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Abstract − Investigations on marine N2 fixation have gained

momentum since 1960s with eventual establishments of relevant

methodologies to identify species involved and quantify the rates.

The evolution of various methodologies to understand N2 fixation

and to estimate its rates were underpinned by the constant efforts of

pioneers in the ocean biogeochemical research field. Those efforts

succeeded in introducing various methodologies that include

experimental (15N2 bubble method and acetylene reduction method),

geochemical (N* and P* method), mathematical modelling, and

remote sensing techniques. However, the construction of an accurate

N budget is still under progress due to inseparable issues associated

with each method and difficulties in conducting the experiments

onboard on a larger scale. Nevertheless, the contributions by each

of the methodologies are significant and helped in forming basic

ideas about N2 fixation activities on a global scale. It is not only

important to recognize the contributions made by the formation of

various methodologies by marine research pioneers, but also vital

to summarize what we have achieved in the marine N2 fixation

research area so far. Hence, this review is an attempt to brief on the

various milestones achieved in research on the N2 fixation mechanism,

species involved, evolution of methodologies to estimate N2 fixation

rates, species identification, budgets, and future concerns. 

Keywords − N2 fixation, climate change, 15N2 labelling,
cyanobacteria

1. Introduction

Biogeochemical cycling in a healthy ecosystem is perplexingly

interrelated to the availability of bioavailable nitrogen (N)

due to its potential role in building and maintaining life

components. Understanding N cycling has always been one

of the major focuses of marine research due to its complexity

and enigmatic pathways. Despite the fact that molecular N

accounts for 78% of the earth’s atmospheric composition,

the accessibility to reactive N pool by organisms is critically

low. The two possible natural sources of the bioavailable N

are the biological N2 fixation and lightning which are highly

dependent on unique environmental conditions (Capone et

al. 1997; Howarth 1998). The role of marine N2 fixation as a

significant source of new N in the ocean has been recognized

since the 1960s (e.g. Dugdale and Goering 1967; Carpenter

and Price 1977; Capone and Carpenter 1982; Carpenter and

Romans 1991; Gruber and Sarmiento 1997; Capone et al.

1998; Lipschultz and Owens 1996, Lipschultz et al. 2002).

The N fixed by marine prokaryotes in the global ocean is

approximately 106–120 Tg N y−1 (Gruber 2004; Gruber and

Galloway 2008). However, the possibility of N2 fixation

evolving as a potential source of bioavailable N mainly

depends on favorable environmental conditions such as

warm and stratified water columns with sufficient nutrient

concentrations (iron, manganese, phosphorous etc.).

Apart from these physico-chemical conditions, the abundance*Corresponding author. E-mail: sanglee@pusan.ac.kr
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of diazotrophs, the species which can convert N2 molecules

in to NH4

+, is the primary factor to determine the availability

of biologically fixed N. The cycling of other elements like

carbon (C) and phosphorous (P) in marine biological systems is

highly dependent on N flux and, hence, it plays an important

role in C sequestration and P cycle indirectly. Since most

marine environments are N deficient the potential CO2 uptake

has always been a matter of concern until the introduction of

the Haber-Bosch process which is considered one of the

major mile stones in the green revolution era. The commercial

production of N compounds has changed the whole picture

of the N cycle by introducing bioavailable N to terrestrial as

well as marine ecosystems, while open oceans remained to

be N deficient (Meybeck 1982; Sañudo-Wilhelmy et al.

2001; Bauer et al. 2013; Regnier et al. 2013). Rivers, lakes,

estuaries, and coastal waters are the main victims of elevated

usage of N-fertilizers, which has introduced excess N loading

and caused high dissolved inorganic and organic nitrogen

concentrations in these ecosystems (Doney 2010; Paerl et al.

2014; Bhavya et al. 2016, 2017). 

There have been various studies conducted so far regarding

the influx and loss of N in marine ecosystems; however, the

formulation of a proper methodology to assess the potential

N2 fixation and loss process took decades. And hence, the

precise magnitudes of altered N transformation rates, particularly

N2 fixation rates, are still unclear (Bauer et al. 2013; Regnier

et al. 2013). However, those research works those shed light

on gave accountability to biological N2 fixation deserve

recognition and praise since they have made a significant

contribution towards the understanding of the N2 cycle.

Paying tribute to the efforts undertaken to reveal the mystery

of the N2 fixation process, this review sought to summarize

studies conducted on the N2 fixation process by giving special

emphasis to the species involved, methodologies, rate estimation,

budget, and future concerns. 

