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Abstract  Inorganic N transformations (nitrification, anaerobic
ammonium oxidation, denitrification, and dissimilatory nitrate reduction
to ammonium) are regulated by various biogeochemical factors linked
either by the supply of electron acceptors and donors or by competition
for electron acceptors. This review considers both the microbial
community related to each process and the technical methods used
to measure each process rate. With this background knowledge, this
article summarizes how global climate change through increased
pCO2, ocean acidification, deoxygenation and anthropogenic N
deposition will alter oceanic N cycling, and finally emphasizes the
need for comprehensive research on inorganic N transformation in
marine ecosystems.
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1. Introduction

Nitrogen (N) is an essential nutrient; its availability can
limit primary production. However, most N in ocean water
is in the form of N2, so N2-fixing microbes must convert it to
bioavailable N form for phytoplankton, which is finally removed
by denitrification. However, recent findings have reported a
significant imbalance in the ocean N budget, with higher output
than input (Gruber and Galloway 2008). In addition, a newly
discovered process called anaerobic ammonium oxidation
(anammox; NH4

+  N2H4  N2) that removes ammonium
(NH4

+ ) and nitrite (NO2
 ) from ocean water has been observed

in anoxic conditions. Contrary to denitrification and anammox,
dissimilatory nitrate reduction to ammonium (DNRA; NO3



 NO2
  NH4

+)  can accumulate NH4
+ under anaerobic

conditions, thereby causing eutrophication in coastal ecosystems

(An and Gardner 2002) (Fig. 1). Thus, an integrated description
of the N cycle requires comprehensive understanding of
inorganic N transformations including nitrification, anammox,
denitrification and DNRA. This article provides insights into
biogeochemical factors that control their rates, analytical methods
to measure their functions, and the microbial community
structure that performs them.

Climate change will significantly change N cycling, which
will affect ocean ecosystems, for example by altering microbial
communities or primary production. In detail, ocean acidification
due to increasing CO2 could decrease nitrification rates
(NH4

+NO2
NO3

 ), thereby possibly reducing the supply
of nitrate (NO3

 ) to ocean ecosystems, reducing emission of
nitrous oxide (N2O) into the atmosphere and a changing of
microbial community structures. However, the extension of
hypoxic zones due to increasing temperature and the input
of anthropogenic N could increase denitrification rates and
thereby increase N2O production. Thus, we need a comprehensive
understanding of the effect of global climate change on N
cycling in ocean ecosystems. This article summarizes how
global climate change affects each inorganic N cycle, how they
are interlinked, and highlights where we have significant
understanding and sparsity of knowledge in ocean ecosystems.

2. Inorganic N Transformations in Ocean Ecosystems

Nitrification
Nitrification is a biological process that uses oxygen as an

electron acceptor and CO2 as a carbon source to oxidize NH4
+ to

nitrite/nitrate (NO2
 /NO3

 ) under aerobic conditions. Under
anaerobic conditions, the NO2

  and NO3
  produced by nitrification*Corresponding author. E-mail: kharyun@postech.ac.kr
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are used as electron acceptors in denitrification, anammox,
and DNRA; therefore nitrification is an intermediate process
that connects aerobic and anaerobic inorganic N cycles. 

Nitrification proceeds in two steps: oxidation of NH4
+  to

NO2
  by an ammonia oxidizer; and oxidation of NO2

  to
NO3

  by a nitrite oxidizer (Schmidt 1982). The overall
process is performed by membrane-bound ammonia mono-
oxygenase (amo) and produces hydroxylamine (NH2OH)
and nitroxyl (NOH) as intermediates; these are unstable in
aqueous solution and are rapidly oxidized to NO2

  or N2O
depending on the availability of O2 (Reddy and DeLaune
2008).

The rate of nitrification is limited by low O2; nitrifiers
cease to work at O2 concentrations of 1 to 6 μM (Henriksen
and Kemp 1988). In coastal ecosystems increased rates of
growth of phytoplankton can deplete O2 concentrations and
thereby decrease nitrification rates through O2 deficiency
(Jenkins and Kemp 1984). However, certain nitrifying bacteria
such as Nitrosomonas europaea can survive at the oxic-
anoxic interface (Voytek and Ward 1995) whilst the recently
discovered archaeal nitrifiers have been observed to survive
under extremely low NH4

+  and O2 (Verhamme et al. 2011);
cultures of Nitrosopumilus maritimus can be grown at < 10 nM
NH4

+ (Martens-Habbena et al. 2009). Genome studies of the
archaeal amo (amoA) nitrifier, N. maritimus revealed that marine
nitrifier archaea have a 3-hydroxypropionate/4-hydroxybutryate
pathway, which is an electron transport system that differs
from that of known bacterial amo (amoB) nitrifiers and consumes
organic N instead of NH4

