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Abstract
Estuaries are highly diverse ecosystems that occur at the interface between land and sea and thus possess a high degree of 
environmental variation over short spatial and temporal scales. The Gulf of Urabá (1800 km 2; mean depth ~ 40 m) is a semi-
closed estuarine area located in the southwestern part of the Caribbean Sea (South America). This large coastal–estuarine 
ecosystem operates as a biogeochemical reactor due to it featuring examples of high nutrient concentrations on the surface 
(NO 3- = 1619 μM; NO 2- = 0.505 μM; NH 4+  = 2.938 μM; PO 4 3- = 7.603 μM), high Chl α (max = 30.17; min = 0.02; 
mean = 9 mg  m−3), as well as blooms of toxic algae, mostly Pseudo-nitzschia pseudodelicatissima. An outbreak of Tripos 
fusus causes bioluminescence and about 20 events of hypoxia (< 2–4 mg O 2  L−1) within a time series of 10 years. Despite 
this, information regarding the biological and biogeochemical oceanography (chlorophyll α, biomass, planktonic composi-
tion, nutrient cycling, mass balance of elements, and interannual variability) remains non-existent. Therefore, elucidating 
an ecosystem’s thresholds for various features is necessary for managing marine ecosystems, and especially for climate 
change projections. We here present a review of the functioning of this estuary, evaluating and reviewing each aspect of 
oceanographic variability.

Keywords Phytoplankton · Nutrients · Tropical estuary · Gulf of Urabá · Colombia

1  Investigation History Gulf of Urabá

The first approaches to the marine environment of the gulf 
studies began with exploration and visits to areas close to 
Panamá. The first studies of the hydrography of the region 
near the Gulf of Urabá (Caribbean Colombia) were made 
between 1675 and 1679 by William Dampier, considered 
one of the greatest naturalists in the Caribbean. Nearly 
200 years passed before some global expeditions were car-
ried out, particularly in the Caribbean Sea (Table 1). How-
ever, the Challenger Expedition (1873–1876) considered 
the most complete oceanographic expedition in the 1870s, 
which influenced many countries and their maritime territo-
ries in the understanding of oceanography and later helped 
to improve techniques, equipment development and to form 
an official field that understood the functioning of the oceans 
(Brunton 1994), inspiring later studies in the Caribbean and 
near the gulf (Johns et al. 2002; Centurioni and Niiler 2003).

For the Gulf of Urabá, oceanographic expeditions began 
in the 1870s after that (Selfridge 1874; Zeigler and Athearn 
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1965; Robins 1971; Table 1). However, many of these cam-
paigns described the region only briefly, with some insight 
into the coastal dynamics. One cruise ship that visited the 
Gulf of Darien region was named R/V Jhon Elliott Pillsbury 
(Robins 1971). Other similar cruises (e.g., R/V James M 
Gill through the University of Miami, the R/V Thomas G 
Thompson 001 cruises from the University of Washington, 
and R/V Discoverer NOAA-CARIB) visited the northern 
part of Colombia intending to study the upwelling zone of 
La Guajira. The exact records of these visits are not well 
documented, but could date back to 1977. However, a con-
tribution to the knowledge of local oceanography came 
from Andrade (2015); Andrade et al. (2015) (see details 
in Table 1). The landmark of marine science, especially in 
studies within the gulf, appeared in the 2000s when sev-
eral expeditions began and the establishment of programs 
related to marine sciences led by the University of Antio-
quia, Colombia (Blanco et al. 2013; Blanco-Libreros and 
Londoño 2016). Recently, through the leading research 
group (i.e., Oceans, Climate and Environment Group, OCE) 
and in association with other research groups from the Uni-
versity of Antioquia, Colombia (GIGA and Biotechnology 
groups), the TARENA expedition (2018–2019) was carried 
out to understand how the Gulf of Urabá works, with fixed 
stations along 80 north–south km of the estuary and the 

work was published recently (Toro et al. 2019; Córdoba-
Mena et al. 2020). Other studies have been conducted on the 
basis of REDCAM database (siam.invemar.org.co/redcam) 
implemented by the INVEMAR (Instituto de Investigaciones 
Marinas y Costeras) and CORPOURABÁ Corporation.

Finally, to date, cruises with oceanographic purposes have 
not been undertaken in an integrated manner. We assume it 
is relevant to integrate the studies so that the estuary can be 
understood globally and function holistically, to take man-
agement and conservation measures and value.