2. Mechanism of N2 Fixation

The importance of biological N2 fixation lies in the fact

that it is capable of producing bioavailable N by breaking

molecular N2 at even 20°C and under normal atmospheric

pressures whereas the Haber - Bosch process can achieve

that only at 300–500 degree Celsius and pressures of 15–26

MPa. Basically, N2 fixation is a process involving the reduction

of N2 gas to NH3 where the power to bring about this reduction

is supplied by NAD(P)H (Fig. 1). The reduction of N2 gas

involves breaking the triple bond between two nitrogen atoms

in a N2 molecule and this requires a tremendous amount of

energy. Under natural conditions the energy required can be

higher than 16 ATPs (Eq.1) for some microbes (Hill 1978).

N2 + 8H+ + 8e-  + 16ATP = 2NH3 + H2 + 16ADP (1)

The N2 fixation process is mediated by a complex enzyme

called nitrogenase which is as large as 300 kDa. It is basically a

complex that contains two different proteins which are

dinitrogenase and dinitrogenase reductase (Postgate 1998).

Fig. 1 depicts the N2 fixation by nitrogenase complex. 

The dinitrogenase reductase contains iron (Fe) and either

molybdenum (Mo) or vanadium (V) while dinitrogenase is

comprised of only Fe. Nitrogenase enzyme is known to have

been present in the early stages of the evolution of life and

the diazotrophs are thought to be the first cells that evolved

on the Earth’s surface (Zehr and Pearl 2008). 

Fig. 1. Nitrogen fixation by the nitrogenase complex in the diazotrophs
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3. Species of N2 Fixers

Earlier, in the 1970s, N2 fixation expeditions were mainly

focused on autotrophic cyanobacteria and researchers believed

that diazotrophic activity was constrained to the sunlit and

oligotrophic layers of the tropical and subtropical oceans

(Zehr 2011). The patterns of marine microbial biodiversity

and functional activities were unknown to the research world

till the introduction of ‘omic’-based techniques (Sunagawa

et al. 2015; Carradec et al. 2018). Such studies revealed the

existence of various diazotrophic and non-diazotrophic

cyanobacterial (bacteria and archaea) species and their high

diversity and wide distribution in the oceans (Zehr et al.

1998, 2000; Farnelid et al. 2011; Bombar et al. 2016; Moisander

et al. 2017). In general, marine diazotrophs are comprised of

both phototrophic and heterotrophic bacteria and archaea.

They have distinctive morphological and physiological

characteristics and, hence, different optimal growth conditions

and mortality factors are expected.

Trichodesmium erythraeum, the filamentous colonial

diazotrophs, is one of the important N
2 fixers and is commonly

known as “sawdust” due to its appearance during blooming

(Gandhi et al. 2011; Bhavya et al. 2016; Kumar et al. 2017;

Singh et al. 2019). The heterocyst-forming symbionts of

diatoms (diatom-diazotroph associations, or DDAs) are also

known to be important N2-fixers (Jabir et al. 2013). Both

Trichodesmium and DDAs are commonly distributed through

tropical and subtropical regions and are major sources of

bioavailable N in oligotrophic regions under warm and stratified

conditions (Villareal 1992; Capone et al. 2005; Mulholland

and Bernhardt. 2005; Gandhi et al. 2011, Jabir et al. 2013,

Bhavya et al. 2016). Under favorable conditions multiple

lineages of unicellular N2-fixing cyanobacteria are also found

to be a significant source of new N globally (Montoya et al.

2004; Moisander et al. 2010; Luo et al. 2012). 

The free-living cyanobacterial diazotroph Crocosphaera

(UCYN-B) occasionally “blooms” in the North Pacific

Subtropical Gyre (NPSG) (Turk-Kubo et al. 2018); however,

the presence of unicellular diazotroph, the uncultivated

cyanobacteria group A (UCYN-A), are observed year-round

(Thompson et al. 2014; Farnelid et al. 2016; Turk-Kubo et al.

2017). Apart from UCYN lineages, Trichodesmium and

several DDA lineages are also commonly found in the North

Pacific Subtropical gyre (NPSG) region (Letelier and Karl

1996; Church et al. 2005, 2008, 2009; Sohm et al. 2011).

NPSG is also observed with the presence of Richelia spp.-

Rhizosolenia (Het-1) and Hemiaulus (Het-2) association

and the latter is a significant diazotrophic lineage that also

contributes to vertical export following summer blooms

(Karl et al. 2002). There have been many reports suggesting

the presence of non-cyanobacterial diazotrophs in the NPSG

(Gradoville et al. 2017); however, their distributions and

significance as a contributor to biological N
2 fixation are

poorly known (Turk-Kubo et al. 2014; Bombar et al. 2016;

Moisander et al. 2017). 

