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Abstract
The long-term evolution of the South Asian monsoon system and its influence on the Bay of Bengal (BOB) is of great inter-
est to climate scientists. A number of climate forcings trigger the changes of the Indian summer monsoon (ISM) precipita-
tion centroid, while the ISM rainfall projected by climate models shows a large discrepancy in local precipitation patterns. 
Moreover, the continuous recovery of paleoceanographic records in the BOB is often a struggle due to the presence of the 
fan-dominated depositional regime of the Bengal Fan. In this study, we present multi-proxy records of the last 13 kyrs from 
a sediment core (HI1710-MC1) at the Ninetyeast Ridge (NER) in the southern BOB, which is prevented from turbidite 
deposition. Our result suggests that the surface ocean environment and detrital provenance at the NER have not responded 
sensitively to the ISM variation and largely remained stable for the last 13 kyrs. The biogenic fraction (CaCO3, total organic 
carbon, and total nitrogen contents) has remained relatively constant regardless of the Indian monsoon variability during the 
Holocene. The radiogenic isotope (εNd and 87Sr/86Sr) and clay mineral compositions of the detrital sediments indicate that the 
two major sources (the Himalaya through the Ganges–Brahmaputra–Meghna River system with a minor contribution from 
the Indo-Burma Ranges via the Irrawaddy-Salween River system) have played a primary role in delivering sediments to the 
study site. Our results imply that the longer sediment records preserved at the NER can be used to reconstruct the relative 
changes of runoff in the two major river systems. The Holocene record at the NER, thus, provides a basis for the study of the 
Late Quaternary variability in the Indian monsoon precipitation patterns and resultant runoff to the BOB.
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1  Introduction

The South Asian monsoon, characterized by the seasonal 
reversal of surface winds and associated precipitation (IPCC 
2014), affects the lives of more than a billion people. Yet, 
the projections using state-of-the-art climate models exhibit 
a high degree of uncertainty in determining local precipi-
tation. Accurately projecting future monsoonal variability 
and the changes in regional precipitation is thus difficult 
to achieve (Turner and Annamalai 2012). For this reason, 
a number of studies have used geological records to exam-
ine the responses of the South Asian monsoon to climate 
change. In particular, long-term changes in monsoonal run-
off are estimated from the detrital flux in the Bengal Fan 
sediments (Hovan 1995; Galy and France-Lanord 2001; Ali 
et al. 2021).

The Bay of Bengal (BOB), the northeastern part of the 
Indian Ocean, receives a large amount of detritus from major 
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rivers draining the Himalayas (e.g., Ganges, Brahmaputra, 
and Meghna). However, the source of the sediments is not 
exclusive to the Himalayas as evidenced by differences in 
their radiogenic isotope (Sr–Nd) compositions (Colin et al. 
1999; Joussain et al. 2016; Ali et al. 2021). Instead, a sig-
nificant input of detritus from the Myanmar region (e.g., 
through the Irrawaddy and Salween rivers), where monsoon 
rainfall is particularly intense, is suggested based on the 
Sr–Nd compositions of the BOB sediments. The changes 
in the runoff of the major rivers in the BOB, therefore, can 
be estimated quantitatively by evaluating the detritus con-
tribution to sedimentary records from various rivers with 
different drainage areas in the BOB. Nevertheless, the fan-
dominated depositional processes of the central BOB often 
complicate the recovery of continuous, high-resolution 
sedimentary records. For this reason, the Ocean Drilling 
Program (ODP) and the International Ocean Discovery Pro-
gram (IODP) drilled the Ninetyeast Ridge (NER) where the 
ridge-top location of the NER has prevented the turbiditic 
sediment input and the resultant truncation of the underlying 
sequence: ODP Site 758 and IODP Site U1443 (5° 23.05′ N, 
90° 21.67′ E) (Pierce et al. 1989; Clemens et al. 2016; see 
locations in Fig. 1). According to the paleoceanographic 

variability and the detrital input from the Himalayan ero-
sion for the late Neogene (Gourlan et al. 2010; Bolton et al. 
2013; Ali et al. 2021; Bretschneider et al. 2021), these sites 
are governed by the Indian monsoon regime’s precipitation 
and open-ocean dynamics regulated by its current system.