2  A Coastal System

Caribbean Colombia has two large coastal–estuarine eco-
systems. One of these ecosystems is the Ciénaga Grande de 
Santa Marta (CGSM), located in northern Colombia, with a 
daily production of 16 g C  m−2  d−1 (Hernández and Gocke 
1990), which is considered one of the most productive estu-
aries in the world (Cloern et al. 2014). The second one is 
the Gulf of Urabá (7° 55′–8° 40′ N and 76° 53′–77° 23′ W), 
located in the southwestern part of the Caribbean Colombia, 
which is larger than the first and extends 80 km from north 
to south, with an approximate width of 49 km from Cabo 
Tiburón to Punta Caribaná (Fig. 1). These estuaries have 

Fig. 1  Study area: Gulf of Urabá, Caribbean Colombia
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a high diversity of ecosystems such as mangroves (Blanco 
et al. 2013; Sandoval et al. 2020), coral reefs (López-Jimé-
nez et al. 2020, 2021), seagrass, floodplains, rocky shore, 
and soft bottoms (Quiceno et al. 2015) that keep these adja-
cent ecosystems interconnected (Fig. 2), even across the con-
tinent by the most important river in the area (i.e., Atrato 
River), and interaction between the ocean and atmosphere 
plays a crucial role in the dynamics of the estuaries (Fig. 3).

The bathymetry of the Gulf indicates it is concave with 
depths increasing from 5 to 20 m in the vicinity of the del-
taic front and more than 70 m in the oceanic sector, near the 
estuarine mouth. Great rivers such as the Atrato and León 
discharge into the estuary, as well as many other secondary 
streams that also flow into the gulf (Francois et al. 2007). 
The Atrato River freshwater input > 200 ×  106  m−3  d−1 is 
the highest in the region and modulates the dynamics of the 
estuary. Further, it is considered to be a source of inorganic 
nutrients (i.e., DIN and DIP) and contributes to other tribu-
taries by about 70% (Table 2).

Considering the strategic position of the Gulf of Urabá 
region, it has been the focus of numerous ecological studies 
due to the multiple marine ecosystems and the high biologi-
cal diversity (Quiceno et al. 2015). Likewise, the study by 
García-Valencia (2007), one of the studies that evaluated 
the region from a geographical, historical, and cartographic 
perspective, constitutes one of the most complete docu-
ments concerning the region because it generated informa-
tion regarding biophysical, climatological, socioeconomic, 
and oceanographic characteristics of the Gulf of Urabá, as 
well as reviews the geohistory of the area. In addition, physi-
cal–chemical variables such as salinity, temperature, turbid-
ity, nutrients, and dissolved oxygen, in some cases between 
the yearly seasons, have been considered (Francois et al. 
2007; Bonilla 2020). Ecologically, this gulf has an estuarine 
pattern due to its mixture of freshwater from the rivers and 
saline water from the Caribbean Sea (Córdoba-Mena et al. 
2020). The estuary is an ocean–coastal ecosystem, which 
represents a biogeochemical “hot spot”, because these envi-
ronmental systems receive large amounts of nutrients and 
organic carbon from the continent and the ocean and thus 

Fig. 2  Conceptual diagram of 
communities present along a 
salinity gradient in the delta 
region of Atrato River
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support high metabolic rates and primary production (Li 
et al. 2020). As a result, the estuary operates as a biogeo-
chemical reactor (Cloern et al. 2014) serving as a source 
of gases (e.g.,  CO2) to the atmosphere with high emission 
rates and in part to a large amount of organic matter and 
high nutrient load that are drained into them from the land 
(Borges 2005).

3  Chemical and Physical Considerations

Chemical oceanography in Caribbean Colombia has been 
little addressed in research. Some studies using the meth-
odologies of this discipline have been extended to open-
ocean studies. However, Caribbean Colombia and the Gulf 
of Urabá require a better understanding of oceanography in 
its entire context. Many of these methodologies have been 
evaluated and obtained from the Joint Global Ocean Flux 
Study (JGOFS). The JGOFS is a strategy used by the inter-
governmental commission on oceanography that seeks to 
generate a standard protocol for measurements of chemical 
oceanography in multiple oceanographic campaigns.