4. Evolution of N2 Fixation Estimation Methodologies

Spatial and temporal distributions of diazotrophs are

eventually a function of their growth and mortality rates just

like every individual taxa (Zehr et al. 2011). In general, such

processes are difficult to measure in natural populations of

marine N2 fixers because of their low abundances and absence

of cultivated representatives of many lineages. And hence,

the effect of fluctuations in favorable physical conditions

and critical nutrient availability on their physiological properties

is not well understood yet (Zehr et al. 2011). Researchers in

the early periods used natural isotopic composition of 15N

(δ15N) in the particulate organic matter to identify the

presence of N2 fixers in marine ecosystems. The inference

from these studies suggested that low δ15N values (-2 to

+2‰) indicate the presence of significant N2 fixation (Wada

and Hattori 1976; Saino and Hattori 1980) since N2 fixation

incorporates the lighter isotopes (14N) preferentially into the

POM from the atmospheric N2 pool with d15N values close

to 0‰. However, δ15N values do not imply the growth rate

and mortality rates of individual taxa. 

Parallel studies also used the geochemical imprint on

nutrients (Gruber and Sarmiento 1997) and stable N isotope

distributions (Altabet 2007) to indirectly infer diazotrophic

activity. The main drawback of geochemical estimates is

that this method uses integrated N2 fixation signature over

large scales of space and time and neglects the small-scale

variability inherent in experimental N2 fixation measurements

by smoothing the variations. Such small scale variability is

the key to measuring the highly difficult components in natural

populations which are the growth and mortality rates of

individual taxa. This is particularly applicable for N2 fixers

because of their low abundances and lack of cultivated

representatives of many of their lineages. Michaels et al. (1994)

observed from Bermuda Atlantic Time-series Studies (BATS)

that a decrease in dissolved inorganic carbon (DIC) in the
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absence of sufficient NO3

- can possibly lead to N2 fixation

activity due to deviations from Redfield stoichiometry (Michaels

et al. 1994). It is well known that iron (Fe) and P are potential

limiting factors of N2 fixation. Based on this concept, Michaels

et al. (1994) introduced a new idea of the N* parameter, a

quasi-conservative tracer which would help in overcoming

the temporal and spatial scale constraints of in situ 15N2 uptake

measurements. To be precise, the N* parameter indicates the

excess of NO3

- as compared to PO4

3- while considering the

Redfield ratio (NO3

-: PO4

3- ratio (N:P) = 16:1; Michaels et al.

1996; Gruber and Sarmiento 1997) (Eq. 2).

N* = (0.87[NO3

-] - 16[PO4

3-] + 2.9) mmol kg-1 (2)

The basic concept of this N* model is that a non-conservative

positive gradient in N* (defined as N* when N:P = 16:1, >

2.5 µmol kg−1) in excess of mixing implies a net N2 fixation

and a negative gradient in N* (< 2.5 µmol kg−1), implies a net

denitrification (Gruber and Sarmiento 1997). The spectra of

marine microbial biodiversity and functional activities have

been widely investigated (Sunagawa et al. 2015; Carradec et

al. 2018) with the use of ‘omic’-based techniques which are

very useful in distinguishing N2 fixers from other microbes.

The path breaking entry of polymerase chain reaction (PCR)

techniques amplified the investigations on N2 fixers by

decoding the genetic diversity among the large varieties of

diazotrophs in the ocean (Zehr et al. 1998). Molecular studies

demonstrated that the ubiquity of unicellular diazotrophic

cyanobacteria (UCYN) makes them equally or much more

capable of fixing N2 than Trichodesmium (Falcón et al.

2004; Montoya et al. 2004) under nutrient rich conditions in

cold areas of the North Atlantic Ocean (Langlois et al. 2005,

2008; Goebel et al. 2010; Benavides and Voss 2015). Such

profound investigations also led to distinctive researches on

physiology, autoecology, and distribution of Trichodesmium

communities (Bergman et al. 2013). Researchers found that

Trichodesmium communities are nourished under conditions

with warm temperatures (24–30°C; Breitbarth et al. 2008),

low dissolved inorganic nitrogen, and calm stratified waters

(Bergman et al. 2013).

The estimation of N2 fixation rates has been possible since

the establishment of acetylene reduction assays (Stewart et al.

