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Abstract  The aim of this study was to elucidate the molecular
mechanisms underlying the thermal stress response in the spotted
sea bass (Lateolabrax maculatus). Spotted sea basses were exposed
to 4 different water temperatures (20, 22, 24, and 28°C) in increasing
increments of 2°C/h from 18°C (control) for different time periods
(0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle,
and gill) were isolated, and the levels of SOD, HSP90, and HSP70
mRNA were assessed. SOD mRNA expression was maintained at
baseline levels of control fish at all water temperatures in the liver,
while muscle and gill tissue showed an increase followed by a
decrease over each certain time with higher water temperature.
HSP90 mRNA expression increased in the liver at  24°C over
time, but maintained baseline expression at 28°C. In muscle, HSP90
mRNA expression gradually increased at all water temperatures,
but increased and then decreased at  24°C in gill tissue. HSP70
mRNA expression exhibited an increase and then a decrease in
liver tissue at 28°C, but mainly showed similar expression patterns
to HSP90 in all tissues. These results suggest the activity of a defense
mechanism using SOD, HSP90, and HSP70 in the spotted sea bass
upon rapid increases in water temperature, where the expression of
these genes indicated differences between tissues in the extent of
the defense mechanisms. Also, these results indicate that high water
temperature and long-term thermal stress exposure can inhibit
physiological defense mechanisms.
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1. Introduction

Rapid increases in water temperature beyond normal
tolerance ranges can cause a suite of physiological changes
in fish (Stacey 1984; Hochachka and Somero 2002; Johnston
2006). The global average water temperature has increased

by 0.6°C since the late 19th century, and is expected to
increase 2~4°C further by 2100 (Metz and Davidson 2007;
Pachauri and Reisinger 2007). This has necessitated various
studies on the effects of water temperature on a number of
fish species (Lushchak and Bagnyukova 2006; Healy and
Schulte 2012).

When fish undergo stress as a result of environmental
changes, reactive oxygen species (ROS) are generated inside
the body (Madeira et al. 2013), and the excessive production
of these causes structural changes in nucleic acids and proteins,
sometimes resulting in a loss of function and deleterious
physiological effects (Pandey et al. 2003). To eliminate these
ROS, antioxidative enzymes such as superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GPx)
are activated to compensate (Martínez-Álvarez et al. 2005).
SOD primarily hydrolyzes ROS into O2 and H2O2, and its
presence indicates oxidative damage caused by stress
(Kashiwagi et al. 1997; Lu et al. 2015).

When water temperature rises past the normally tolerable
range, heat shock proteins (HSPs) are synthesized to maintain
protein homeostasis (Sanders 1993). The various types of
HSPs are differentiated by molecular weight (Lindquist and
Craig 1988). Of these, HSP90—which is expressed in most
tissues—is involved in various physiological functions and
plays a protective role for proteins (Minami et al. 1991; Jakob
and Buchner 1994). HSP70 translocates proteins across
cellular membranes and protects neurons from apoptosis
(Mailhos et al. 1994; Feder and Hofmann 1999). Both of
these HSPs have been used as indicators for various stressors
(Cui et al. 2014).

Although numerous studies have shown the effects of
water temperature on fish growth (Bermudes et al. 2010),*Corresponding author. E-mail: knhan@inha.ac.kr
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maturation (Sudo et al. 2011), and food intake (Bogevik et al.
2010), studies analyzing thermal stress and the physiological
mechanisms underlying the response in fish are still lacking.
Therefore, our study aimed to examine the thermal stress
response of spotted sea bass (Lateolabrax maculatus) to
increased water temperature by analyzing the mRNA expression
of the antioxidative enzyme SOD, as well as the HSPs
(HSP90 and HSP70) in liver, muscle, and gill tissues. This
study provides basic data for understanding the temporal
characteristics of thermally induced defense mechanisms in
fish by analyzing the effects of thermal stress over time on
the expression of these genes.

2. Materials and Methods

Maintenance of fish and experimental conditions
Spotted sea bass individuals of 13.2 ± 0.5 cm in length and

22.9 ± 1.6 g in weight were maintained in tanks at 18°C for
an acclimation period of 30 days. Seawater was filtered
using a 10 μl-diameter filter and was ventilated once a day
via a peristaltic pump. Fish feed corresponding to 5% of fish
weight was provided twice per day.