The coastal and oceanic dynamics near the Gulf of Urabá 
are modulated by the discharges of the main rivers, among 
them perhaps the most important being the Atrato River, 
with a sedimentation rate of 11 tons  year−1 of sediments and 
discharge of 4900  m3  s−1 (Montoya 2010), lower rate values 
than those reported in other Colombian rives. For example, 
Magdalena River contributes the largest sediment amount 

with 142.6 ×  106 tons  year−1 (de Lacerda 2004; Restrepo 
et al. 2018).

Also, there are other influential tributaries in the same 
estuary with a high nutrient load and influence on the chemi-
cal dynamics (Table 2), as well as high rates of evaporation 
and rainfall (Fig. 4). In another study, Ayala and Marquez 
(2017) carried out five in situ samplings of the physicochem-
ical parameters of temperature, total dissolved solids, con-
ductivity, salinity, pH, and dissolved oxygen. These authors 
describe some sampled sites, where they conclude that the 
values of some parameters (i.e., salinity and temperature) 
are from typical estuaries conditions. Although much knowl-
edge was gained through expedition and previous studies, 
it is evident that scientific information has to be integrated. 
For example, our data analysis of precipitation and evapora-
tion demonstrates the importance of these for the dynamics 
of the estuary (Fig. 4; Table 2). Predominantly the region 
where the Atrato River originates is the rainiest area in the 
world according to the models of the heavy precipitation 
associated with tropical cyclones is projected in a global 
warming scenario (Hoegh-Guldberg 2018), even for areas 
with high rainfall will be rainier. In chemical terms, salinity 
measurements above the halocline increased with proximity 
to the Caribbean Sea, creating stratification along the estu-
ary, showing a layer of fresh water of up to 5 m (Córdoba-
Mena et al. 2020). Simultaneously, the northeast (NE) trade 
winds and the oscillation of the Intertropical Convergence 
Zone (ITCZ) define regional changes in precipitation (Nys-
tuen and Andrade 1993), which follows two contrasting 
patterns: rainy (April–November) and dry seasons (Janu-
ary–March). During the last decade, monthly rainfall has 

Fig. 3  Cross section of the Gulf of Urabá. Note the arrows that indi-
cate the direction of the flow of the Atrato River toward the Carib-
bean Sea and in the shaded part the entrance of the body mass of the 

Caribbean and its extension into the interior estuary. In addition, bio-
logical communities and the water–atmosphere interaction with gas 
exchange are shown
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amounted to around 80 mm in the dry season and around 
862 mm in the rainy season (Restrepo et al. 2009).

To corroborate this, we argue that 17 years of REDCAM 
time series showed high variability in essential parameters 
in the estuary, such as temperature, salinity, and pH (Fig. 5). 
Our data analysis reinforces the concept of a salinity gradi-
ent from south to north, generating typical conditions of an 
estuary, with high rainfall that modulates this parameter and 
its influence on interannual variability. In addition, the vari-
ation of the values of both temperature and typical pH found 
in tropical estuaries is noted. Similarly, Ricaurte-Villota and 
Bastidas-Salamanca (2017) studied the Sinú-Urabá region, 
one of the southernmost areas of the Caribbean Colombian. 
In their study, they highlight the importance of the Gulf of 
Urabá in the contribution of continental water to marine 
systems, depending on the climatic seasons and evaluate its 
climatology and oceanographic conditions.

Several relevant results can be concluded from their work: 
(1) in terms of salinity, the Atrato River modulates the water 
column, generating a flow toward the Caribbean and creating 
a film of water in the less dense surface layer of water, and 
(2) the sediment signal is located in the coastal zone and 
the interior of the gulf. Similar results have been previously 
evaluated, which demonstrated the density gradient of the 
surface (Bernal et al. 2005; Montoya 2010; Córdoba-Mena 
et al. 2020).

Recently, the chemical characteristics of two of the main 
rivers that drain water into the gulf, León (Q < 200  m3  s−1) 
and Atrato (Q > 2000  m3  s−1), were evaluated, where a saline 
intrusion in the dry season was evidenced in both rivers 
(Jiménez and Campillo 2020). Also, these authors found a 
body of warm water trapped between two bodies of water 
with a lower temperature and stratification in the wet season. 
These results are relevant, considering the hydrology of the 
two rivers and their influence on the dry and rainy seasons 

Table 2  Average water flow 
(Q), nutrient concentrations 
(CQ), loads, and nutrient flux 
from tributaries into the Gulf 
of Urabá through its fluvial, 
estuarine, and oceanic zones 
in both dry and rainy seasons 
between 2001 and 2011