+ as an electron donor. Thus, the archeal
nitrifiers can grow both autotrophically and mixtrophically
in harsh conditions such as depleted O2 and NH4

+. This diversity
means that nitrification is broadly distributed and influences

both N and C cycles in ocean ecosystems (Walker et al. 2010). 
The nitrification rate can be measured in three ways. The

easiest is the direct inorganic N (DIN) inventory method, in
which [NH4

+], [NO2
 ], and [NO3

 ] are analyzed in laboratory
and environmental samples (Ferguson et al. 2007). However,
the DIN method requires a long incubation time and dark
conditions to block phytoplankton growth; these conditions
reduce the accuracy of the analysis. Another method is to measure
[NH4

+], [NO2
 ], and [NO3

 ] by using specific nitrification
inhibitors (nitrapyrin, acetylene, allylthiourea); this method
has been widely used to measure nitrification rates in coastal
sediments (Macfarlane and Herbert 1984). However, we do
not know whether these chemicals can inhibit amoA gene or
mineralization. If these inhibitors affect the amoA genes or
mineralization rates, the nitrification rate may be underestimated.
A third method is the 15N-nitrate isotope tracer technique.
15NH4

+  is added to a sample, which is then incubated for a
short period, and the concentration of 15NO3

  produced from
15NH4

+  oxidation is determined (Koike and Hattori 1978). This
method has the advantage that it measures a specific nitrification
by-product directly, and it is more sensitive than other methods.
However, the added 15NH4

+  could stimulate nitrification rates;
if this happens, nitrification rates can be overestimated. 

Anaerobic ammonium oxidation (Anammox)
Anammox bacteria consume NH4

+ as an electron donor,
NO2

  as an electron acceptor, and CO2 as a C source, and
oxidize NH4

+ anaerobically to N2 under anoxic conditions.
All of these processes take place in the anammoxosome, an
intracytoplasmic compartment bounded by a single membrane
that contains ladderane lipids, which are tightly packed to
minimize the loss of gaseous intermediates such as nitric
oxide (NO) and hydrazine (N2H4) (Jetten et al. 2009). Anammox
bacteria have a high affinity (Ks < 5 μM) for NH4

+  and NO2
 ,

and can therefore survive under very low NH4
+  and NO2

 .
However, their metabolic activity is slow (15 to 80 μmol N2

per g dry weight of cells per min) compared to other processes
such as nitrification and denitrification, so cell doubling
time is long (approximately11 to 20 days) and population
growth rates are low (Strous et al. 1997). 

Anammox removes inorganic N from the Black sea, and
accounts for up to 40% of total N2 gas production in anoxic
regions (Kuypers et al. 2003). At a depth of 200 m in the anoxic
waters of Golfo Dulce (Pacific Coast of Central America),
19 to 35% of total N2 gas production results from anammox
(Dalsgaard et al. 2003), and at Benguela (Atlantic Coast of

Fig. 1. Inorganic nitrogen transformations in ocean water
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Southern Africa) within the oxygen deficient zone (ODZ)
anammox removed 1.4 ± 1 Tg of fixed N per year (Kuypers
et al. 2005). Anammox has also been detected in the Arctic
Ocean, although there the process contributed < 5% to the
total N2 production (Rysgaard et al. 2004). The water chemistry
in these ODZ oceanic ecosystems is globally very similar
and account for 30 to 50% of the global N2 removal (Dalsgaard
et al. 2003). 

Nitrifiers oxidize NH4
+  to NO2

  or NO3
 , which diffuses to

anaerobic zones where anammox occurs. Archaeal nitrifiers
are found in O2 limited conditions and supply NO2

  to anammox
bacteria; this transfer implies that nitrification is important
to the anammox process (Lam et al. 2009; Füssel et al. 2012).
However, denitrifiers also consume NO2

 , so competition for
NO2

  uptake with denitrifiers is a potent regulating factor for
anammox activity (Trimmer et al. 2003; Engström et al. 2005). 

With respect to NH4
+  supply, the mineralization of organic

matter and subsequent release of NH4
+  are tightly related to

high anammox rates; high anammox rates were observed in
the upper ODZs because high ammonification near the surface
supplies NH4

+ to anammox bacteria (Hamersley et al. 2007;
Füssel et al. 2012). However, the presence of organic matter
can indirectly inhibit anammox rates because it accelerates
denitrification, which in turn hinders anammox activity by
competing for NO2

 (Strous et al. 1998). Sediments taken at
the transition between the Baltic and North Sea indicate the
relative importance of anammox decreases as organic matter
content increases (Thamdrup and Dalsgaard 2002). 

