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Abstract — The fossil diatom assemblage record from two sediment
cores obtained from the Ulleung Basin, East Sea, Republic of
Korea, revealed changes in the diatom assemblage zones in PG1
and PD3 core samples. The two sediment cores were 5C'* dated
and approximately represented the late Pleistocene—Holocene. The
analysis of age zones in the PG1 core and PD3 core was assessed
based on the frequency of variations, and occurrences of
biostratigraphical fossil diatom species. During the Last Glacial
Maximum (LGM), the sea level was lower than that at present and
the Ulleung Basin became isolated from the Pacific Ocean. As a
result, there would have been a limited Tsushima Warm Current
(TWC) influence, and salinity would have decreased resulting in
increased freshwater and coastal diatoms. The distribution pattern
of diatoms presented in the cores was associated with changes in
water temperature and salinity and the adding of terrigenous
material brought about by the input of freshwater. Changes in the
abundance of a tychopelagic diatom, Paralia sulcata, reflected the
effect of the water currents. Diatom temperature (Td) values and
the ratio of centric/pennate diatoms provided evidence of limited
influences of the TWC and freshwater inflow. It is thought that all
assemblage zones were influenced by the TWC, which had an important
effect on the distribution and composition of fossil diatoms.

Keywords — freshwater, fossil diatom, Last Glacial Maximum,
Tsushima Warm Current, Ulleung Basin

1. Introduction

Marine sediment cores are a fundamental source of data
regarding geological history and paleoclimatic changes
(Rothwell and Rack 2006); therefore, it is necessary to

*Corresponding author. E-mail: jhlee@smu.ac.kr

recover useful paleoenvironmental data (Haschke 2006).
Diatoms are the dominant marine primary producers and
play an important role in the carbon, silica, and nutrient
budgets of the ocean (Gebiihr et al. 2009). In particular, they
are sensitive to changes in physical and chemical conditions.
Fossil diatoms are created through a process of sedimentation
and fossilization of planktonic diatoms. They are particularly
suitable for paleontological studies and have been used widely as
paleoenvironmental indicators, including species compositions
and relative abundance of the main indicator taxa (Reid et al.
1995). Thus, fossil diatoms provide a valuable tool for studying
water quality and reconstructing past environments both in
freshwater (e.g., Marciniak 1981; Flower et al. 1997; Witofl
and Witkowski 2003) and marine (e.g., Witkowski 1994;
Andreen et al. 2000) ecosystems.

The East Sea is located in the Pacific Northwest, between
the Asian continent and the waters around Japan. The East
Sea surrounding Korea is more than 2,000 m deep, owing to
the topography of the seabed North of the Japan Basin, East
of the Yamato Basin, and in the western Ulleung Basin. The
Ulleung Basin is a deep, bowl-shaped, back-arc basin bound
by the steep continental slope of the eastern Korean Peninsula
(Lee and Suk 1998), and it was formed by an extension of the
continental crust, accompanied by a progressive southward drift
of the Japanese Arc during the late Oligocene to early Miocene
(Yoon and Chough 1995). The modern oceanography of the
Ulleung Basin is largely affected by the Tsushima Warm
Current (TWC) in the Kuroshio Current (western boundary
current). The warm-water and high salinity of the TWCis a
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major source of the surface water supplied to the southern
East Sea (e.g., Moriyasu 1972; Park et al. 2000). However,
the surface water of the Ulleung Basin is cold with a low salinity
resulting from the Oyashio Cold Current, originating in the