We collected two multiple cores (34 cm- and 35-cm 
long) at the northern NER using the R/V ISABU of the 
Korea Institute of Ocean Science and Technology (KIOST, 
launched in 2017) during the 2017 research cruise in the 
Indian Ocean (project title: Marine environmental change 
and the evolution of Indian monsoon). To investigate the 
surface ocean environment and the provenance of the detri-
tal components, we used the multi-proxy dataset from the 
35-cm long undisturbed multiple core. We evaluated the ori-
gin of the study site’s biogenic sediment and compared the 
analyzed radiogenic isotope (143Nd/144Nd and 87Sr/86Sr) and 
clay mineral compositions of detrital components to those 
of the adjacent basins (i.e., the BOB and Andaman Sea). 
We addressed the provenance and the relative contribution 
of the Himalayan and Myanmar detrital components dur-
ing the Holocene. This study provides background data for 
the reconstruction of changes of runoff in the major river 
systems under the influence of the Indian monsoon system. 

Fig. 1   Core location of HI1710-
MC1 and schematic map of 
surrounding area. The study 
sites of cited literature are also 
shown (see legend) with prov-
inces suggested by Colin et al. 
(1999). The map was generated 
with Ocean Data View software 
(Schlitzer 2020) using 6′ × 6′ 
gridded bathymetry data from 
GEBCO 2014 database (https://​
www.​gebco.​net/​data_​and_​produ​
cts/​gridd​ed_​bathy​metry_​data/) 
and modified based on Ali et al. 
(2021). NER Ninetyeast Ridge, 
BOB Bay of Bengal
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The sedimentary records spanning the last 13 kyrs will serve 
as a baseline dataset for the long-term paleoceanographic 
reconstruction.

2 � Study Site

A multiple core HI1710-MC1 (5° 23.010′ N, 90° 21.738′ E, 
2925 m water depth) was collected from the NER in the 
BOB during the HI1710 expedition of the R/V ISABU in 
2017 (Fig. 1). The NER formed before the middle Eocene by 
age-progressive hotspot volcanism that is currently beneath 
the Kerguelen Plateau (Royer et al. 1991; Sager et al. 2010; 
Clemens et al. 2016). The ridge-top location of the site 
allows preservation of a continuous sedimentary record suit-
able for paleoceanographic study. Further, the surface salin-
ity at the study site remains relatively constant throughout 
the year despite the strong monsoonal precipitation, yielding 
exceptionally strong north–south salinity gradient and the 
seasonal variation in the local salinity of the BOB and Anda-
man Sea (Fig. 2). Thus, we considered this site to be at the 
southern limit influenced by the Indian summer monsoon.

3 � Methods

The 35 cm-long multiple core was halved, photographed, 
and sectioned at 1-cm intervals at the Library of Marine 
Samples (LIMS), South Sea Branch, KIOST. The sec-
tioned subsamples were stored in 50 mL plastic jars and 
then freeze-dried. To separate sand-sized foraminifera from 
the clay, approximately 1 g of bulk sediments was soaked 
in 5% sodium hexametaphosphate solution and then sieved 
using tap water into > 125 μm, 125–63 μm and < 63 μm frac-
tions. More than 100 specimens of planktic foraminifera 
(mixed species) were isolated from the > 125 μm fraction 
of four selected intervals for an accelerator mass spectrom-
eter (AMS) radiocarbon dating (Table 1). Radiocarbon age 
determinations were processed using an AMS at the Beta 
Analytics, USA and the Rafter Radiocarbon Laboratory of 
National Isotope Centre, New Zealand. Calibration of the 
radiocarbon ages was performed with the Calib 7.0 (http://​
calib.​org) software and the Marine20 calibration curve 
(Stuiver and Reimer 1993; Heaton et al. 2020; Stuiver et al. 
2021). The local reservoir effect (ΔR) of 17 ± 70 year was 
applied which was reported for Nicobar Island (9° N, 94° E) 
(Southon et al. 2002).

The surface ocean productivity was inferred from the bio-
genic components. The bulk sediment was dried at 50 °C 
and ground using mortar and pestle for the analyses of total 
carbon (TC), total inorganic carbon (TIC), and total nitrogen 
(TN) contents. The TC and TN contents of every subsample 
were measured with a Flash 2000 Series Elemental Analyzer 

at Pusan National University (PNU) and was reported as a 
percentage of sediment dry mass. The analytical precisions 
were less than ± 0.1% and ± 0.01%, respectively. The TIC 
content was measured with a UIC CM5012 CO2 coulometer 
at PNU (Engleman et al. 1985). The analytical precisions 
were less than ± 0.1%. The TIC was multiplied by 8.333 (the 
molecular weight ratio between CaCO3 and C) to calculate 
the calcium carbonate content. The TIC was subtracted from 
the TC to estimate the total organic carbon (TOC) content.

