copepods 
collected at CP1 at 10 m was at least 5 times higher than the 
average numbers of copepods collected at CP1 at 5 m and at 

Fig. 6   Zooplankton and relative 
abundance of zooplankton col-
lected in the sediment traps at 
two ice camps over the Chukchi 
Plateau during August 2018

Calanus glacialis/marshallae AF CV CIV CIII
AM AF CV CIV CIII
AF CV CIV CIII CII
CII CI

Themisto libellula

Zooplankton (individuals/trap)
0 45035050 250150 650550 750 0 20 40 60 80 100

Relative abundance (%)

10 30 50 70 90

Zooplankton (individuals/trap)
0 45035050 250150 650550 750 0 20 40 60 80 100

Relative abundance (%)
10 30 50 70 90

Tr
ap

 d
ep

th
 (m

) 

5

10

Tr
ap

 d
ep

th
 (m

) 

2

open water 

CP1 

CP2

5

10

AM
Calanus hyperboreus
Paraeucheta glacialis

Oithona sp.

Copepods Amphipod

(a)

(b)



Ocean Science Journal (2024) 59:21	 Page 7 of 10  21

all depths sampled at CP2. In all sediment traps, the major-
ity of copepods collected consisted of the copepod Calanus 
glacialis/marshallae (Fig.  6). As juveniles (copepodite 
stages) and adults of the Arctic C. glacialis and the Pacific 
C. marshallae are difficult to differentiate, these individu-
als were combined and identified as C. glacialis/marshal-
lae (Hopcroft et al. 2010; Questel et al. 2013; Ashjian et al. 
2017). Among the C. glacialis/marshallae copepods, indi-
viduals of the copepodite stage CIV were dominant at both 
sites and at all depths sampled (Fig. 6). The other zooplank-
ton collected at CP1 consisted of the copepods Paraeucheta 
glacialis and Oithona similis, and the amphipod Themisto 
libellula. At CP2, the other zooplankton collected at 5 and 
10 m mostly consisted of the copepods Calanus hyperboreus 
and P. glacialis (Fig. 6).

4 � Discussion

4.1 � Export Fluxes Associated with Sea Ice Algae 
Release

Sea ice properties at the CP1 and CP2 first-year ice floes dis-
played low salinity, low chl a concentrations, and very low 
nutrient concentrations, indicating that both ice floes were 
nutrient-limited and in advanced stages of melting and algal 
growth (Veyssière et al. 2022). Accordingly, the fresh and 
cold surface water layer, the nearly depleted nutrients, and 
the low suspended chl a and POC concentrations observed 
in the upper water column at CP1 and CP2 further reflected 
ongoing ice melt and indicated post-bloom conditions at 
both ice camps. Despite post-bloom conditions, high chl a 
and POC fluxes and low C:N ratios of the sinking particles 
collected at 5 m under both ice floes suggested the export of 
freshly produced material, such as sea ice algae. Although 
sediment trap samples were not microscopically examined to 
confirm and quantify the export of sea ice algae, the obser-
vation of large algal aggregates (Fig. 2) may have led to the 
relatively high chl a and POC fluxes recorded at both sites. 
Moreover, a greater abundance of sea ice algae filaments 
observed underneath the ice at CP2, where chl a and POC 
fluxes were on average twice larger than at CP1, supported 
sea ice algae strands as an important source of chl a and 
POC at that site. Such algal strands are typically composed 
of the exclusively sympagic centric diatom Melosira arc-
tica that forms long brownish filaments commonly observed 
attached to the underside of the ice, as free‐floating filaments 
in the meltwater layer, or as deposited aggregates on the sea-
floor of the deep central basins (e.g.,Gran 1899; Booth and 
Horner 1997; Lee et al. 2011; Boetius et al. 2013). Whereas 
sea ice algae export typically begins at the onset of snowmelt 
during spring (Nadaï et al. 2021), a delay in the export of M. 
arctica has previously been observed over the Lomonosov 

Ridge, East Siberian Sea, and over the deep Nansen and 
Amundsen basins (Lalande et al. 2019). This delay in export 
may result from the formation of gas bubbles produced by 
photosynthetic oxygen production within the mucous matrix, 
regulating the buoyancy of the M. arctica aggregates even 
at low ambient nutrient concentrations (Fernández-Méndez 
et al. 2014). The distinct properties of this widespread sea 
ice algae make it a likely source of chl a and POC later in the 
productive season. Therefore, we hypothesize that the patchy 
under-ice distribution of the apparent M. arctica aggregates 
led to the spatial variations in chl a and POC fluxes observed 
at CP1 and CP2. Furthermore, the lower chl a and POC flux 
values observed in open water than under-ice at CP2 suggest 
a reduced collection of M. arctica due to a lower density of 
the sea ice algae in open water compared to under ice.