Bering and Okhotsk Seas (Yasuda et al. 1996; Ryu et al. 2005).
Surface sediments in the southern Ulleung Basin are covered by
fine clay, derived mostly from the Nakdong River in Korea
and Yangtze River (Changjiang) in China (Cha et al. 2007,
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Fig. 1. Maps of the study area. a: Location map showing the study area (square box) in the Ulleung Basin, East Sea with simplified
dominant currents (modified from Ryu et al. 2005). The Tsushima Warm Current (white arrow) indicates a high salinity, warm
current originating from the equatorial region of the western Pacific Ocean. The Oyashio Cold Current (gray closed arrow)
represents a low salinity, cold current from the Bering Sea. A black closed arrow indicates a cold long-shore current along
castern Russia and the Korean Peninsula. b: Inset figure shows the sites of piston cores PG1 and PD3 in the Ulleung Basin, East Sea
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Lim et al. 2011). However, the paleoenvironmental conditions of
the Ulleung Basin, such as current inflow, current circulation, sea
level fluctuations, and climate change, changed dramatically
during the late Pleistocene to Holocene (Oda et al. 1991).
Several paleoceanographic studies have discussed the effect
of current inflow during and since the last glacial period in
the region (Oba et al. 1991; Ujiié et al. 1991, 2003; Xu and
Oda 1999; Jian et al. 2000; Lim et al. 2006); however, these
studies are limited to the historical effect of current and sea
level fluctuations. The objective of the present study is to
interpret the paleoenvironments of the Ulleung Basin of
South Korea during the late Pleistocene and Holocene based
on changes in fossil diatoms and geochemical factors from
two sediment cores, PG1 and PD3.

2. Material and Methods

Collected core samples, geochemical factor, and age analysis

Two sediment cores were collected using a piston core
during a cruise of r/v “Eardo” organized by the Korea
Institute of Ocean Science and Technology (KIOST), in July
2012 (Fig. 1, Table 1). Core PG1 (length of 3.95 m) was
taken from the outer part of the Ulleung Basin at a water
depth of 1,445 m, whereas core PD3 (length of 3.46 m)
was collected outside Ulleung Basin at a water depth of
2,190 m.

Total nitrogen (TN), Total carbon (TC), and Total organic
carbon (TOC) contents of the powdered sediments were
measured using a Carlo Erba Elemental Analyzer 1108 (CE
Instruments, Milan, Italy). The C:N ratio is calculated by the
weight ratio of total organic carbon to total nitrogen. Total
inorganic carbon contents were measured using a carbon
dioxide coulometer (model CM 5014; UIC Inc., Illinois,
USA). Total inorganic carbon contents were converted to
calcium carbonate (CaCO,) content as a weight percentage
using a multiplication factor. The carbonate content was
calculated using the equation: CaCO, (%) = (TC-TOC) x
8.333 (Stein et al. 1994).

Accelerator mass spectrometry (AMS) '*C dating was
used on mixed foraminifer species selected from the two
cores. Selected carbon samples were dated by Beta Analytic

Table 1. Information of location

Inc. (Miami, FL, USA). In Fig. 2, AMS "*C ages are listed
together with the photographs of the two cores and characteristic
layers. All dates were calculated using the Libby half-life of
5,568 years and a reference of 1950 A.D.

Fossil diatom analysis

All of the core samples collected at 10 cm intervals (38
samples in PG1, 36 samples in PD3) weighed approximately
2 g. Collected samples were prepared using the following
method (Battarbee 1986): 1 g dry sediment was treated with
10 mL 10% HCl and 50 mL 30% H,0, to remove the calcareous
and organic matters. The residue was washed repeatedly
with distilled water until clean. The fossil diatoms were
quantitatively analyzed using a light microscope (LM, Axio
Imager A2, Carl Zeiss, Jena, Germany) at a magnification of
% 400 or 1,000. A total of 4,000 cells diatom frustules were
counted in each sample (excluding resting spores). Diatom
fine structure was observed using a scanning electron
microscope (SEM, JEOL, JSM-7600F, Tokyo, Japan) on a
prepared sample. The dominant species selected in the fossil
diatom samples appeared in high percentages (> 2%) in
the core sediment samples. Fossil diatom diversity was
calculated using a Shannon’s H' Index (Shannon and Weaver
1949).

Td values and C:P diatom ratio

Td (diatom temperature) values proposed by Kanaya and
Koizumi (1966) have been adopted in this study. The Td
value is defined as Td = Tw / (Tw + Tc). “Tw’ is the number
of warm-water species and ‘Tc’ is the number of cold-water
species. The Td value ranged from 0 to 1: Td values 0.5-1,
warm biofacies; Td values 0.2—0.5, temperate biofacies; and
Td values 0.0-0.2, cold biofacies. Temperate to warm- and
cold-water species used for Td analyses have been provided
in Appendix Table 1.