Numbers marked in bold indicate numbers with relatively high values
ND no data
*Q with no season distinction
a IDEAM
b Restrepo and Kjerfve (2004)
c Roldán (2008)
d Montoya (2010)
e Velásquez (2013)

Zone River Season Q (×  106  m3  d−1) CQ (μM) Load 
(×  109 mol 
 d−1)

Flux (×  106 mol  m−2 
 d−1)

DIP DIN DIP DIN DIP DIN

Fluvial Currulao Dry 0.10c 0.75 12.1 0.07 1.25 0.00029 0.00521
Currulao Rainy 0.85c 0.87 8.33 0.74 7.07 0.00308 0.02946
León Dry 2.23c 1.12 81.71 2.49 182.49 0.01038 0.76038
León Rainy 7.46c 0.97 45.04 7.25 335.99 0.03021 1.39996

Estuarine Atrato Dry 208a 0.61 20.79 127 4328 0.10496 3.57686
Atrato Rainy 242a 1.95 4.41 471 1067 0.38926 0.88182
Turbo Dry 0.30d* 1.09 19.78 0.33 5.93 0.00027 0.00490
Turbo Rainy 0.30d* 1.45 8.42 0.44 2.52 0.00036 0.00208
Bobal Dry 0.20e* ND ND ND ND ND ND
Bobal Rainy 0.20e* 2.74 15.79 0.55 3.18 0.00045 0.00263
C. Nuevo Dry 0.30e* 0.75 4.26 0.22 1.26 0.00018 0.00104
C. Nuevo Rainy 0.30e* 1.35 6.8 0.4 2.01 0.00033 0.00166
Necoclí Dry 0.03e* 0.55 65.02 0.02 2.02 0.00002 0.00167
Necoclí Rainy 0.03e* 0.46 31.54 0.01 0.98 0.0000083 0.00081
Guadualito Dry 0.23c 1.49 4.6 0.34 1.05 0.00028 0.00087
Guadualito Rainy 0.45c 1.49 12.86 0.54 5.78 0.00045 0.00478

Oceanic Mulatos Dry 0.65b* 0.002 20.65 0.001 13.33 ND 0.00587
Mulatos Rainy 0.65b* 1.14 95.43 0.74 61.59 0.00033 0.02713
Acandí Dry 0.75e* ND ND ND ND ND ND
Acandí Rainy 0.75e* 0.62 19.89 0.46 14.94 0.00020 0.00658
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in the Gulf of Urabá. In the same way, our analyses of nearly 
17 years confirm (1) the importance of these two rivers and 
(2) the gradients of the analyzed physical–chemical vari-
ables in this estuary being studied (Figs. 4, 5; Table 2). The 

magnitude of the discharges of the Atrato River is also seen 
compared with other tributaries, which makes it an impor-
tant tributary in the estuary (Fig. 4).

Fig. 4  Time series of precipita-
tion, evaporation, and flow of 
the rivers of Urabá, from 2000 
to 2018 (Source: IDEAM data). 
Areas shaded in light and dark 
gray correspond to negative and 
positive ENSO, respectively 

Fig. 5  Physical–chemical 
parameters time series. Salinity, 
temperature, and pH in the 
estuary from 2000 to 2018. 
Areas shaded in light and dark 
gray correspond to negative and 
positive ENSO, respectively
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Calderón (2019) corroborated the results found by Jimé-
nez and Campillo (2020) in terms of stratification. However, 
his chemical considerations went a little further and showed 
that in addition to stratification in the estuary system, the 
energy potential was evaluated at contrasting times. The 
center of the gulf exhibits high variations in the saline gra-
dient, with values of 1.3 MJ  m−3 in the rainy season and 
0.6 MJ  m−3 in the dry season. Additionally, the study makes 
a theoretical calculation that shows that it is possible to gen-
erate energy of about 12,096 kWh  m−1 and supply some 
nearby and coastal populations of the gulf.