The first known anammox bacterium, Brocadia anammoxidans
(phylum Planctomycetes) was detected in biofilm by using
16S rRNA gene sequence analysis and Fluorescence In-Situ
Hybridization (FISH) with specific oligonucleotide probes
(Strous et al. 1998). Using anammox-specific 16S rRNA gene
primers (mainly Pla 46F) and anammox-specific oligonucleotide
probes, researches have reported the presence of four “candidatus”
genera of anammox bacteria: Brocade (Kartal et al. 2004),
Kuenenia (Schmid et al. 2000), Jettenia (Quan et al. 2008)
and Scalindua (Kuypers et al. 2003). Penton et al. (2006)
developed a new primer that is 100% specific in the recovery
of 700-bp 16S rRNA gene sequences that have  96%
homology to the Scalindua group of anammox bacteria. This new
primer detected anammox bacteria in 11 geographically and
biogeochemically diverse freshwater and marine sediments.

Analytical quantification of the rate of anammox involves
the isotope pairing method, which is an addition of 15NH4

+

and 14NO2
 to environmental samples. After addition of

15NH4
+  and and a period of incubation the ratio of 14N15N to

14N14N is analyzed using a gas chromatography-isotope ratio
mass spectrometry (GC-IRMS) and expressed as δ14N15N
values versus air (Kuypers et al. 2003). N2H4 and NH2OH
are intermediate products in the anammox process, so the
rates at which they are produced are related to the overall rates
of anammox. NH4

+, N2H4, and NH2OH are all measured
colorimetrically over certain time intervals during the anoxic
incubation of anammox bacteria. However, this method requires
a large number of anammox cells, so measuring anammox
activity in situ is a difficult task (Jetten et al. 2005). In anammox
bacteria, ladderane lipids surround the anammoxosome. This
unique lipid can be used as a biomarker for an estimation of
anammox activity. After filtering the samples, the lipid is
extracted using Soxhlet apparatus, saponified and separated
into fatty acid and neutral-lipid fractions. These fractions are
analyzed by gas chromatography-mass spectrometry (GC-MS)
to obtain the concentrations of ladderane lipids (Kuypers et
al. 2003).

Denitrification
Denitrification is the conversion of NO2

 /NO3
  to N2 gas

and is one of the processes by which fixed N moves from
ocean to the atmosphere. Denitrifiers are heterotrophs and
use NO2

 /NO3
  as an electron acceptor and organic matter as

an electron donor and C source. Most denitrifiers are facultative
anaerobes that use O2 as an electron acceptor when it is available,
but use NO2

 /NO3
  as an electron acceptor and reduce it to N2

gas when O2 is low.
The anaerobic conditions required for denitrification occur

in coastal and shelf sediments and in ocean water columns in
which ODZs are created by high O2 consumption rates driven
by organic matter decomposition coupled with low ventilation
rates (e.g., Arabian sea, Black sea). The amount of N removal
by ocean denitrification ranges from 200 to 300 Tg N y-1, which
is twice the rate of removal by estuarine and shelf sediment
denitrification (100 to 250 Tg N y-1) and significantly higher
than those of terrestrial denitrification (4 to 8 Tg N y-1) (Voss
et al. 2013). The ratio of the permanent removal of fixed N
by denitrification and anammox is 71 to 29 (Ward 2013); this
observation emphasizes the importance of N removal by
denitrification in ocean ecosystems. 

Because most denitrifiers are heterotrophs that use organic
C as an energy source, denitrification rates can be limited by
organic C contents. Incubation experiments showed that an
input of organic C increased the denitrification rates in the
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ODZs of the Eastern Tropical North and South Pacific
oceans (Ward et al. 2008) and central Baltic Sea (Btrettar
and Rheinheimer 1992). However, under C-rich conditions
such as benthic sediments and shelf regions, denitrification
rates were limited by O2 and NO3

 , and C quality rather than
C quantity (Laursen and Seitzinger 2001).

Denitrifiers are classified into three groups based on their
energy source: organotrophs use organic matter and comprise
the most common group of denitrifiers; lithotrophs use inorganic
matter (e.g., hydrogen or reduced sulfur compounds); phototrophs
use light as their energy source (Tate 2000). Numerous bacterial
and archeal genera include strains capable of denitrification.
All molecular research on the denitrifying microbial structures
use functional gene coding to search for nitrate reductases such
as nirS and nirK, and coding for nitrous oxide reductases
such as nosZ (Braker 2000). 