The centric:pennate ratio (C:P ratio), which is the ratio of
the number of the centric (usually planktonic species) to
pennate (usually benthic species) diatoms, can be useful as
an indicator of the relative availability of planktonic and
benthic habitats (Cooper 1995a, 1995b).

Core code Collection date Collection depth (m) Core length (m) Latitude (N) Longitude (E)
PG1 Jul. 2012 1445 3.95 36°05'54.8" 130°05'02.0"
PD3 Jul. 2012 2190 3.46 36°59'52.8" 130°59'30.0"

v Springer



348 Yun, S. M. et al.

Depth Age
(cm) Core PG1 (kyn) Core PD3
0 —
100
Ca. 9.3 kyr
— |.\(Ulleung—Oki tephra layer)
_— _"10.4\
kyr BP \
N
== o= 28.8 kyr BP \
T
N
200 \ ®
@-—--38.9kyrBl: \ ®
@- = 435 \‘ ' N
kyr BP \
AY
\
® \
\
300 Y
MS G
395
[ 11
MS G
core PG1 and PD3 core PG1 and PD3
characters legend

- Greenish gray mud

- Tephra layer (Ulleung-Oki tephra) I:l - Light greenish gray mud

@ ’ @ ’ @ ’ @ - - Greenish gray mud
- Greenish gray mud

- Foraminifer layer
@ - Tephra layer
@ - Greenish gray mud
- Tephra layer (Ulleung-Oki tephra)
- Foraminifer layer
@ Greenish gray mud
-F inifer 1
oraminfler fayer - - Dark greenish gray mud

- Greenish gray
and dark greenish mud contacts

Fig. 2. Photographs of two cores (PG1 and PD3) showing the representative core sediment section, including Ulleung Basin, and
characteristic layers (M: mud; S: sand; G: gravel)
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3. Results

Core profile and fossil diatoms in core sediments

Core PG1 mostly consisted of greenish-gray and dark
greenish-gray mud. The 160-200 and 267-286 cm in the
lower part of the core was mixed dark greenish-gray and
greenish-gray mud. The 300-395 cm depth consisted of light
greenish-gray mud. Core PD3 also mostly contained a distinct
dark greenish-gray mud layer. The 310-346 cm depth consisted
of greenish-gray sediment. However, we confirmed that
326-328 cm depth was dark greenish-gray mud.

Total fossil diatom abundance of PG1 and PD3 cores
ranged from 1.1 x 10*t0 3.9 x 10*and 1.3 x 10*to 4.1 x 10*
cells/g, respectively (Fig. 3). In core PG1, the highest diatom
concentrations were at 2—4 and 102—104 cm, and the lowest
diatom concentrations were at 152—-154 and 252-254 cm
(Fig. 3). In core PD3, the highest diatom concentrations
were at 72-74 and 162-164 cm, and the lowest diatom
concentrations were at 252-254 cm (Fig. 3). A total of 78
diatom species (43 centric and 35 pennate diatom species) in
PG1 and 80 diatom species (47 centric and 33 pennate
diatom species) in PD3 were identified and their frequency
was expressed as an individual. Centric diatom species
dominated the two sites. The number of species present in
PG1 and PD3 were 11 (at 252-254 cm) to 33 (at 32-34 cm)
and 16 (at 252-254 cm) to 36 (at 72—74 cm), respectively.
The number of species increased toward the top. Diatom
species diversity ranged from 1.8t03.2in PGl and2.0to 3.1
in PD3. Diversity of diatom taxa was high in the PD3, and
the fossil diatoms were well preserved.