In addition, based on the results of the REDCAM data-
base for 17 years, the characteristics of many coastal areas of 
the Gulf of Urabá can be summarized in several aspects: (1) 
high content of nutrients (e.g., nitrites 3–640 µg  L−1, ammo-
nia 70–2000 µg  L−1, nitrates 100–11,900 µg  L−1, orthophos-
phates µg  L−1); (2) high concentration of suspended solids 
(9–4600 mg  L−1) and (3) pH values within the normal range 
for areas with freshwater influence (< 8) and marine water 
(8.1). However, we analyze the REDCAM database to show 
that the quality of water in the coastal areas of the eastern 
edge of the Gulf of Urabá (considered between the catego-
rization of bad to good water conditions) is the product of 
inadequate treatment of wastewater and the excess of nutri-
ents that reach the ecosystem (modified from REDCAM 
database; Fig. 6). In addition, most of the riverside inhabit-
ants reside on the side adjacent to the mouth of the Atrato 
River. This requires special attention for environmental 

organizations to define public policies that may affect the 
treatment of water that reaches the estuary.

Our analyses also revealed recurrent hypoxia with values 
below 2 mg  L−1 DO and ranging from 0.2 to 8.7 mg  L−1 DO. 
These hypoxic events were observed throughout the estuary 
for 10 years and we found a deficit of oxygen (REDCAM 
expedition, Fig. 7). In the same idea, an analysis carried 
out for other Colombia eutrophic estuaries showed changes 
in dissolved oxygen (DO) after two decades of monitoring, 
where they found fish kills were related to variations of 
this parameter due to an increase in phytoplankton densi-
ties (Espinosa-Díaz et al. 2021). This same phenomenon 
could occur in the Gulf of Urabá; in other words, this defi-
cit of oxygen can generate mass mortality in local fisheries 
since our analysis confirms DO low concentrations, and it 
should be a topic for the next generations of environmental 
decision-makers in the region. However, the causes have not 
been documented and require more studies.

Finally, in physical terms, we found that the maximum 
values of surface currents were found in the external part 
of the estuary near the Caribbean Sea, with values above 
0.3 m  s−1, while the lowest values were located in the cen-
tral–southern region (Fig. 8). The magnitude of the wind 
follows the annual trend of the Colombia areas, exhibit-
ing a maximum when the trade winds intensify in the dry 
months, but the lowest values during the rest of the year do 
not exceed 3 m  s−1 and are in the center–south part of the 
estuary (Fig. 9). Recently, similarly, Toro et al. (2019) found 

Fig. 6  Quality of coastal marine waters of the Gulf of Urabá valued 
under the index (ICAMPFF) for two contrasting periods in 2015 
(modified from Redcam database). Note that the green color = water 
with good conditions; yellow = water that maintains good conditions 

and few restrictions on use; red = waters with many restrictions that 
do not allow proper use. Stations 1 = Ríonegro; 2 = Necoclí River 
mouth; 3 = New Cayman River mouth; 4 = Turbo River mouth; 5: 
Dock of the Navy; 6 = León River mouth
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Fig. 7  The oxygen concentration and outbreaks of hypoxia in the 
estuary. Note that panel a limit, b refers to the dissolved  O2 concen-
tration with values considered for hypoxic events (< 2 mg  L−1), and 

c refers to stations with hypoxic events in dry (red) and rainy (blue) 
seasons. Source: REDCAM database

Fig. 8  Marine current climatol-
ogy for the period from 2007 
to 2017 with a ~ 8 km spatial 
resolution in the study area



566 S. Contreras-Fernández et al.

1 3

Fig. 9  Seasonal average 
wind speed and direction for 
year 2020 and 12 km spatial 
resolutions in the study area 
(data from ERA-5 reanalysis). 
From January to April, the 
wind direction comes from the 
northwest, with speeds from 
2 to 7 m  s−1 and from May to 
December from the southwest 
with speeds from 2 to 3 m s.−1

Fig. 10  Temperature, salinity, and density profiles at six different stations along the estuary. Dry (red) and rainy (blue) seasons
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that processes such as wind fields, density differences, and 
fluvial discharges inside the Gulf of Urabá and using the 
regional oceanic circulation numerical model during the 
2010–2015 period could modulate estuarine physics. These 
results are important considering their importance in the 
water column and zonation along the estuary, as we have 
verified with some vertical profiles of the water column 
(Fig. 10). This can be seen in how the influence of the riv-
ers and the saltwater intrusions of the Caribbean Sea below 
the sediment plume in the gulf can change the depths of the 
thermocline, halocline, and pycnocline in the dry and rainy 
seasons through a longitudinal transect.