To precisely maintain water temperature, chillers (SinSung-
1100, Sinsungcold Co., Pocheon, Korea) and heaters (OKE-
6422H, SEWON OKE Co., Busan, Korea) were installed in
all fish tanks used in the experiment. Temperature and dissolved
oxygen levels were measured every 30 s using an Oxygen
Optode 4531 (AADI, Bergen, Norway). Water temperature
deviated from the set temperature of 18°C by no more than ±
0.3°C. Four 300-l fish tanks were used for thermal stress
experiments, with each tank containing 20 fish. Fish were
starved for one day prior to experiments. The seawater in each
tank was ventilated once per day during the experimental
period, and salinity was maintained at 31.0 ± 0.5 and pH 7.7 ±
0.1. Dissolved oxygen levels were maintained at  6 mg/l for
all water temperatures to exclude the effects of hypoxia.

Thermal stress experiments
Prior to the experiment, two fish from each fish tank were

collected as a control. Then, the water temperature of all
tanks was gradually increased from the initial temperature
of 18°C by 2°C/h, to reach the experimental temperatures of
20, 22, 24, or 28°C. The 0 h of the experiment was designated
as the time at which each tank reached the experimental
temperature. Fish mortality was measured at 0, 6, 12, 24, 48,
72, and 96 h, and 2 surviving fish were randomly collected

from each tank. The collected individuals were anesthetized
using 100 mg/l of MS-222 (Ethyl 3-aminobenzoate
methanesulfonate, Sigma Aldrich Co., St. Louis, USA), and
liver, muscle, and gill tissues were excised. Isolated tissues
were placed in 1.5 ml tubes, fixed using DNA/RNA shield
(Zymo Research, Irvine, USA), and stored at −80°C prior to
subsequent analysis. This experimental process was repeated
three times, yielding a total of 60 fish per each temperature
treatment and 240 experimental fish in total.

Total RNA extraction and cDNA synthesis
Total RNA was extracted from the aforementioned tissues

using RNAiso Plus (TaKaRa Bio.; Tokyo, Japan) according
to the manufacturer’s instructions, and was stored at −80°C
prior to further analysis. cDNA was synthesized using the
PrimeScript 1st strand cDNA Synthesis Kit (TaKaRa Bio.,
Tokyo, Japan), and was stored at −20°C prior to further analysis.

Sequencing
To analyze the DNA sequence of SOD, HSP90, HSP70,

and β-actin, degenerate primers were designed and PCR
amplification was performed. Degenerate primers were
designed for each gene using the DNA sequences obtained
from GenBank (Table 1). After aligning the sequences of
each gene, primers were generated using regions with the
highest homology. PCR products resulting from degenerate
PCR were used to verify the sequences of SOD, HSP90,
HSP70, and β-actin.

Real-time PCR analysis of mRNA expression
Real-time RT-PCR was conducted to quantify mRNA

expression in each sampled tissue in response to thermal
stress. Primers for SOD, HSP90, HSP70, and β-actin were
generated using partial sequences of the genes generated by
sequencing (Table 2).

To amplify specific products, SYBR® Premix Ex TaqTM

(TaKaRa) was used in the following thermal cycling program:
95°C for 30 s; 40 cycles of 98°C for 5 s, 60°C for 30 s; 95°C
for 15 s, 60°C for 30 s, and 95°C for 15 s. A TaKaRa Thermal
Cycler Dice® TP815 (TaKaRa) was used for the amplification
and detection of SYBR® Green. Real time RT-PCR measurements
were displayed as threshold cycle (CT) values and used to
calculate ΔCT. Gene expression levels were measured as a
relative value in comparison to the expression levels of β-
actin, a housekeeping gene in spotted sea bass, and 2– ΔΔCT

was used to determine the relative level of gene expression
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(Livak and Schmittgen 2001).

Statistical analysis
One-way ANOVA was used to examine the differences

amongst the values obtained from the thermal stress experiments,
followed by post hoc analysis using Tukey’s multiple range
test in SPSS version 18.0 (IBM Corp., Armonk, NY, USA)
with p < 0.05 regarded as significant.