Change of fossil diatom composition according to the age
zone

Radiometric age was analyzed using foraminifera in core
sediments, and the relative ages were inferred by calculating
the absolute age of the tephra layer (113—115 cm depth in
PG1, 171.5-174 cm depth in PD3). The age results are as
follows: in the PG1 core, sections at depths of 132-134,
156158, 212-214, and 246248 cm indicated 10.4, 28.8,
38.9,and 43.5 kyr BP, respectively. In the PD3 core, sections
at depths of 252-254 and 313-315 c¢m indicated 28.8 and
38.9 kyr BP, respectively (Fig. 3). Sedimentation rates in
PG1 were greater than those in PD3. These results were
confirmed by the shallower water depth of PG1 than of PD3.
The sedimentary sequences of PG1 and PD3 showed continuous
Late Pleistocene, Last Glacial Maximum (LGM), and

Holocene records (Figs. 6 and 7).

Three-age zones were established from the whole section
ofthe PG1 and PD3 core (Fig. 3). The Late Pleistocene zone
(373-162 cm, approximately 126—11.7 kyr) of the core PG1,
was characterized by the dominance of Paralia sulcata,
Coscinodiscus asteromphalus, and C. centralis, with the
lowest abundance, and slightly lower number of species and
species diversity than other age zones. Navicula directa
occurred atarelatively high abundance (approximately 10.0% at
182—194 cm depth). In addition, freshwater species (e.g.,
Cyclotella spp.) and Thalassionema frauenfeldii showed a
relatively higher abundance than the other age zones. The
LGM zone (154-142 cm, approximately 26.5—14.6 kyr) was
dominated by the P, sulcata, C. asteromphalus, C. centralis, and
Thalassiosira mala. However, frequencies of P. sulcata
decreased in the Late Pleistocene zone when other species
increased. In this zone, the abundance appeared to increase
and the number of species and species diversity decreased
slightly in comparison to the Late Pleistocene zone. Since
during the Last Glacial Maximum much of the world was cold
and dry with frequent storms and a dust-laden atmosphere,
this period was not suitable for life in aquatic environments.
The Holocene zone (1342 cm, approximately 11.7 kyr—
present) showed a sharp increase in abundance, number of
species, and species diversity, but was characterized by
relatively low frequencies of P sulcata (4.3% at 11-13 cm depth)
as well as a decrease in the number of Thalassiosira, and was
characterized by relatively high frequencies of Actinocyclus
octonarius (10.9% at 62—-64 cm depth, 12.0% at 32-34 cm
depth and 17.1% at 2—4 cm depth) and Th. frauenfeldii
(13.3% at 82—84 cm depth).

In the Late Pleistocene zone (346252 cm) of the core
PD3, diatom abundance, number of species, and species
diversity were not different from those in the LGM zones,
and this zone was characterized by relatively higher frequencies of
P, sulcata (up t0 50.1%). Atadepth of 313-315 cm, Navicula spp.
(up to 6.3%) was abundant, but was generally small in size
and poorly preserved. In addition, Thalassiosira curviseriata was
abundant at 252254 cm depths (10%). The LGM zone (252—182
cm) had lower abundance, number of species, and species
diversity than Holocene zones, and was dominated by relatively
high frequencies of P. sulcata (up to 34.7%). However,
frequencies of P. sulcata decreased more abruptly than in the
Late Pleistocene zone, and other dominant species increased.
This zone was characterized by the dominance of benthic
diatoms, including Th. frauenfeldii (1.7-7.5%) and Th.
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nitzschioides (2.9—10.9%). The Holocene zone (182-2 cm)
showed the highest abundance, number of species, and
species diversity. P. sulcata was the dominant species, and
its abundance peaked at depths of 172—174 cm (43.4%).
Moreover, this zone was characterized by relatively high
frequencies of C. centralis (10.7% at 62—64 cm depth and
10.7-13.2% at 34-3 cm depth) and Th. nitzschioides (9.1—
13.3% at 154—132 cm depth).

Diatom temperature (Td values) and centric:pennate (C:P)
diatom ratios in Ulleung Basin

Temperate- to warm- and coldwater species used for the
Td analysis are included in Supplemental Table 1. The Td
values generally increased upwards in PG1 (Fig. 3). The Td
value ranged from 0.2 to 1.0, increasing in the 91-93, 132134,
152-154, and 272-274 cm intervals; whereas at the 111-113,
351-353, and 361-363 cm intervals the Td values decreased
abruptly owing to the decrease in warmwater species (e.g.,
C. centralis, T. mala, and Th. frauenfeldii). In PD3, Td values
also generally increased upwards, and ranged from 0.5 to
1.0; they increased at the 12—14, 62—64, 122—124, and 162—
164 cm depths, and, were lowest at the 273—275 cm interval
owing to abundance of coldwater species (e.g., 4. curvatulus).