To investigate detrital provenance, the inorganic sili-
cate fraction (hereafter the detrital fraction) was extracted 
from the bulk sediments using a method outlined by Hovan 
(1995) at KIOST. The < 63 µm sample was treated with a 
10% acetic acid to remove the carbonate fraction. Subse-
quently, to remove Fe–Mn oxides and hydroxides, the sam-
ple was treated with a hot sodium citrate–sodium dithionite 
solution buffered with sodium bicarbonate. The biogenic 
silica component was then removed with an 80 °C sodium 
hydroxide solution. An analysis of the 143Nd/144Nd and 
87Sr/86Sr ratios of bulk inorganic silicate fraction, including 
isotopic separation and multi-collector thermal ionization 
mass spectrometric (TIMS; VG54-30, Isoprobe-T) analysis, 
was performed at the Korea Basic Science Institute. The 
detailed methodology was outlined by Cheong et al. (2016). 
The replicate analysis of NBS987 and JNdi-1 provided the 
mean values of 143Nd/144Nd = 0.512110 ± 20 (n = 5, 2σ), 
87Sr/86Sr = 0.710251 ± 70 (n = 5, 2σ). For convenience, we 
expressed the 143Nd/144Nd ratios as εNd; i.e., the deviation 
from a chondritic uniform reservoir (εNd = (143Nd/144Nd/0.5
12638 − 1) × 104) (Jacobsen and Wasserburg 1980).

The clay mineralogy was determined from the < 2 μm 
clay fraction, which was separated according to the Stoke’s 
Law, spread onto glass slides, and allowed to air dry. Analy-
ses were performed on air-dried and ethylene glycol-treated 
mounts using the SIMENS/Bruker D5005 X-ray diffrac-
tometer with CuKα radiation in 40 kV, 40 mA, and 3–30° 
(2θ) conditions at the Department of Geology, Gyeongsang 
National University. The relative abundances of four major 
clay minerals (smectite, illite, kaolinite and chlorite) were 
semi-quantitatively estimated using the Eva 3.0 software 
with the empirical factors of Biscaye (1965). The relative 
proportions of kaolinite and chlorite were determined based 
on the ratio from the 3.58 Å (kaolinite 002) and 3.54 Å 
(chlorite 004) peak areas.

4 � Results

The HI1710-MC1 sediments consisted of a homogene-
ous pale brown nannofossil ooze with foraminifera and 
clay without any noticeable lithological changes. Table 1 
summarizes the analytical results of HI1710-MC1 sedi-
ment as shown in Fig. 3. Table 2 presents the four AMS 

http://calib.org
http://calib.org
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14C dates of planktic foraminifera. The core extended to 
14,213 cal yr before present (BP), and the average linear 
sedimentation rate (LSR) of the composite section was 
estimated to be 2.4 cm/kyr. The increase in LSR in the 
uppermost layer (Fig. 3a) is attributable to the high water 
content and minimal compaction. The age model was 
established using linear interpolation between measured 
intervals (Fig. 3a). The CaCO3 contents ranged between 
56.1 and 64.7 wt% (avg. 61.0 wt%) (Fig. 3b). The TOC 
and TN were remarkably low (< 0.5% and < 0.07%, 

respectively) and TN contents were below the limit of 
detection in several samples (Fig. 3c). The measured εNd 
and 87Sr/86Sr varied between − 11.8 and − 12.4, and 0.7260 
and 0.7289, respectively (Fig. 3d, e). The most common 
clay mineral in the < 2 μm fraction was illite (av. 50.1%), 
followed by smectite (av. 22.7%), kaolinite (av. 14.6%), 
and chlorite (av. 13.6%) (Fig. 3f). The relative abundance 
of each clay mineral group did not change significantly 
through the analyzed section.