1967, 1968; Hardy et al. 1968). Initially, indirect estimations

of N2 fixation were based on acetylene reduction assays which

rely on the preferential reduction of acetylene (C2H2) to ethylene

(C2H4) by nitrogenase. A theoretical conversion factor is

used to estimate N2 fixation rates which assumes that one

molecule of N2 is fixed for each 3 molecules of C2H2 is reduced

to C2H4; however, a direct comparison of N2 fixation rates

with acetylene reduction was not possible (Stewart et al. 1967,

1968; Hardy et al. 1968). The potential indirect effects of

C2H2 on microbial metabolic activities and the consistency

of the conversion factor used to extrapolate N2 fixation rates

were always debatable (Flett et al. 1976; Giller 1987; Hardy

et al. 1973). Additionally, cell damage due to shipboard filtration

or net tows performed for concentrating the microbial biomass

to obtain detectable signals may also lead to underestimation

of N2 fixation rates. 

Modern marine N2 fixation estimation using the 15N2 gas

injection method was successfully established by (Neess et

al. 1962) and Richard Dugdale, John Goering, and colleagues

conducted various N2 fixation measurements in the tropical

and subtropical Northern Atlantic Ocean (Dugdale et al.

1964; Goering et al. 1966). Montoya et al. (1996) introduced

a high precision method of N2 estimation using the 15N2 tracer

technique by modifying the 15N2 gas method by Neess et al.

(1962). This method relies on the net incorporation of the
15N2 tracer into cellular biomass during sample incubation

period with added 15N2 tracer bubble. The basic assumption

of this technique is that the 15N2 bubble injected into the airtight

serum sample bottles will be incorporated into the diazotrophic

biomass contained in the samples if N2 fixation occurs. The

incorporated 15N2 will be detected as elevated δ15N values

during the mass spectrometric analysis. Since the 15N2 technique

has a lower detection limit than the acetylene reduction

assay, it is more preferred for the N2 fixation estimations in

the oligotrophic waters (Montoya et al. 1996). However, at a

later stage, it was demonstrated that the N2 fixation rates

based on 15N2 tracer bubble could be 40% lower due to lack

of complete equilibration of the tracer gas in incubation

bottles within the incubation period (Mohr et al. 2010; Gandhi

et al. 2011; Großkopf and LaRoche 2012). And hence, the
15N2 bubble experiment underwent further amendments with

more elaborative steps such as the addition of tracer as filtered

sea water infused with tracer gas and measurement of 15N

content in the tracer infused water using a membrane inlet

mass spectrometer (Großkopf and LaRoche 2012). 

Remote sensing is another modern non-experimental tool

employed to examine the distribution of marine diazotrophs

on broad spatial and temporal scales (Hood et al. 2001;

Westberry et al. 2005). Particularly, Trichodesmium can be

detected efficiently at relatively high concentrations using

ocean color remote sensing (for example, SeaWiFS).
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Trichodesmium has a unique optical signal as it possesses

phycoerythrin and gas vesicles with a high reflectance

(Subramaniam et al. 1999) which allow for the effective

identification of its position in the upper water column. The

entry of remote sensing techniques to identify N2 fixers,

particularly Trichodesmium, was a revolutionary step for the

global ecosystem (Capone et al. 1997; Moore et al. 2002),

biological and coupled biological-physical models, (Hood

et al. 2001; Fennel et al. 2001; Coles et al. 2004; Hood et al.

2004), and algorithms using climatological satellite data

(Hood et al. 2001). Such models assisted in improving our

understanding of spatial and temporal variabilities and constraints

of marine N2 fixers, and their impact on the global C and N

cycles (Fennel et al. 2001; Moore et al. 2002).

6. N2 Fixation Rates and Budget

The availability of estimations of N2 fixation rates is not

splendid due to the lack of proper methodology in earlier

periods and difficulty in executing the 15N2 tracer techniques

in later periods. The geochemical estimates are the main

recorded N2 fixation rates from earlier periods. Initial studies

using the basic 15N2 tracer method by Richard Dugdale, John

Goering, and colleagues in the 1960s reported a substantial
15N atom % excess values (up to 0.9) in the isolated Trichodesmium

bloom patches in the northern Atlantic Ocean (Dugdale et al.

1964; Goering et al. 1966). Carpenter and Romans (1991)

reported that N2 fixation rates based on the extrapolation of

the Trichodesmium blooms that occurred in the tropical North

Atlantic Ocean ranged from 714–3571 mmol Nm−2d−1.