InPG1, the average C:P ratio ranged from 2.1 to 15.7 (Fig.
3). In PD3, the C:P ratio ranged from 1.7 to 15.1. The C:P
ratio increased significantly in the two cores, with dramatic
changes in 122-142, 72-74 cm of PG1, and 72—74 cm in
PD3, respectively (Fig. 3). The ratio decreased reaching a
minimum at 11-13 cm in PG1. The minimum was recorded
at 242-244 cm in PD3.

Geochemical factors

TC of PG1 and PD3 ranged from 1.2 to 5.7% and 0.8 to
3.9%, respectively (Fig. 3). TOC of PG1 and PD3 ranged
from 1.1 to 3.9% and 0.7 to 3.3%, respectively. TN of PG1
and PD3 ranged from 0.1 to 0.5% and 0.1 to 0.4%, respectively.
CaCO,; of PG1 and PD3 ranged from 0.1 to 18.6% and 0.1 to
14.4%, respectively (Fig. 3). In PG1, TC, TOC, and TN contents
showed wide fluctuations, particularly below a core depth of
approximately 240 cm. CaCO, contents peaked at 240 cm
(18.5%). In PD3, TC, TOC, and TN contents peaked at 180 cm
and steadily decreased from the 180 to 30 cm layer. CaCO,
contents peaked at 200 cm depths (14.4%), and decrease
towards the surface. C:N ratios of PG1 and PD3 ranged from
7.2t0 10.1 and 4.4 to 8.6, respectively.

2\ Springer

4. Discussion

The Ulleung Basin in the East Sea was possibly characterized
by low sea surface salinity during the LGM. The low sea
surface salinity is affected by large amounts of freshwater
input (Tada 1999) from the adjacent river systems (e.g.,
Yellow, Nakdong, and Seomjin Rivers) (Oba et al. 1991;
Park et al. 2000; Lee and Nam 2003, 2004). The sea level
drop during the last glacial period exposed most parts of the
Yellow Sea, and the coastline moved southward, shifting the
Yellow River mouth (Oba etal. 1991; Tada 1999). Freshwater
from the Yellow River might have flowed into the East Sea
via the Korea Strait. As a result, this water could have mixed
with the paleo-Tsushima Current and freshwater derived from
the adjacent river systems during the LGM (Obaet al. 1991;
Park et al. 2000; Lee and Nam 2003).

In the present study, the dominant species was P. sulcata.
Paralia sulcata is very useful for inferring past aquatic conditions,
because it is tychoplanktonic with abundant populations and
a cosmopolitan distribution, and is more resistant to dissolution
than other diatom species. Paralia sulcata is a widely distributed
diatom in fossil marine sediments (Zong 1997; Ryu et al. 2005,
2008). This species was first recorded in the late Cretaceous
(Girard et al. 2009) and provides the oldest diatom fossil
record in the present study. Paralia sulcata prefers a low-
salinity environment, low light (Blasco et al. 1980), warm
water, upwelling (Lange et al. 1998), and is especially abundant in
fine-grained, organic rich sediments (Zong 1997). According to
Zong (1997), the high abundance of P. sulcata in basins
(e.g., Ulleung Basin) reflects its ability to adapt to particular
environmental and depositional conditions, including greatly
varied salinity and fine-grained and organic-enriched sediment.
Under these conditions, P. sulcata seems more competitive
than many other marine or brackishwater species. During
the LGM, the variation in abundance of this species may
have been due to sea level changes. After the LGM, this
species was affected by the water currents. These environmental
changes can be confirmed by the C:P ratio and Td value. C:P
ratios can be useful as indicators (Cooper 1995a, 1995b) and
an index of trophic condition supporting earlier findings of
Nyagaard (1949). C:P ratios in PG1 cores were higher than
those in PD3 cores in all ages. These results obviously indicate a
relatively steady relationship between pennate and centric
diatom populations in the Ulleung Basin. Environmental
changes that could increase C:P ratios include blooms of
centric diatoms, larger populations, or increased levels of
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Fig. 4. Downcore changes in number of species between centric and pennate diatoms (PG1 and PD3 cores). The dark grey, grey and
light grey colors represent the Late Pleistocene, Last Glacial Maximum, and Holocene zone, respectively