Fig. 2   Statistical mean salinity data on 1° grid for 1981–2010 
from World Ocean Atlas 2018 (Zweng et  al. 2018). The study site 
(HI1710-MC1) is shown as an open diamond (DJF December–Janu-

ary–February, MAM March–April–May, JJA June–July–August, SON 
September–October–November)
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5 � Discussion

5.1 � Surface Ocean Environment at the Ninetyeast 
Ridge

The CaCO3 content in marine sediment shows spatial and 
temporal variation which reflects its production, preserva-
tion, and dilution by non-carbonate materials (Arrhenius 
1952; Farrell and Prell 1989; Naidu et al. 1993). In the BOB, 
the sediment discharged from the major rivers (e.g., the 
Ganges–Brahmaputra, Irrawaddy, etc.) often exert a major 

control on the CaCO3 concentration in marine sediment, 
especially at the sites proximal to the continent or under 
the influence of the submarine fan deposition (Kolla et al. 
1976; Suresh and Bagati 1998). For instance, the CaCO3 
content at the western BOB sites close to the Indian con-
tinent is low (generally < 10%) during the Holocene, but it 
was higher during the last glacial maximum (LGM). This 
is due to the weakened summer monsoon and the result-
ant decrease in sediment discharge (Suresh and Bagati 
1998; Phillips et al. 2013). Such effect of terrigenous dilu-
tion decreases greatly toward the offshore area as inferred 

Table 1   Analytical results of HI1710-MC1

a Total carbon; btotal nitrogen; ctotal organic carbon; dsmectite; eillite; fkaolinite; gchlorite; hBDL: below detection limit

Depth (cm) Bulk contents Bulk detrital isotope composition Clay Mineralogy (%)

TCa (%) TNb (%) CaCO3 (%) TOCc (%) TOC/TN 87Sr/86Sr 143Nd/144Nd εNd Smd Ile Kf Chlg

0–1 7.69 0.06 60.6 0.42 7.01 20.7 50.5 15.1 13.7
1–2 7.91 0.06 62.2 0.45 7.44 0.7260 0.512007 − 12.3
2–3 8.08 0.06 63.7 0.44 7.54
3–4 7.94 0.06 62.3 0.46 8.29
4–5 8.19 0.05 64.6 0.43 8.40 24.5 45.6 16.3 13.5
5–6 8.01 0.05 63.0 0.45 8.50
6–7 7.86 0.06 61.9 0.43 7.73
7–8 7.88 0.05 63.1 0.31 6.39
8–9 7.83 0.05 63.1 0.26 5.37
9–10 7.84 0.04 64.7 0.07 1.58 0.7266 0.512030 − 11.9 18.4 53.7 14.4 13.4
10–11 7.58 0.04 61.6 0.19 4.55
11–12 7.55 0.04 61.1 0.22 5.39
12–13 7.54 0.04 60.8 0.25 5.75
13–14 7.38 0.04 60.8 0.08 2.14
14–15 7.48 BDLh 61.2 0.14 – 25.4 47.0 15.9 11.8
15–16 7.59 BDL 61.2 0.24 –
16–17 7.61 0.04 61.3 0.25 6.84
17–18 7.33 0.04 59.7 0.16 3.98
18–19 7.35 0.04 59.4 0.22 6.04
19–20 7.40 0.04 61.4 0.03 0.78 0.7284 0.512000 − 12.4 26.2 44.6 15.2 14.1
20–21 7.15 0.04 57.9 0.19 5.45
21–22 6.99 0.04 56.1 0.25 7.02
22–23 7.75 BDL 64.6 – –
23–24 7.34 0.04 59.7 0.17 3.97
24–25 7.12 0.04 58.3 0.13 3.81 0.7289 0.512024 − 12.0 23.1 50.6 13.9 12.4
25–26 7.06 0.03 58.4 0.05 1.38
26–27 7.08 0.03 57.8 0.15 4.22
27–28 7.12 BDL 59.0 0.04 –
28–29 7.29 0.03 59.7 0.13 3.97
29–30 6.97 0.03 57.4 0.08 2.27 0.7286 0.512028 − 11.9 18.8 54.3 12.7 14.3
30–31 7.47 0.04 61.9 0.04 1.19
31–32 7.38 BDL 62.1 – –
32–33 7.50 BDL 61.7 0.09 –
33–34 7.52 BDL 62.5 0.02 – 0.7286 0.512034 − 11.8
34–35 7.35 0.03 60.5 0.09 2.82 16.8 54.1 13.6 15.5
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from the reduced contribution of the lithogenic component 
in suspended sediments (e.g., Rixen et al. 2019), and it is 
often considered insignificant in the central ocean basin. 