4  Biological Considerations

The plankton communities in Caribbean Colombia have 
been studied at the coastal level and in terms of composi-
tion (Gocke et al. 2003; Vidal 2010; Córdoba-Mena et al. 
2020). However, oceanic phytoplankton studies by Lozano-
Duque et al. (2010) that found the dominance of the central 
diatoms group was the most abundant, followed by pennal 
diatoms, dinoflagellates, cyanobacteria, chlorophytes and 
silicoflagellates.

Moreover, Medellín-Mora and Martínez-Ramírez (2010), 
in a study of zooplankton communities in Caribbean Colom-
bia, showed that copepods were numerically dominant with 
almost 75%, followed by appendicularians 9%, fish eggs, and 
chaetognaths and mollusks at 3% and 2%, respectively. Fur-
thermore, spatial distribution showed that the surface layers 
of the southern, central, and northern zones exhibit the high-
est abundances of zooplankton organisms with < 900, < 800, 
and < 3000 Ind  m−3, respectively, while the areas’ deep lay-
ers did not exceed 500 Ind  m−3. This study is important 
because it shows that the influence of rivers can define the 
composition of these groups and divide them in such a way 
that the representatives are benthic in the case of the south-
ern zone and more pelagic in the northern zone. In the case 
of zooplankton, the highest abundance and biomass values 
were found in the north and south, also confirming that the 
holoplankton groups were dominant and represented about 
90% of the abundance compared with meroplankton.

Meanwhile, in the Gulf of Urabá, there has been few stud-
ies of planktonic communities (Echeverry 2012; Cuesta-
Córdoba 2017; Bonilla 2020; Córdoba-Mena et al. 2020). 
Echeverry (2012) evaluated the diatom communities asso-
ciated with surface sediments in the Gulf of Urabá. The 
results showed that pennate diatoms were the most abundant, 
represented by the species Diploneis, Amphora, Nitzschia, 

Navicula, and Tryblionella. This phytoplanktonic abundance 
of benthos may explain why diatom communities are an 
important food for many commercially valuable fish species.

Recently, Córdoba-Mena et al. (2020) described the phy-
toplankton communities in this estuary (i.e., Gulf of Urabá) 
and their response to environmental changes, with an empha-
sis on potential toxin producers. The results showed that the 
abundance of diatoms was 11,166 cells  L−1 in the river zone, 
while dinoflagellates had a maximum of 4250 cells  L−1 in 
the same area during the dry season. Some algae biotoxin 
producers were found, e.g., Dolichospermum, Prorocentrum, 
Dinophysis, and Pseudo-nitzschia, the latter represented 
44% of the total diatoms in the rainy season with detect-
able domoic acid production in the range between 25.54 and 
1580.7 pg  L−1. One of the important conclusions of these 
authors is that the abundance of these groups can be defined 
by the high load of nutrients that increase growth and there-
fore their abundance, because the gulf is surrounded by areas 
of plantain and banana crops that use fertilizers and these, 
due to runoff, reach the estuary. Similarly, these authors con-
sider that the high abundance of toxic algae may reflect the 
variability of the climatic seasons. However, this needs to 
be evaluated in more detail.

From the perspective of phytoplankton biodiversity, the 
Biotechnology and Oceans, Climate and Environment Group 
OCE research groups of the University of Antioquia, Colom-
bia, identified around 160 species of phytoplankton, distrib-
uted as follows: 15 species of cyanobacteria, 21 green algae, 
92 diatoms, 30 dinoflagellates, and 2 euglenoids (Figs. 11, 
12, 13, 14, 15), higher than that previously reported for the 
same estuary (Bonilla 2020).

In this same investigation, a strain of Leptolyngya sp 
cyanobacteria, isolated under different lighting and tem-
perature conditions, showed a variation in the biomass and 
protein yield as well as in the spectrometric behavior of the 
phycobiliproteins as a response to obtaining advances in bio-
technological terms (Obando-Montoya et al. 2022). These 
results are important, since they opened up an unknown field 
and led us to develop a bioprospecting line in the estuary and 
its role as a producer of protein compounds. All this research 
will generate a detailed record of the biological diversity 
baseline in the interior of the estuary and contribute to com-
plementing this line in Colombia.