3. Result

Mortality
Mortality at each water temperature is shown in Table 3.

All fish survived at 20°C, but mortality increased as the
water temperature rapidly increased over a short period of
time, and all fish died at 28°C within 24 h. Based on these
results, samples were collected from each water temperature
before mortality reached 100 %, and mRNA levels of SOD,
HSP90, and HSP70 were analyzed.

SOD mRNA expression
SOD mRNA expression levels in each tissue are shown in

Figure 1. In the liver, SOD mRNA expression decreased
approximately 0.25~0.5-fold over time at all water temperatures
in comparison to the control, but generally exhibited similar
expression levels to the baseline of control fish (p < 0.05;
Fig. 1A).

Table 1. List of degenerate PCR primers used in this study

Primer name Sequence (5’–3’) Accession number for degenerate primer design
SOD_D_F GTG GGT TGA AAC TAC TGC AA AF329278

AJ000249
SOD_D_R TGG CAA CAT TAT CTG CTC CT AY613390

KJ558392
HSP90_D_F CCC TCA TCG ACA CTG GAA TC AB598553

EU099575
HSP90_D_R TCA GGT GCA GGA TGA TCT TT JQ929760

KJ683738
HSP70_D_F ATC ATC GCC AAC GAC CAG GG AF053059

FJ429326
HSP70_D_R GTT GTT GTC CTT GGT CAT GG KM102660

KT334554
β-actin_D_F CGA GCT GAG AGT TGC AC AY148350

AY491380
β-actin_D_R CAA CGG AAC CTC TCA TTG C HE57767

JN226150

Table 2. List of real-time PCR primers used in this study

Gene name Primer name Sequence (5’–3’)

SOD
SOD_R_F GGT TTC CAT GTC CAT GCT TT
SOD _R_R CAT CAT TAG GAC CGG CAT GA

HSP90
HSP90_R_F ACA CAA CGA TGA TGA GCA GT
HSP90_R_R TCA GGT GCA GGA TGA TCT TT

HSP70
HSP70_R_F CCC AAG GTC CAA GTT GAG T
HSP70_R_R AGG TAG GCT TCA GCA ATC TC

β-actin
β-actin _R_F AGG AGA AGC TGT GCT ATG TC
β-actin _R_R AAT GGT GAT GAC CTG TCC G

Table 3. Mortality in response to thermal stress over time in the
spotted sea bass

 Temp. (°C)
Time (h)

Mortality (%)
20 22 24 28

0 0 0 0 0
6 5

12 5 7 50
24 13 33 100
48 28 100
72 40
96 100
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In muscle tissues, SOD mRNA expression increased 9.9-
fold 48 h after water temperature increased to 22°C, then
rapidly decreased. At 24°C, expression increased 8.2-fold at
12 h and then decreased. In contrast, expression was maintained
at baseline levels at 28°C (p < 0.05; Fig. 1B).

In gill tissues, SOD mRNA expression rapidly increased
beginning at 0 h of all experimental threshold temperatures.

At 20°C and 22°C, SOD expression respectively significantly
increased 5.2~10.3-fold over time. In contrast, at 24 and
28°C, SOD expression increased 14.3-fold and 21.7-fold,
respectively, and subsequently decreased (p < 0.05; Fig. 1C).

HSP90 mRNA expression
HSP90 mRNA expression levels in each tissue are shown

Fig. 1. Expression patterns of SOD mRNA in liver (A), muscle (B), and gill (C) in spotted sea bass, Lateolabrax maculatus, after
exposure to 20, 22, 24, 28°C for 0, 6, 12, 24, 48, 72, or 96 h. The values were calibrated using β-actin as an internal control. The
values shown are the mean ± SE. Values with dissimilar letters indicate significant differences (p < 0.05) at the indicated time
points, but at the same temperature
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in Figure 2. In liver tissue, expression gradually increased
4.1~5.1-fold over time at water temperatures of  24°C in
comparison to the control. However, expression increased
1.9-fold at 0 h at 28°C, but there were no significant differences
over time (p < 0.05; Fig. 2A).