suspended sediment, all of which would increase turbidity
and reduce light availability to the pennate diatom species
(Pyle et al. 1998). In the present study, the population of
centric diatoms was higher than that of pennate diatoms (Fig,
4). These results are attributed to environmental differences in
PG1 and PD3 cores. PG1 was located 62 km from the coast,
whereas PD3 was located approximately 141 km from the
coast in Korea. As mentioned previously, during the LGM, a
lowered sea level was enough to close the East Sea. As a result,
current influx would have been limited. However, freshwater
input increased from adjacent rivers of the surrounding lands
(Ryu et al. 2005). The salinity decreased and freshwater species
(e.g., Cyclotella spp.) or low salinity coastal water diatoms,
such as P, sulcata, increased. In the present study, the relative
abundance of P, sulcatain PG1 was higher than in PD3 (Figs.
5 and 6). In addition, freshwater species such as Cyclotella spp.,
were more abundant in PG1 than PD3 (Figs. 5 and 6). These
species are found frequently in sediments of upwelling
zones (Schuette and Schrader 1979; Lange et al. 1998; Ryu
et al. 2005). In general, productivity in the upwelling zones

2\ Springer

is high, where low productivity is related to the weak and
more discontinuous effects of upwelling (Ryu 2005). In such
upwelling regions on the continental slope, species distribution
is defined by the constant presence of neritic assemblages in
areas close to the coast (Ryu 2005). As a result, diversity in
fossil diatom assemblages, and the presence or absence of
certain fossil diatoms can be used to distinguish conditions
of strong and permanent upwelling from conditions of
occasional upwelling and production from river discharge
(Abrantes 1991). These changes are possibly due to the fluctuation
of nutrient availability by current influx, sediment flow, and
location in collected cores. Fluctuation of geochemical factors
(TC, TN, CaCO;, TOC, C:N ratio) are possibly owing to
nutrient availability, determined by current influx, sediment
flow, and location of collected cores. All geochemical factors
increased upward in the collected cores. The values of the
geochemical variables for PG1 and PD3 during the last
interglacial and after the LGM periods were higher than
those during the LGM. All geochemical factors showed higher
values in core PG1 than in the other core. These results indicate
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Fig. 5. Downcore changes in number of species between warm and cold water diatoms (PG1 and PD3 cores). The dark grey, grey and
light grey colors represent the Late Pleistocene, Last Glacial Maximum, and Holocene zone, respectively

that the location of core PG1 was closer to land than core
PD3, which would have been more influenced by freshwater.
These changes also possibly resulted from the fluctuation of
nutrient availability by current influx, sediment flow, and
location of the collected cores. Td values suggested by
Kanaya and Koizumi (1966) are adopted here to estimate
surface water temperature during sediment accumulation in
the lower levels of a core sequence. Fluctuation in Td values
was noticed in the two cores from the Ulleung Basin, which
generally increased upward in both cores (Fig. 5). No significant
difference was observed before and after LGM with regard
to the Td values of both cores. However, during the LGM,
the Td value of PG1 was higher than that of PD3. Even if it
was cold during the LGM (approximately 14.6-26.5 kyr),
the number of warm-water species continuously increased
(Fig. 5). During this period, warm-water species increased at
31-74 cm in core PG1 and 172-254 cm in core PD3. Cores
PG1 and PD3 confirm that warm-water species (Td value)
and centric species (C:P ratio) increased upward during the
LGM and that geochemical factors also increased. These