Carbonate dissolution has been considered as a significant 
control on the CaCO3 content as well, especially in the car-
bonate-undersaturated deep ocean (e.g., Peterson and Prell 
1985).

The CaCO3 content of HI1710-MC1, obtained from the 
central ocean ridge, does not vary greatly for the last 14.4 
kyrs (Fig. 3b). Minor variability in centimeter scale could 
be attributed to the millennial- or centennial-scale climate 
variability (e.g., 8.2 ka event; Banerji et al. 2020); however, 
the low sedimentation rate (ca. 2.4 cm kyr−1) at the study 
site does not resolve such events precisely. Still, CaCO3 was 
lower in the 17–30 cm interval, which corresponded to the 
depositional ages of 6–11 ka. As previously determined car-
bonate preservation state at the NER sites suggested that 
the dissolution maxima have often occurred at the glacial 
initiations (Peterson and Prell 1985), this early- to mid-Hol-
ocene minimum is not attributable to the carbonate dissolu-
tion. Instead, this time period is marked by a strengthened 
ISM precipitation (Fleitmann et al. 2003; Hong et al. 2003). 
Thus, the observed CaCO3 decrease probably indicates an 
increased terrigenous dilution during the early- to mid-
Holocene. Overall, the CaCO3 content was rather high (avg. 
61.0%) compared to those (0–50%) from the surrounding 
basin of the BOB (Kolla et al. 1976). This indicates that the 
ISM-related river discharge is not particularly distinctive in 
the bulk composition of HI1710-MC1 throughout the study 
period. The other biogenic components, the TOC and TN 
contents, were very low (< 0.5%) and decreased downcore 
(Fig. 3c). This tendency is not attributed to the paleopro-
ductivity change, but to the decay of organic material (i.e., 
remineralization) after burial. The strong correlation of the 
TOC with the TN (r = 0.88, p < 0.001) suggests their com-
mon origin. The TOC/TN (C/N) ratios were lower than ten 
throughout the core, indicating the aquatic (marine) origin 
of the organic matter (Meyers 1994).

The small influence of terrigenous dilution on the CaCO3 
variation, the low C/N ratio of organic material, and the low 
linear sedimentation rate (ca. 2.4 cm/kyr) imply that there 
is only a minor control of river discharge from the regional 
surface ocean environment, which is also supported by the 
small seasonal variability of sea surface salinity between 
33.5 and 34.0 psu (Fig. 2). Bolton et al. (2013) found the 
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Table 2   AMS radiocarbon ages of selected intervals for HI1710-MC1

a, b One sigma ranges

Depth (cm) Conventional 
14C Age (year)a

Cal yr B.P.b Laboratory

5–6 3921 ± 26 3582–3823 Rafter Radiocarbon
15–16 5466 ± 28 5523–5740 Rafter Radiocarbon
25–26 10,111 ± 36 10,877–11,153 Rafter Radiocarbon
34–35 12,730 ± 50 14,036–14,391 Beta Analytics
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diminished upper water column stratification at the NER 
site (ODP site 758) during the ISM strengthening events 
with an analysis of a 500,000-year foraminifera oxygen 
isotope record. Such phenomenon in the central BOB does 
not correspond to the enhanced surface water stratification 
in the northern BOB and Andaman Sea sites, indicated by 
the approximated decrease in sea surface salinity, during 
the strengthening of ISM in the mid-Holocene (Gebregior-
gis et al. 2016; Sijinkumar et al. 2016). Our results support 
Bolton et al. (2013)’s suggestion that the large-scale sur-
face wind system and ocean dynamics, rather than regional 
land–ocean interaction represented by freshwater discharge, 
largely regulates the surface ocean environment at the NER.