Small algal cells (nano-sized chl a; 2–20 µm) dominated 
the low suspended chl a concentrations at both ice camp 
sites during summer, similar to previous observations in 
the Pacific Arctic region and in the Central Arctic Ocean 
(Booth and Horner 1997; Gosselin et al. 1997; Lee et al. 
2019). However, small algal cells, such as flagellates, dino-
flagellates, and silicoflagellates, typically only contribute to 
a low fraction of the algal fluxes. Instead, diatoms (micro-
sized chl a; > 20 µm) consistently dominate algal flux in the 
Arctic Ocean due to their high sinking rates associated with 
their heavy silicate frustules and formation of aggregates 
(Lalande et al. 2019; Dezutter et al. 2021; Nadaï et al. 2021), 
supporting a similar dominance of diatoms, presumably M. 
arctica, in chl a fluxes at CP1 and CP2.

4.2 � Export Fluxes Associated with Particulate 
Matter Release

Alternatively, the higher POC fluxes observed at 5 m under 
a thinner sea ice cover at CP2 may also reflect an enhanced 
release of particulate matter from the melting ice at that site. 
Indeed, a substantial amount of resuspended particulate mat-
ter is commonly incorporated into sea ice during the freezing 
period over the shallow shelves and transported over the 
basins (Eicken et al. 2000; Eicken 2004; Wegner et al. 2005; 
Lalande et al. 2014). Exceptionally high concentrations of 
particulate matter have previously been observed into first-
year sea ice over the broad Siberian shelves (Eicken et al. 
2000), and high sediment loads may also be widespread 
in the Chukchi Sea (Eicken 2004). As sediment-laden ice 
displays a patchy distribution as it drifts toward the basin 
(Eicken et al. 2000; Eicken 2004), the higher under-ice POC 
fluxes observed at CP2 may reflect a larger release of POC 
during sea ice melt at that site. Although the contribution of 
the released POC to the under-ice POC fluxes has not been 
quantified, it should not be ignored as a potentially signifi-
cant source of POC in this region.
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4.3 � Impact of Grazing Pressure on Export Fluxes

Compared to fluxes at 5 m, averaged chl a and POC fluxes 
obtained at 10 m were slightly higher at CP1 and lower 
at CP2. This discrepancy between both sites may be due 
to the varying grazing pressure exerted by the copepod 
C. glacialis/marshallae, dominant at both sites but more 
abundant at CP1 at 10 m. Indeed, higher POC fluxes at 
CP1 at 10 m than at 5 m may indicate an enhanced export 
of fecal pellets due to a larger grazing pressure resulting 
from the much larger presence of C. glacialis/marshallae 
at that site and depth. Conversely, lower POC fluxes at 
10 m than at 5 m at CP2 possibly reflected reduced fecal 
pellet carbon export due to a lower grazing pressure at 
that site. In the Arctic Ocean, C. glacialis feeds on ice 
algae to reproduce and grow (Daase et al. 2013). Specifi-
cally, C. glacialis adult females (AF) migrate toward the 
surface before or at the onset of sea ice algae production 
to feed underneath the ice (Søreide et al. 2010). Several 
weeks later, C. glacialis copepodite stage CIV dominates 
and forms the overwintering population (Søreide et al. 
2010; Daase et al. 2013). Interestingly, C. glacialis can 
rapidly develop from CIV to AF under favorable condi-
tions, even potentially spawn late in the season (Wold 
et al. 2011). The larger relative proportion of C. glacialis/
marshallae AF in the copepods collected late in the sea-
son at CP2 compared to CP1 may therefore reflect sus-
tained food supply, potentially provided by the abundant 
sea ice algae observed at CP2.