However, Trichodesmium-specific extrapolation could

lead to underestimation of N2 fixation rates since diazotrophic

activity is not limited to the Trichodesmium species, in fact,

other unicellular cyanobacteria can also contribute significantly

to the N budget (Montoya et al. 2004; Moisander et al. 2010;

Thompson et al. 2012).

After the implementation of the N* method, Michaels et

al. (1996) calculated a nitrogen excess generation rate of

51.8–89.6 Tg N y−1 in the top 1000 m of the Sargasso Sea.

Further, Gruber and Sarmiento (1997) reported a fixed nitrogen

excess rate of 28 Tg N y−1 for the tropical and subtropical

North Atlantic Ocean. According to the N* method in earlier

periods, the nitrogen excess obtained is attributed to N2

fixation, mainly by Trichodesmium (Gruber and Sarmiento

1997). Sipler et al. (2017) reported N2 fixation rates in the

ice-free coastal Alaskan Arctic (3.5–17.2 nmol N L−1 d−1)

and if the Arctic experiences widespread surface waters, N2

fixation could contribute up to 3.5 Tg N yr−1 to the total

Arctic nitrogen budget. Further low N2 fixation rates were

found in the southern Indian Ocean (24.6–47.1 µmol N m−2

d−1, Shiozaki et al. 2014a), and in cold Bering Sea waters (10

µmol N m−2 d−1, Shiozaki et al. 2017). The Indian Ocean has

been subjected to N2 fixation rate estimations using the direct

detection method since the 2010s and provided a significant

data set in the presence and absence of Trichodesmium

blooms (Gandhi et al. 2011; Bhavya et al. 2016; Kumar et al.

2017; Ahmed et al. 2017; Singh et al. 2019). Similarly, there

have been significant studies conducted in various parts of

the global oceans which are summarized in Table 1. 

The N2 fixation budget constructed is incomplete since the

available observational and experimental data are not sufficient

to document diazotrophic activities on a global scale due to

spatial and temporal constraints. Most N2 fixation estimates

reported are, in general, obtained from bulk unfiltered upper

ocean samples, including cyanobacteria and potentially other

diazotrophs. Landolfi et al. (2018) attempted to make a N2

fixation budget by compiling N2 fixation rates from various

oceanic regions by adding depth integrated estimates to

existing surface N2 fixation compilations (MARine Ecosystem

DATa) by Luo et al. (2012) (Table 2). They found that the

highest N2 fixation rate so far occurred in the tropical South

Pacific (638 ± 1689 µmol N m−2 d−1, 201 vertical sampling

profiles combined from Bonnet et al. 2009, 2015, 2017, 2018;

Shiozaki et al. 2013, 2014b; Berthelot et al. 2017). These

rates were significantly higher than those in the subtropical

North Atlantic (182 ± 479 µmol N m−2 d−1, 636 profiles;

Großkopf and LaRoche 2012; Singh et al. 2017) and North

Pacific (118 ± 101 µmol N m−2 d−1, 272 profiles; Shiozaki et

al. 2015a, 2015b, 2017). Surprisingly, the phosphate-rich

waters of the eastern South Pacific showed an average N2

fixation rate of 86 ± 99 µmol N m−2 d−1 (213 profiles; Löscher et

al. 2014, 2016; Knapp et al. 2016) which is relatively lower

in comparison with the above oceanic regions. Regular

estimations of N2 fixation in the global ocean in order to produce

a reliable N budget are not feasible. Since such measurements are

scant the available data on N2 fixation remain meagre and

highly variable in space and time. However, a few oceans

have been subjected to N2 fixation estimations with respect

to spatial, seasonal, or inter-annual variabilities. Among them,

the western tropical South Pacific showed a large spatio-

temporal variability. Similarly, the North Atlantic Ocean

also showed a variability due to the strong spatial and temporal
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gradients of physical forcing and associated environmental

factors (Mouriño-Carballido et al. 2011; Landolfi et al. 2016).

The variability observed in the North Pacific Ocean is mainly

linked to the changes in seasonal (Böttjer et al. 2017) and

mesoscale activity (e.g. Church et al. 2009). In comparison,

the variability in the Northern Indian Ocean, particularly the

Arabian Sea, is mainly due to seasonal changes and occurrence

of Trichodesmium blooms (Gandhi et al. 2011; Bhavya et al.