results indicate that the TWC continuously flowed to the
East Sea. These results can also indicate the current flow in
East Sea, illustrated by a high abundance of benthic or
tychopelagic species and a lower abundance of planktonic
species. The unstable minor fluctuations in the lower Td values
corresponded to paleotemperature changes. Paleotemperature
changes in the Ulleung Basin were affected by the currents
in the East Sea. The Td values in the East Sea showed rhythmic
fluctuations at a possible periodicity of 1,000 and 400-500
years, indicating a strong and regular flow of the Kuroshio
and TWC (Koizumi 2007). Paleotemperature changes in the
water environment in the Ulleung Basin are affected by the
currents in the East Sea, suggesting the profound impact of
paleoclimatic factors on the environment, as indicated by
important changes in the populations of fossil diatoms as
fundamental bioindicators.
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Appendix
Table 1. Ecological and biogeographical categories of diatom species
Type Species References

W Actinoptychussplendens (Shadbolt) Ralfs in Pritchard 1861 1
W Asteromphaluselegans Greville 1859 2
W Bacteriastrumdelicatulum Cleve 1897 1,3
W B.elegans Pavillard 1916 2
W B.elongatum Cleve 1897 1,3
W B.furcatum Shadbolt 1854 2
W B.hyalinumLauder 1864 1,3
w Chaetocerosdensus (Cleve) Cleve 1899 2
W C.didymus Ehrenberg 1845 1,3
W Coscinodiscuscentralis Ehrenberg 1839 1
W C.nodulifer A. Schmidt in Schmidt et al. 1878 4,5
W C.perforatus Ehrenberg 1844 4
W C.radiatus Ehrenberg 1854 1,7
W Cyclotellastriata(Kiitzing) Grunow in Cleve & Grunow 1880 3
W Probosciaindica (H. Peragallo) Hernandez-Becerril 1995 1
W Pseudosoleniacalcar-avis (Schultze) B.G.Sundstrom 1986 3,6
W Rhizosoleniabergonii H. Peragallo 1892 3,4,5,6
W R.formosa H. Peragallo 1888 2
w R.setigera Brightwell 1858 1
W Skeletonematropicum Cleve 1900 2
w Thalassionemafrauenfeldii (Grunow) Hallegraeff 1986 2
w Th. nitzschioides (Grunow) Mereschkowsky 1902 3,7,5
W Thalassiosirabinata G. Fryxell 1977 2
W T'mala Takano 1965 2
W Tsimonsenii Hasle et G. Fryxell 1977 2
C Actinocycluscurvatulus (Grunow in A. Schmidt) Cleve 1901 4,5
C Asteromphalusparvulus Karsten 1905 2
C Odontellaaurita (auritum) Agardh 1832 3,4,5,7
C Rhizosoleniahebetata J.W. Bailey 1856 5,6
C Thalassiosiranordenskioeldii Cleve 1873 2,3,4,5
C Thalassiothrixlongissima Cleve & Grunow in Grunow 1880 3,7

W: warm-water species and C: cold-water species supplemented by references. 1: Cupp (1943), 2: Hasle and Syvertsen (1996), 3: Kanaya and

Koizumi (1966), 4: Koizumi (1986), 5: Koizumi (1989), 6: Koizumi (2008), 7: Ryu et al. (2005)
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Plate 1. PG1 and PD3 fossil diatom. Figs A-C. Coscinodiscus asteromphalus; Figs D-E. C. centralis; Figs F-G. Actinoptychus
senarius; Fig. H. Actinocyclus curvatulus; Figs 1-J. A. octonarius; Fig. K. Cyclotella sp.; Fig. L. Thalassiosira curviseriata;
Fig. M. T eccentrica; Fig. N. T. mala; Figs O-Q. Paralia sulcata; Fig. R. Navicula sp.; Fig. S. Thalassionema faruenfeldii; Fig.
T. Th. Nitzschioides. Scale bars = 1 um (Fig. E); 2 um (Fig. L); 5 um (Figs G M, Q, R); 10 um (Figs C, F, H, J, K, N, O, S, T);
20 um (Figs A, B, D, I); 30 um (Figs. P). Figs A, C, I, O, Q: LM. Figs B, D-H, J-N, P, R-T: SEM
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