In muscle tissue, HSP90 expression gradually increased
5.0~8.8-fold, with all increases statistically significant at all

water temperatures and time points (p < 0.05; Fig. 2B).
In gill tissues, overall expression levels increased approximately

2.7-fold and 3.0-fold at 20 and 22°C, respectively. In contrast,
HSP90 expression increased approximately 6.4-fold and
10.9-fold at 24 and 28°C, respectively, and subsequently
decreased (p < 0.05; Fig. 2C).

Fig. 2. Expression patterns of HSP90 mRNA in liver (A), muscle (B), and gill (C) in spotted sea bass, Lateolabrax maculatus, after
exposure to 20, 22, 24, 28°C for 0, 6, 12, 24, 48, 72, or 96 h. The values were calibrated using β-actin as an internal control. The
values shown are the mean ± SE. Values with dissimilar letters indicate significant differences (p < 0.05) at the indicated time
points, but at the same temperature
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HSP70 mRNA expression
HSP70 mRNA expression in each of the three tissues is

shown in Figure 3. In the liver, expression gradually increased
4.7~5.2-fold over time at water temperatures of  24°C in
comparison to the control. However, HSP70 expression increased
3.2-fold at 0 h at 28°C, and subsequently decreased (p < 0.05;
Fig. 3A).

In muscle, HSP70 expression gradually increased significantly
2.2~3.4-fold over time at all water temperatures (p < 0.05;
Fig. 3B).

In gill tissue, HSP70 expression displayed an overall
increase of approximately 3.0-fold and 7.1-fold at 20 and
22°C, respectively. In contrast, HSP70 expression increased
approximately 6.4-fold and 10.9-fold at 24 and 28°C,

Fig. 3. Expression patterns of HSP70 mRNA in liver (A), muscle (B), and gill (C) in spotted sea bass, Lateolabrax maculatus, after
exposure to 20, 22, 24, 28°C for 0, 6, 12, 24, 48, 72, or 96 h. The values were calibrated using β-actin as an internal control. The
values shown are the mean ± SE. Values with dissimilar letters indicate significant differences (p < 0.05) at the indicated time
points, but at the same temperature
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respectively, and subsequently decreased (p < 0.05; Fig. 3C).

4. Discussion

In this study, we examined SOD, HSP90, and HSP70
mRNA expression in sea bass exposed to thermal stress. Thermal
stress in fish induces membrane damage and enzyme
inactivity, and generates ROS that result in DNA damage
(Nordberg and Arnér 2001; Meng et al. 2014). SOD is an
oxygen-scavenging enzyme that plays a role in eliminating
ROS formed in the body, and is an indicator of oxidative
damage caused by environmental changes (Kashiwagi et al.
1997; Lu et al. 2015). Our results show that SOD expression
increases over time at high water temperatures in muscle
and gill tissues, indicating activation of the ROS eliminating
mechanism. These results are similar to those obtained in a
previous study reporting SOD activity increase in black
porgy exposed to high water temperature (An et al. 2010).
However, SOD expression in liver tissue was maintained at
baseline levels, suggesting that ROS did not accumulate in
the liver of the spotted sea bass in response to thermal stress.

Weyts et al. (1999) reported that resistance to a given
stressor increases as an initial response, but weakens as the
stress persists. In the present study, mRNA expression of
SOD increased initially in muscle and gill tissues, then decreased
under sustained exposure to increased water temperatures.
Such prolonged heat stress is likely to accelerate DNA
damage due to ROS because the SOD defense mechanism
has reached its maximum capacity. In addition, SOD expression
in gills increased from 5.2 to 21.7-fold as water temperature
increased, exhibiting the highest expression of all the tissues
analyzed in this study. In general, oxygen consumption rates
increase in response to increased water temperature in fish
(Wuenschel et al. 2005). In the present study, it is likely that
the increased metabolism of gill tissues, which is responsible
for the direct exchange of sea water and oxygen, affected the
production of ROS. 