Table 1. Photic N2 fixation rates estimations from global oceans using different methodologies

Methodology
Depth integrated N2 fixation 

rates (μmol N m-2d-1)
Region References

Acetylene Reduction Assay 0.05–540 Subtropical Northeast Atlantic Carpenter and Price (1977)

Acetylene Reduction Assay 85 Subtropical North Pacific Ocean Karl et al. (1997)

Acetylene Reduction Assay 170 Central Arabian Sea Capone et al. (1998)

Acetylene Reduction Assay 239 Western tropical North Atlantic Capone et al. (2005)

Acetylene Reduction Assay 0.001–0.09 Subtropical Northeast Atlantic Benavides et al. (2011)
15N2-bubble and Aceteline Reduction Assay 73–90 Tropical Northwest Atlantic Falcon et al. (2004)

N* = [NO3

-
]-16×[PO4

3-
]+2.72 500–2500 North Atlantic Ocean Michaels et al. (1996)

N* = ([NO3

-]-16×[PO4

3-]+2.90)×0.87 197 North Atlantic Ocean Gruber and Sarmiento (1997)

DINxs = [NO3

-]-16×[PO4

3-] 70–208 North Atlantic Ocean Hansell et al. (2004)

DINxs = [NO3

-
]-16×[PO4

3-
] 45–259 Sargasso Sea Bates and Hansell (2004)

P* = -[PO4

3-]-[NO3-]/16 63 North Atlantic Ocean Deutsch et al. (2007)

P* = -[PO4

3-]-[NO3-]/16 151–178 North Atlantic Ocean Palter et al. (2011)

N* = [NO3

-]-14.63×[PO4

3-] 120 ± 9 Sargasso Sea Singh et al. (2013)

Extrapolation 714–3571 North Atlantic Ocean Carpenter and Romans (1991)

Extrapolation 160–430 North Atlantic Ocean Lipschultz and Owens (1996)
15N-nitrate and ammonium 4.5–68.1 Tropical Northwest Atlantic Goering et al. (1966)
15N2-bubble method 41 –93 Sargasso Sea Orcutt et al. (2001)
15N2-bubble method 520 ± 160 Eastern North Pacific gyre Montoya et al. (2004)
15N2-bubble method 126 ± 47 Timor-Arafura-Coral seas Montoya et al. (2004)
15N2-bubble method 3995 Arafura Sea Montoya et al. (2004)
15N2-bubble method 850 Western tropical North Atlantic Capone et al. (2005) 
15N2-bubble method 1.0–13 South China Sea Chen et al. (2008)
15

N2-bubble method 1.8–182 North Atlantic Ocean Moore et al. (2009)
15N2-bubble method 20–310 North Pacific Ocean Church et al. (2009)
15N2-bubble method 1.2–298 North Atlantic Ocean Fernandez et al. (2010)
15

N2-bubble method 28–142 Tropical Northeast Atlantic Turk-Kubo et al. (2011)
15N2-bubble method 100–34000 Eastern Arabian Sea Gandhi et al. (2011)
15N2-bubble method 56–60 Tropical Northeast Atlantic Turk-Kubo et al. (2012)
15

N2-bubble method 15–424 Eastern equatorial Atlantic Subramaniam et al. (2013)
15N2-bubble method 0–148 Eastern Tropical South Pacific Dekaezemacker et al. (2013)
15N2-bubble method up to 800 Off Peru-South Pacific Loescher et al. (2013)
15

N2-bubble method 0–90 North Pacific Ocean Schiozaki et al. (2014a)
15N2-bubble method 24.6–47.1 Arabian Sea Schiozaki et al. (2014b)
15N2-bubble method 6.27–16.6 Equatorial and Southern Indian Ocean Schiozaki et al. (2014)
15

N2-bubble method 0–23 Eastern Tropical South Pacific Knapp et al. (2016)
15N2-bubble method 174–238 Southeastern Arabian Sea Bhavya et al. (2016)
15N2-bubble method 10 Cold Bering Sea Schiozaki et al. (2017)
15

N2-bubble method 1140–8405 Eastern Arabian Sea Kumar et al. (2017)
15N2-bubble method 1300–2500 Eastern Arabian Sea Singh et al. (2019)
15N2-Tracer dissolution method 91 ± 4 Atlantic Ocean Groβkopf et al. (2012)
15

N2-Tracer dissolution method 1739 Arabian Sea-Trichodesmium bloom Ahmed et al. (2017)
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2016; Singh et al. 2019). 