5.2 � Detrital Provenance During the Holocene: 1. 
Sr–Nd Isotope

The Sr–Nd radiogenic isotope compositions of detrital sedi-
ments are useful indicators of sediment provenance (e.g., 
Nakai et al. 1993; Chen et al. 2007; Chen and Li 2013). 
Although the Himalayas produces an enormous amount of 
detritus, which is supplied to the entire BOB, the geology 
of catchment areas of individual river systems is different 

from one another. This results in the regional variation of 
BOB detrital sediment in their composition. For instance, 
the Ganges–Brahmaputra-lower Meghna (G-B-M) rivers 
mainly drain the Himalayas, whereas the Irrawaddy and Sal-
ween (I-S) rivers incorporate detritus from the Indo-Burma 
Ranges (IBR), Myanmar Central Basin, and Shan Plateau. 
According to the earlier work by Colin et al. (1999), the 
Eastern Indian Ocean was divided into four provinces based 
on the detrital Sr–Nd and clay mineralogy: the northern 
BOB, the western BOB, the eastern BOB, and the Andaman 
Sea (Figs. 1 and 4) (Colin et al. 1999; Gourlan et al. 2010; 
Tripathy et al. 2011; Ali et al. 2021). The western BOB 
sediments, including the samples from the levee of an active 
channel of the Bengal Fan (Tripathy et al. 2011; Lupker et al. 
2013), are characterized by Nd–Sr isotope composition simi-
lar to that of the Lower Meghna river developed downstream 
of the Ganges and Brahmaputra river confluence (Fig. 4). 
This suggests the dominance of detritus supplied by these 
rivers in the western BOB. The western BOB is also fed 
by the peninsular rivers of India draining into the Archean 
Shield (e.g., Godavari and Krishna) represented by εNd and 
87Sr/86Sr signatures similar to G-B-M rivers (Fig. 4). How-
ever, sediment discharge of these rivers is much smaller (ca. 
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Fig. 4   Crossplot for 87Sr/86Sr and εNd of lithogenic component of 
HI1710-MC1. Compositions of surface sediments, including Holo-
cene sediment in Bay of Bengal and Andaman Sea are also shown 
(Colin et  al. 1999; Ahmad et al. 2009; Tripathy et  al. 2011; Lupker 
et al. 2013; Ali et al. 2015; Joussain et al. 2016; Miriyala et al. 2017) 
(Supplementary Table A1). Composition of the bulk detrital (Gourlan 
et al., 2010) and clay (< 2 µm) fraction from the uppermost interval of 

the ODP Site 758 are shown as open and closed squares, respectively 
(Ali et al. 2021; Song et al. 2021). The average compositions of major 
river sediments and possible source regions (shaded area) are shown 
together and provided as supplementary data (Galy and France-
Lanord 2001; Singh and France-Lanord 2002; Allen et al. 2008; Naj-
man et al. 2008; Singh et al. 2008; Gourlan et al. 2010; Licht et al. 
2013; Giosan et al. 2018; Ali et al. 2021)
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10%) compared to G-B-M rivers (Mouyen et al. 2018). The 
influence of sediments from the mainland India is considered 
insignificant in the entire western BOB, as also supported 
by clay mineral composition discussed in the next section.

The eastern BOB and the Andaman Sea sediments are 
characterized by more radiogenic Nd and less radiogenic Sr 
isotope signatures than those of the western BOB sediments 
(Fig. 4). This was attributed to the input of IBR sediments 
with radiogenic Nd and unradiogenic Sr signatures that were 
discharged into the Andaman Sea shelf and the easternmost 
part of the BOB via the I-S rivers (Colin et al. 1999; Jous-
sain et al. 2016; Ali et al. 2021; Bretschneider et al. 2021). 
While the I-S rivers are known to discharge mostly in the 
Andaman Sea (Colin et al. 1999; Ali et al. 2015; Lee et al. 
2020), the appearance of intermediate Nd–Sr isotope com-
positions, between the Andaman Sea and the western BOB 
sediments, suggests significant input of sediments from the 
I-S rivers to the eastern BOB (Fig. 4). Even the northern 
BOB sediments, sampled near the G-B-M river mouth, 
reveal isotopic compositions between the eastern BOB and 
Meghna river sediments (Fig. 4). This suggests that the I-S 
and IBR components have influence in the wide region of 
the eastern BOB.