When fish undergo stress as a result of environmental
changes, protective proteins are synthesized within the body
(Iwama et al. 1999) to guard cells against secondary shock
caused by stress (Ciavarra and Simeone 1990; Hightower 1991).
HSP90 is a stress protein that accounts for approximately
1~2% of all cellular proteins (Pratt 1997), and assists
cortisol—which provides energy to cells—by transmitting
signals from glucocorticoid receptors (Pratt 1997). Our results
showed that HSP90 expression increased with increased

water temperature and exposure time in both liver and gill
tissues. This is likely because the secretion of cortisol increased
in order to maintain cellular homeostasis (Holloway and
Leatherland 1997; Ackerman et al. 2000), thereby leading to
the increased expression of HSP90 mRNA to assist with this
function. On the other hand, HSP90 mRNA expression did
not increase over time at the maximum water temperature
(28°C) in the liver, and decreased after 6 h or 12 h at   24°C
in gill tissue. This pattern is similar to changes in expression
of HSP90 observed in pufferfish exposed to high temperature
(Cheng et al. 2015). This result suggests that the sustained
exposure to elevated water temperature reduces the supply
of energy to cells. In muscle, HSP90 mRNA expression
increased over time at all water temperatures, which is
consistent with the results of a study by Liu and Steinbacker
(2001) indicating that exposing muscle cells to heat results
in upregulation of HSPs. Because L. maculatus is a fast-swimming
fish, the energy supply to muscle cells in response to stress is
likely to increase to a greater extent than in other tissues.
HSP70 plays an important role in the maintenance of intracellular
homeostasis via protein transport across the cellular membrane
and protein synthesis (Moseley 1998). HSP70 is also known
to be sensitive to environmental stressors and is associated
with fluctuations in water temperature, and therefore protects
cells from stress-induced apoptosis (Mosser et al. 1997;
Feder and Hofmann 1999; Mallouk et al. 1999). Moreover,
HSP70 protein content in any given tissue may differ from
its mRNA level (Poltronieri et al. 2007), but since mRNA is
a more sensitive indicator for thermal stress, the analysis in
the present study was based on mRNA level (Lund et al.
2003).

Our study results show that HSP70 expression increased
concomitantly with increased water temperature and exposure
time in both liver and gill tissues. This is likely a result of the
apoptotic defense mechanism triggered by increased water
temperature. In contrast, the extent of the increase in HSP70
expression was relatively low in the liver at 28°C in comparison
to lower water temperatures, while its expression decreased
after 6 h or 12 h at  24°C in the gill. This is consistent with
previously-published results showing that as the water
temperature increased, the expression of HSP70 in Florida
pompano initially increased, then decreased (Cardoso et al.
2015). Hochachka and Somero (2002) reported that proteins
are destroyed and their levels decline concomitantly in
environments of elevated water temperature, which might
explain the low levels of HSP70 expression observed in our
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study. In muscle tissue, HSP70 mRNA expression increased
at all water temperatures, suggesting that the apoptotic response
was active in muscle tissues in response to thermal stress.

In the present study, HSP90 and HSP70 exhibited similar
expression patterns. This is likely because HSP90 and HSP70
simultaneously bind to HOP (the HSP70/HSP90 organizing
protein) and are both essential proteins for the activation of
hormone receptors in the nucleus (Arbeitman et al. 2000;
Wegele et al. 2004). Overall, maximum gene expression levels
were higher in gills than in other tissues at high water
temperatures. A study by Mallatt (1985) found that the gill
was more sensitive than other tissues to environmental changes,
which is consistent with our results. Additionally, because
the gill is in direct contact with sea water, it is likely to be
acutely damaged by water temperature to a greater extent
than other tissues. SOD showed a particularly high increase
in expression in the gill in comparison to HSP90 and HSP70.
Therefore, we suggest that SOD expression in the gills may
be used as baseline data for analyzing acute thermal stress.

In summary, increased water temperature affects the expression
of SOD, HSP90, and HSP70 mRNA expression in L. maculatus.
There were tissue-specific differences in SOD, HSP90, and
HSP70 expression, indicating that the thermal defense mechanism
of the spotted sea bass differs between tissues. 

Climate change has resulted in water temperature increase
throughout much of the world (Metz and Davidson 2007),
and some local areas are projected to experience rapid
increases in the near future (Bamber and Seaby 2004). As
increased water temperatures trigger physiological changes
in fish, molecular approaches are invaluable for elucidating
the underlying mechanisms of such phenomena (Clotfelter
et al. 2013; Cheng et al. 2015). Hence, the results obtained from
this study can be used as valuable basic data for understanding
not only the effects of increased water temperature on fish,
but also the defense mechanisms employed by fish to combat
thermal stress.
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