It is highly important to expand the expedition boundaries,

beyond the classical understanding about N2 fixation. Recent

studies reported that all diazotrophs are not constrained by

light for their nitrogenase activity and they have been seen to

be active in various environments such as nutrient-rich, cold,

and/or dark ecosystems including coastal upwelling regions

(Sohm et al. 2011; Bhavya et al. 2016), eutrophic estuaries

(Bhavya et al. 2016), temperate coastal zones (Bentzon-Tilia et

al. 2015), and the deep ocean (Hewson et al. 2007; Hamersley

et al. 2011). To represent a considerable increase in the

potentially active oceanic areas of N2 fixation it would be

necessary to extend the latitudinal limits from the tropics

and subtropics to temperate waters and also conduct vertical

expansion of estimations to the mesopelagic (200–1,000 m)

and bathypelagic (1,000–4,000 m) ocean; however, this would

be an enormous undertaking. Although aphotic N2 fixation

rates are conceptually low when compared to surface activity

(< 1 nmol N L−1 d−1; Moisander et al. 2017), while considering

the volume of the deep ocean it would make a significant

addition to the global N2 fixation budget. A few studies

reported that depth-integrated aphotic rates N2 fixation rates

can represent 40–95% of the whole water column diazotrophic

activity (Bonnet et al. 2013; Rahav et al. 2013; Benavides et

al. 2015). Similarly, N2 fixation rates on the dark incubation

samples also showed significant rates close to that of light

incubation samples (Bhavya et al. 2016) and, hence, the

nocturnal activities of diazotrophs also should be considered.

Mohr et al. (2010) experimentally demonstrated that the

injected 15N2 gas bubble does not attain equilibrium with the

surrounding sample water during the short incubation period.

This lack of complete dissolution can lead to a 15N2 concentration

lower than the expected and underestimation of the actual

rates. They also found that the extent of underestimation varies

with the incubation time (Fig. 2); however, the amount of

injected gas is not seen as a major controlling factor. It is also

known that Trichodesmium releases recently fixed N in the

form of NH4

+ and dissolved organic nitrogen (Mulholland et

al. 2004, 2006). Such release can even exceed the net

accumulation of N in the biomass (Mulholland and Capone

2001) and might lead to underestimation of the N2-fixation

Fig. 2. Time-dependence of the equilibration of a 
15

N2 gas bubble
with seawater. This figure is obtained from Mohr et al. (2010).
Results are presented as a function of the time after bubble
injection (white symbols). (A) Measured dissolved 

15
N2

concentrations as percentage of calculated concentration
assuming rapid and complete isotopic equilibrium. (B)
N2 fixation rates by C. watsonii as percentage of the maximum
rate measured during the experiments. For comparison,
the addition of 15N2-enriched water to samples yielded a
constant 15N2 enrichment over 24 h (A, grey symbols) or
constant N2 fixation rates (B, grey symbols)

Table 2. The compilation of depth integrated marine N2 fixation rates from various experimental results quantified by Landolfi et al. (2018)

Oceanic region N2 fixation rates (µmol N m−2 d−1) Number of sampling profiles

Tropical South Pacific 638 ± 1689 201

Subtropical North Atlantic 182 ± 479 636

North Pacific 118 ± 101 272

Eastern South Pacific 86 ± 99 213
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rates measured if the incubation periods are longer. To resolve

this issue researchers usually follow an incubation period of

4 hours symmetric to the local noon (Gandhi et al. 2011). To

ensure the complete dissolution of 15N2 gas the sample bottles

have usually been subjected to gentle shaking more than 50

times. 

To construct an efficient N budget, the gain processes such

as fixed nitrogen inputs to the ocean include fluvial inputs,

atmospheric deposition and biological N2 fixation and loss

processes such as denitrification and anaerobic ammonium

oxidation (anammox) should be taken into account. The N

gain process all together account for up to 187–279 Tg N y−1

and the combination of denitrification (including sediment

burial) and anammox account for fixed nitrogen losses up to

260–475 Tg N y−1 (Benavides et al. 2018). However, the

incorporation of mesopelagic aphotic N2 fixation rates is

seen as significant for establishing a balance between N loss

and gain processes. To elaborate, the lower end range of N2

fixation rates in the mesopelagic zone recorded in the literature is

0.01–0.1 nmol N L−1 d−1 (Moisander et al. 2017) and the

estimated volume of the mesopelagic zone is 2.63 × 1017 m3

(Arístegui et al. 2005). In that case, the mesopelagic N2

fixation would range between 13 and 134 Tg N y−1 and the

addition of mesopelagic N2 fixation to fixed nitrogen inputs

creates a dramatic change in the budget from a gross of 183

to a surplus of 114 Tg N y−1 for N gain process (Benavides et

al. 2018). However, such extrapolations based on scant

observation data can produce ambiguities while demonstrating

at the same time that aphotic N2 fixation can make a significant

contribution toward the N budget (Zehr et al. 2008; Thompson

et al. 2012). 