The Sr and Nd isotope compositions of HI1710-MC1 are 
similar to those of northern BOB sediment (Fig. 4), an indi-
cation of their common source area, which is primarily the 
High and Tethys Himalaya and secondarily the IBR regions. 
The heavy monsoonal precipitation on the eastern Himalaya 
and IBR regions allows intense sediment discharge through 
I-S rivers, which is comparable (~ 70%) to those of G-B-M 
river system (Chapman et al. 2015). Although most of them 
would be primarily deposited into the Andaman Sea basin, 
a significant amount of I-S river sediments is transported to 
the eastern BOB (Ali et al. 2021; Bretschneider et al. 2021). 
Ours and the northern BOB samples had less radiogenic 
εNd and more radiogenic 87Sr/86Sr than those of the east-
ern BOB sediments, which indicate the smaller contribu-
tion of the I-S river sediments in the remote area from the 
Irrawaddy river mouth. Our Nd–Sr isotope data suggest that 
the G-B-M river system with secondary input from I-S river 
system strongly influences the northern and eastern BOB, 
including the NER.

Eolian mineral dust and volcanic materials might have 
been supplied to the study site as minor component. The 
modern dust deposition in the southern BOB is estimated 
as 0.1–0.2 g cm−2 ky−1 by dust models (Jickells et al. 2005), 
which seems significant compared to the total lithogenic flux 
of 0.2–0.8 g cm−2 ky−1 during the Late Quaternary meas-
ured in the deep-sea sediments at the adjacent ODP Site 
758 (5° 23.05′ N, 90° 21.67′ E; Hovan and Rea 1992; Song 
et al. 2021). Dust supplied to the surface ocean is, however, 
subjected to the various internal processes (e.g., biological 
scavenging, chemical degradation, physical advection, etc.), 

so as not to be fully exported to the bottom. For instance, the 
measured inorganic silicate deposition flux at the northeast-
ern Pacific site (KODOS 02-01-02, 16° 12′ N, 125° 59′ W), 
where the terrigenous mineral transport is nearly dominated 
by the eolian process, was 0.012 g cm−2 ky−1 (Hyeong et al. 
2006). This is significantly below the model estimation of 
0.02–0.05 g cm−2 ky−1 (Jickells et al. 2005). In this context, 
the actual amount of dust deposition at the study site is likely 
to be much lower than the model estimation. The amount 
of volcanic material from the adjacent Sunda arc would be 
very minor in the NER as well, as volcanic detritus is rarely 
found, even at the arc-proximal Nicobar Fan sites (IODP Site 
U1480 and U1481; see locations in Fig. 1) (Pickering et al. 
2020). Given the tremendous amount of sediment input from 
the Himalaya, the BOB is primarily filled by riverine fluxes 
from the adjacent landmasses and the following hemipelagic 
processes, including deep-sea current, suspension-settling, 
etc.

5.3 � Detrital Provenance During the Holocene: 2. 
Clay Mineralogy

Clay mineral assemblage can be used to estimate the rela-
tive contribution of sediment supplied by major rivers. The 
northern and eastern BOB surface sediments were plotted 
into two groups (EBOB-1 and EBOB-2) with distinct clay 
mineral compositions (Fig. 5). The clay mineral composi-
tion of the EBOB-2 group (Li et al. 2017, 2018; Sun et al. 
2020) was estimated by applying the weighting factors of 
Biscaye (1965) for different minerals. All the samples in the 
EBOB-2 group plotted close to our data (Fig. 5), which is 
indicative of their common provenance. The clay mineral 
composition of another group (EBOB-1) that included the 
northern BOB sediments was estimated without the weight-
ing factors of Biscaye (1965), and could not be compared 
with our data directly.