Although zooplankton collected in the sediment traps 
do not reflect their abundances in the water column, they 
may reflect the composition of the zooplankton commu-
nity at each trap depth. In this context, the nearly exclu-
sive presence of C. hyperboreus copepodite stages CIII 
and older at CP2 suggests a greater exchange with the 
adjacent deep basin, as C. hyperboreus is the most abun-
dant copepod residing in the Arctic basin (Campbell et al. 
2009). Despite its low numbers, the presence of this large 
copepod at CP2 may have contributed to the attenuation 
and/or to the increase of the POC flux through grazing 
and the production of fecal pellets. Also, the amphipod 
T. libellula, a species associated with polar water masses 
that forms swarms in the upper water column (Kraft et al. 
2011), was exclusively present at 5 m at CP1 and likely 
contributed to the enhanced POC fluxes through the pro-
duction of fecal pellets. Overall, the unexplained large 
number of copepods collected at 10 m and the exclusive 
presence of T. libellula at 5 m highlight a high spatial 
heterogeneity in the distribution of copepods and amphi-
pods in the region, likely contributing to the high spatial 
variability in export fluxes.

4.4 � High Spatial Variability in Export Fluxes

Results obtained under the drifting ice floes CP1 and CP2 
over the Chukchi Plateau showed high spatial variations in 
the magnitude of chl a and POC fluxes within small areas. 
The high flux variability may reflect the spatial heterogene-
ity in the distribution of the M. arctica aggregates, poten-
tially influencing the spatial distribution of copepods and 
amphipods feeding on these aggregates. The heterogeneous 
grazing pressure exerted by zooplankton is likely to have 
further contributed to the spatial variability in under-ice chl 
a and POC fluxes at both CP1 and CP2.

Previous under-ice export fluxes measured using drifting 
sediment traps across the Arctic Ocean were mostly obtained 
before or at the onset of ice melt and/or below the euphotic 
zone. North of Svalbard, the large spatial variability in the 
magnitude of under-ice export fluxes observed over a rela-
tively small area during spring was attributed to variations 
in the composition of the phytoplankton assemblages, the 
grazing pressure from large grazers, the distance to the 
open water, and the advection of Atlantic water (Dybwad 
et al. 2021). In the Canadian Arctic, chl a fluxes obtained 
between 0.5 and 25 m under ice consistently reached val-
ues > 1 mg m−2 d−1 following the release of sea ice algae 
during June (Michel et al. 1996; Fortier et al. 2002; Juul-
Pedersen et al. 2008). Whereas chl a fluxes observed early 
in the productive season in the Canadian Arctic (> 1 mg m−2 
d−1) were much larger than chl a fluxes observed during 
summer over the Chukchi Plateau (< 0.1 mg m−2 d−1), POC 
fluxes at these sites were typically lower (< 400 mg m−2 d−1) 
than those obtained at CP1 and CP2 (200–1600 mg m−2 
d−1). By contrast, under-ice chl a fluxes measured at 2 and 
5 m in the Central Arctic Ocean during late summer largely 
remained < 0.1 mg m−2 d−1 (Lalande et al. 2014), similar to 
the chl a fluxes at CP1 and CP2. However, the POC fluxes 
associated to these chl a fluxes were also lower in the Central 
Arctic Ocean than in the present study over the Chukchi Pla-
teau (< 400 mg m−2 d−1; Lalande et al. 2014), emphasizing 
the remarkably high POC fluxes measured at CP1 and CP2 
in August 2018.

5 � Conclusions and Implications

Under-ice export flux measurements obtained at two ice 
camp sites over the Chukchi Plateau in August 2018 showed 
wide variations in chl a and POC fluxes. This high spatial 
variability in the magnitude of under-ice export fluxes was 
apparently due to the heterogeneous distribution of sea ice 
algae aggregates, possibly associated with variation in snow 
and ice cover thickness, the only distinctive physical fea-
ture between both ice camp sites. Interestingly, variations 
in the magnitude of under-ice fluxes were larger within the 
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few meters sampled under a drifting ice floe than over three 
years at a single sample site influenced by different meteoro-
logical events and zooplankton assemblages (Fortier et al. 
2002). This high spatial variability reflects the considerable 
patchiness of the Arctic marine ecosystem and should be 
considered when reporting on export fluxes. Finally, these 
results highlighted the potential importance of sea ice algae 
aggregates as a source of carbon for pelagic consumers dur-
ing summer, beyond the period of maximal algal export 
commonly observed at the onset of snow and sea ice melt. 
This implies that the rapid decline in sea ice may signifi-
cantly reduce this source of carbon and affect the biologi-
cal carbon pump, emphasizing the necessity of monitoring 
carbon fluxes at a high spatial and temporal resolution in the 
Pacific Arctic region.
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