In addition, recent findings by Großkopf and LaRoche

(2012) proved that the N2 fixation rates estimated using the
15N2 bubble method have been significantly underestimated

and the N budget estimated in this manner raises serious

concerns. Furthermore, Bombar et al. (2018) claimed that

filtration through conventional glass fiber filters in 15N2 tracer

assays may fail to capture all nitrogen-fixing Prokaryotes.

Dabundo et al. (2014) reported that there can be a significant

amount of N contamination in commercial 15N2 gas stocks

with 15N-labeled NO3

- and NH4

+ and can potentially affect

the N2 fixation measurements. Taking these factors to

account, it is highly important to sort out issues associated

with previous methods and minimalize the errors in those

data using new conventions derived employing newly

introduced techniques. 

7. Anthropogenic Influences and Climate Change

As marine N2 fixers are highly sensitive to the physico-

chemical variabilities of the environment in which they live,

it is obvious that climate change and anthropogenic activities

play a major role in altering the activities of marine diazotrophs.

Global warming greatly influences Arctic Ocean biogeochemistry

and as a result an unusual N2-fixing unicellular cyanobacteria

(UCYN-A)/haptophyte symbiosis was found in entirely

unexpected environments such as the northern waters of the

Danish Strait and the Bering and Chukchi Seas (Harding et

al. 2018). The increase in temperature leads to sea ice melt

which further lengthens the growing season for phytoplankton

and diazotrophs, which was not obvious in the polar oceans

previously. Recent research works reported that the UCYN-

A have existed in the Arctic as the environment has warmed

as a result of climate change and have the potential to begin

N2 fixation (Harding et al. 2018). On a different note, warmer

temperatures in the polar regions can potentially support

phytoplankton growth and they tend to remove C from the

ocean and ultimately the atmosphere (Thomas et al. 2012);

however, they need sufficient bioavailable N to support this.

The presence of UCYN-A may provide N requirement for the

phytoplankton to perform C sequestration as the influence of

global warming takes hold. The N2 fixation rate estimates

from the Arctic Ocean suggest that UCYN-A can independently

contribute approximately 2% of global N2 fixation (Harding et

al. 2018). The researchers hypothesize that the increase in

available N in the Arctic regions in the future could impact

biogeochemical cycling in the North Atlantic Ocean and

may lead to further shifts in ocean biochemical cycles

(Harding et al. 2018).

On the other hand, the anthropogenic CO2 added to the

atmosphere eventually enhances the oceanic partial pressure

of CO2 (pCO2) which, in turn, results in lowering the pH of

the sea water, which is known as ocean acidification

(Riebesell 2004). Phytoplankton, in general, invest a large

amount of energy in a carbon-concentrating mechanism

(CCM) by which it can accumulate sufficient CO2 by converting

HCO3

- to perform photosynthesis (Badger et al. 1998). Hong

et al. (2017) reported that ocean acidification inversely affects

the Trichodesmium in terms of their nitrogenase activity and

reduces the global N2 fixation rates. They also experimentally

demonstrated that there will be a significant decrease in N2

fixation by Trichodesmium with increasing pCO2, particularly

under the iron-limited conditions that prevail in large
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oceanic regions (Sohm et al. 2011). Similar effects could be

expected on other diazotrophs if they are also sensitive to the

higher pCO2; however, no experiment has been performed

to prove this hypothesis. 

8. Conclusions

In this review, we summarized major research works

conducted on biological N2 fixation in marine environments

which includes detailed analysis of the N2 fixation mechanism,

species, evolution of methodologies, and rates in the global

ocean regimes. We also discussed the challenges that exist in

constructing an N budget since the methodologies used to

estimate N2 fixation rates were methodologically different

and were often subjected to qualitative assessments and

amendments to achieve better results. Nevertheless, approaches

to constrain global rates of N2 fixation (experimental, geochemical,

and model-based estimates) – even though they contain their

own uncertainties and biases - have helped to develop an

understanding of diazotrophic activities around the globe.

However, there are many ambiguities pertaining to the

environmental and ecological interactions of diazotrophs,

which inhibit us from obtaining robust N2 fixation rate estimates

and predictions. To reduce the current level of uncertainty it

is highly important to amalgamate environmental factors

and evolving ecological interactions, both in the field and in

the laboratory. Such combinations would help in identifying

essential characteristics and ecological interactions experimentally

and form mechanistic based models to generate N2 fixation

rates close to the ambient values. 
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