In terms of chlorophyll-a (Chl-a) and primary pro-
ductivity, several studies carried out by the University of 
Antioquia, Colombia, have shown the variability of these 
indicators (Ayala and Marquez 2017; Jurado 2019). For 
example, Ayala and Marquez (2017) sampled 13 stations 
within the estuary within the area of influence of the Atrato 



568 S. Contreras-Fernández et al.

1 3

River plume using the trophic status index, or TSI, and 
showed that the estuary exhibits a mesotrophic status and 
chlorophyll values for the rainy season between 0.97 and 
23.4 mg   m−3 and 0.382–15.643 mg  m−3 in the dry sea-
son. Likewise, another study evaluating four contrasting 
ecosystems at the mouth of the Atrato River found values 
between 14.8 and 70 mg  m−3 (Jurado 2019), with concentra-
tion ranges and trophic states similar to those obtained by 
Ayala and Marquez (2017). Moreover, Córdoba-Mena et al. 
(2020) evaluated the Gulf of Urabá in a transect of 80 km in 
a north–south direction. Approximatelym 15 stations were 
evaluated in terms of chlorophyll-a, sectoring the estuary 
into three large zones, fluvial, estuarine, and oceanic at two 

contrasting times. The results showed higher chlorophyll-a 
concentrations in the fluvial zone, with differences between 
the concentrations of 1.27 mg  m−3 and 2.86 mg  m−3 during 
the rainy season, and 0.22 mg  m−3 and 0.20 mg  m−3 in the 
rainy season for the estuarine and oceanic zones, respec-
tively. Similarly, during a bloom episode in the river zone, 
there was an increase in the chlorophyll-a of close to 4.1 ug 
 L−1. Our analyses in this review revealed interannual Chl-a 
variability of the Gulf of Urabá, showing high values of con-
centration (10 mg  m−3) throughout the year, but with slight 
increases in the dry season (Fig. 16). This is significant since 
it allows knowing and understanding the most productive 
sites in the area under study, detecting hypoxic areas, fishing 

Fig. 11  Phytoplankton images 
in the estuary Gulf of Urabá, 
Caribbean Colombia. A 
Chaetoceros coarctatus, B 
Bleakeleya notata, C Pleuro-
sigma normanii, D Ornitho-
cercus magnificus, E Thalas-
sionema sp. , F Lampriscus 
shadboltianum, G Chaetoceros 
diversus, H Tripos massilien-
sis, I Nitzschia cf. lorenziana, 
J Bacteriastrum comosum, K 
Chaetoceros peruvianus, L 
Pseudonitzschia sp.
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grounds and defining management guidelines in the estuary. 
Having information like the one made in this analysis will 
serve local decision-makers. At this time, knowledge of pro-
ductivity, chl-a, and biodiversity is still scarce, as literature 
is poorly known and, in some cases, not published.

Zooplankton communities are another little-studied bio-
logical component. However, Cuesta-Códoba (2017) studied 
the zooplankton communities in an estuary regime in the 
delta of the Atrato River, showing that salinity is the main 
factor that regulates the distribution of zooplankton, with 
the highest abundances at ~ 4500 ind  m−3 (Fig. 17). Addi-
tionally, it was found that zooplankton occur in different 
stages of their life cycle and that the Calanoida group was 
the most dominant throughout the area. Recently, Córdoba 

et al. (2020) evaluated the structure of the community of 
mesozooplankton in two climatic seasons in the Gulf of 
Urabá. Preliminary results have shown that the copepods 
are groups numerically dominant in the estuary, and in gen-
eral, the highest abundances of mezooplankton are located 
near river stations.

Some studies have shown the indirect interaction of the 
physical and chemical properties with the biological factors 
such as the abundance and functions of plankton (Coronado-
Franco et al. 2018; Bonilla 2020; Zambrano 2021). How-
ever, it remains unknown how these communities respond 
to these environmental stressors in the Gulf of Urabá. Cor-
onado-Franco et al. (2018) based on the fluorescence line 
height (FLH) data showed that the Gulf of Urabá could be 