In the BOB, dominant clay minerals are illite and smectite 
with minor contribution of chlorite and kaolinite. The major 
sources of illite and smectite are the G-B-M and I-S river 
systems, respectively (Colin et al. 1999; Joussain et al. 2016; 
Khan et al. 2019; Sun et al. 2020). The G-B-M river system 
is the sole known source dominated by illite (Table 3). The 
dominance of illite over smectite in HI1710-MC1 sediment 
thus indicates a significant influence of the G-B-M rivers. 
If we assume G-B-M rivers and I-S rivers as the two major 
detrital sources, the clay mineral composition of HI1710-
MC1 site can be explained with the mixing of ~ 70% of 
G-B-M river and ~ 30% I-S river sediments (Fig. 5), which 
agrees with the estimation based on Sr–Nd isotope composi-
tions. However, the kaolinite/chlorite ratio (K/C) of 0.9 ~ 1.3 
in our samples is not explained with mixing of two sources 
of G-B-M and I-S rivers with an average K/C ratio of 0.4 and 
0.8, respectively, which indicates a minor influence of G-K 
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Fig. 5   Ternary diagram for 
clay mineral assemblages of 
HI1710-MC1 (solid diamonds) 
plotted together with the aver-
age compositions of river mouth 
and Bay of Bengal sediments. 
Irrawaddy: Irr, blue cross 
(Rodolfo 1969); Ganges–Brah-
maputra-lower Meghna: G-B-M 
(Khan et al. 2019), red cross; 
Godavari-Krishna: G-K, yellow 
cross (Bejugam and Nayak 
2017); eastern Bay of Bengal 
(BOB) surface sediment: green 
shade and green circles labelled 
as EBOB-1 (Colin et al. 1999; 
Joussain et al. 2016) and orange 
shade and triangles labelled as 
EBOB-2 and triangles (Li et al. 
2017, 2018; Sun et al. 2020). 
Note the composition of ODP 
Site 758 sediment (open circle) 
(Ali et al. 2021) included in the 
EBOB-1 group (See Fig. 1 for 
sampling locations)
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river sediments with an average K/C ratio of 5.6 (Table 3). 
Thus we cannot preclude influence of G-K river sediments 
that cannot be deciphered with Nd–Sr isotope composition 
because of similar composition between G-B-M and G-K 
river sediments.

The Nd–Sr isotopic and clay mineral compositions pro-
vide mutually supportive source regime of the detrital com-
ponents, mixing of G-B-M rivers (~ 70%) and I-S river sedi-
ments (~ 30%), but minor input of G-K sediments indicated 
in the K/C ratio. The clay mineral composition reported at 
the neighboring ODP Site 758 on the NER is notable (Ali 
et al. 2021). At this site, smectite has been the predominant 
clay mineral (39 ~ 69%) for the last 27 Myrs, which is sig-
nificantly different from those (23% of smectite and 50% 
of illite on average) of the study site. Ali et al. (2021) did 
not, however, apply the weighting factors of Biscaye (1965) 
for semi-quantitative estimation. It means that the smectite 
content was overestimated in Ali et al. (2021) like the other 

data in the EBOB-1 group. Nevertheless, the Nd–Sr isotope 
compositions of bulk detrital component at ODP 758 site 
showed excellent agreement with ours (Fig. 4) and support 
our conclusions on the detrital provenance of the HI1710-
MC1 site. Our consistent results suggest that the study site at 
the NER can serve as an archive for the paleoceanographic 
studies on the Indian monsoon system, especially, in terms 
of relative changes in rainfall intensity in the G-B-M rivers 
and I-S rivers drainage areas, as the site receives its detri-
tal components from these two river systems with different 
Nd–Sr isotopic and clay mineral compositions.

6 � Conclusions

The surface ocean production and detrital provenance 
of the last 13 kyrs were investigated using a 35 cm-long 
multiple core retrieved at the northern Ninetyeast Ridge 

Table 3   Average clay mineral 
compositions of major rivers 
surrounding the Bay of Bengal 
(data adopted from Sun et al. 
(2020))

Smectite Illite Kaolinite Chlorite Data source

Ganges–Brahmapu-
tra–Meghna

8 66 8 17 Khan et al. (2019)

Godavari–Krishna 57.6 17.8 20.9 3.7 Bejugam and Nayak (2017)
Irrawaddy 59.0 15.5 11.6 13.9 Rodolfo (1969); Colin et al. (1999)
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in the southern Bay of Bengal (BOB). At the study site, 
surface ocean environment and detrital provenance have 
not responded sensitively to the Indian Summer Monsoon 
and largely remained stable for the last 13 kyrs. The small 
decrease in CaCO3 content was attributed to the strength-
ened ISM during the mid-Holocene, though not prominent 
as previously reported in the continental margin sites of the 
BOB. Radiogenic Sr–Nd isotope and clay mineral composi-
tions indicate two major sources of detrital sediments for the 
last 13 kyrs: primarily from the Himalaya transported via 
Ganges–Brahmaputra-Meghna rivers (~ 70%) and secondly 
from the Indo-Burman Ridges region via Irrawaddy-Salween 
rivers (~ 30%). This Holocene record provides a basis for 
the study of Late Quaternary variability in Indian monsoon 
precipitation pattern, and resultant runoff to the BOB.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12601-​021-​00052-w.
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