Fig. 12  Phytoplankton images 
in the estuary Gulf of Urabá, 
Caribbean Colombia. A Chae-
toceros diversus, B Odontella 
sinensis, C Skeletonema tropi-
cum, D Tripos furca, E Proto-
peridinium sp. , F Dinophysis 
caudata,G Thalassionema 
nitzschioides, H Bacteriastrum 
delicatulum, I Leptolyngbya sp.
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considered an area with high persistence of harmful algal 
blooms, mainly due to the excess of nutrients, mostly in 
the rainy season in the region and even Niña events. This is 
important since the estuary is surrounded by one of the most 
agricultural areas of the country, with banana plantations 
and other tropical fruits that use high loads of nutrients that 
are then washed by the rain and transported via rivers to the 
estuary (Blanco-Libreros 2009). Besides, some data have 
also been also documented in the estuary where physico-
chemical and microbiological quality found high concen-
trations of values related to coastal contamination (Murillo 
et al. 2017). Recently, Zambrano (2021) evaluated the envi-
ronmental component of the erosive process in the eastern 
sector of the Gulf of Urabá, particularly the coast, and found 

that the high richness of phytoplankton species was related 
to the season of high winds, in addition to the high values of 
chlorophyll-a (17 mg  L−1) relationship with bloom of algae 
that were observed during this study. However, the effects of 
other environmental variables on the zooplankton, nekton, 
and benthic groups were highly variable.

5  Conclusions

This study provides a comprehensive analysis of the estua-
rine dynamics in an oceanographic context and provides 
integrated base information to manage and project the Gulf 
of Urabá from the interactions between physical, chemical, 

Fig. 13  Phytoplankton images 
in the estuary Gulf of Urabá, 
Caribbean Colombia. A Closte-
rium sp., B Desmodesmus sp., 
C Spirogyra sp., D Synedra sp., 
E Aulacoseira sp., F Surirella 
sp,. G Arcella sp., H Stau-
rastrum sp., I Eudorina sp., J 
Pediastrum duplex 
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and biological factors. The study highlights of the variables 
analyzed are modulated mainly by the seasonal interaction 
between the Atrato River and the Caribbean Sea. Infor-
mation on biological, chemical, and physical processes in 
the Gulf of Urabá remains poorly because of the lack of 
oceanographic data. The analysis suggests that the estu-
ary presents a high abundance and planktonic diversity 
and highlights the importance of knowing the dynamics of 
river discharge to determine the distribution and compo-
sition of planktonic organisms. The enriched trophic state 

and the physicochemical characteristics of the estuaries 
depend in large part on the dynamics and sediment dis-
charges of the Atrato River, and we underline the presence 
of hypoxic zones throughout the gulf. The seasonal changes 
in the vertical gradients of salinity, temperature, and density 
reflect that the interactions of the Caribbean Sea under the 
plume of the Atrato River are conditioned by the dynam-
ics of winds and surface currents. Moreover, this work con-
stitutes an added value, since it makes for the first time a 
review of its history in the field of coastal oceanography, 

Fig. 14  Phytoplankton images 
in the estuary Gulf of Urabá, 
Caribbean Colombia. A Skel-
etonema tropicum, B Cosci-
nodiscus sp. , C Chaetoceros 
lorenzianus, D Tripos fusus, E 
Chaetoceros affinis, F Pseu-
donitzschia sp., G Trachelo-
mona armata, H Staurastrum 
sp,. I Pediastrum simplex, J 
Coscinodiscus sp. , K Eudorina 
sp., L Asterionellopsis glacialis, 
M Dinophysis caudata, N Coe-
lastrum sp. , O Anabaena sp.
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its analysis, and discussions of some literature findings, to 
generate the knowledge base of an unexplored area of the 
country. Finally, the Gulf of Urabá can be considered a bio-
technological laboratory in the development and a potential 
source of energy about which future research should deepen 

Fig. 15  Phytoplankton images 
in the estuary Gulf of Urabá, 
Caribbean Colombia. A 
Pleurosigma nicobaricum, B 
Tabellaria flocculosa, C Tripos 
furca, D Tychonema sp. , E 
Rhabdonema adriaticum, F Tri-
pos massiliensis, G Mastogloia 
punctatisima, H Climacosphe-
nia moniligera, I Coscinodiscus 
sp. , J Licmophora sp.

in knowledge, as well as work in understanding some physi-
cal and biochemical components (potential toxin producers, 
hypoxia events, biogeochemical nutrient cycles, and budgets, 
among others) to comprehend the estuary in the oceano-
graphic context.
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Fig. 16  Annual cycle of Chl-a 
for the period from 1997 to 
2017 and ~ 4 km spatial resolu-
tion in the study area

Fig. 17  Distribution of Calanoid and Diplostraca (zooplankton) through the salinity gradient in the delta of the Atrato River to the Gulf of 
Urabá, Caribbean Colombia
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