To measure denitrification activity, several methods have
been used. An indirect method, ‘acetylene blocking’, is most
extensively used because of its low cost, simplicity, and high
sensitivity. The principle of this method is to use acetylene
to inhibit the reduction of N2O to N2, and then to use gas
chromatography equipped with an electron capture detector
(GC-ECD) to measure the amount of N2O produced by
denitrification (Tiedje 1988). However, acetylene gas can
inhibit nitrification, so this method underestimates denitrification
rates when nitrification is coupled to denitrification (Seitzinger
et al 1993). Another method is to measure the rates of NO2

 /
NO3

 consumption for a certain time interval. However,
immobilization and anammox bacteria can consume NO2

 ,
so this method has low sensitivity and can underestimate the
rate (Alef et al. 1993). The isotope method can improve the
sensitivity and specificity of detection of denitrification rates.
This method assumes that N2 gas that includes 15N (15N14N
and 15N15N gas) forms by random association of 15N and 14N,
and becomes homogenously distributed in the denitrification
zone. A sample is provided with 15NO3

  and incubated, and
the isotopic composition of the N2 gas produced is analyzed
using GC-IRMS (Groffman et al. 2006). However, enrichment
with 15NO3

  can stimulate denitrification rates, resulting in
overestimation, and mixing 15NO3

  homogeneously into a
heterogeneous environment such as sediment is a difficult
task (Groffman et al. 2006). To directly quantify the end product
(N2), membrane inlet mass spectrometry (MIMS) has been
broadly used in ocean ecosystems; this method detects the N2 to
Ar ratios with high precision (~0.03%) and small samples
(< 7 mL) (An et al. 2001). Recently a combination of direct

N2 measurements with isotope (15N2) signal detection has
been used as a method to distinguish denitrification from N2

fixation where the two processes co-exist (An et al. 2001).

Dissimilatory nitrate reduction to ammonium
DNRA bacteria reducing NO3

 to NH4
+ under anoxic conditions

are obligate anaerobes that live in highly-reduced conditions
such as found in lake sediments, permanently waterlogged
wetlands, ocean ODZs, or river plumes that receive particulate
organic matter and NO3

  from groundwater (Reddy and DeLaune
2008). 

Estuarine and coastal soils have a mixture of freshwater
and salt water, relatively high amounts of organic matter and
nutrients, and low O2 due to decaying organic matter; these
are favorable conditions for DNRA. High rates of DNRA have
been observed in Laguna Madre Baffin (coastal lagoons, Gulf
of Mexico), and Concepcion (Chile, South Pacific Ocean)
Bays (0.66 to 32.94 mM N m-2 d-1), and are considered the
primary cause of eutrophication by supplying NH4

+  to
phytoplankton (An and Gardner 2002).

Adding C sources such as glucose, carbohydrates or organic
matter increases DNRA rates because microbes that perform
this activity are heterotrophs that use organic C as an energy
source (Kelso et al. 1999; Tobias et al. 2001). Previous research
observed high DNRA rates in C-rich conditions such as
estuarine sediments that receive their organic matter from
sea cage trout farms (Christian et al. 2000). Thus, Bonin et al.
(1998) suggested that DNRA could occur in the coastal
sediments, but because C is limiting, DNRA is not an important
process in the water column.

Reduced sulfur compounds (hydrogen sulfide, iron sulfide,
and thiosulfate) can be used as an electron donor instead of
organic matter for DNRA. Addition of sulfide increased the
oxidation of sulfide, whilst simultaneously reducing NO3

  to
NH4

+ (Brunet and Garcia-Gil 1996). In Laguna Madre and
Baffin Bay, sulfide-induced DNRA contributed to the accumulation
of NH4

+, whereas sulfate reduction with DNRA inhibited
denitrification; this observation emphasizes that sulfide
oxidation is an important component of DNRA (An and
Gardner 2002).

The functional gene for DNRA is the cytochrome c nitrite
reductase gene nrfA, which was significantly expressed in
the ODZs in the Peruvian and Omani Shelves (Lam et al.
2009; Jensen et al. 2011) and in estuarine sediments (Smith
et al. 2007). However, the use of genetic techniques to identify
nrfA has limitations because very little sequence information
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related to the nrfA gene is available in databases, which mostly
consider pathogens relevant to humans. Therefore, to enable
investigation of DNRA communities for ocean ecosystems,
specific functional primers and probes to detect DNRA bacteria
should be developed for ocean ecosystems, and additional
sequence data should be accumulated. 

Generally, 15N-tracing techniques are used to measure DNRA
rates. When 15NO3

  is added to environmental samples, DNRA
bacteria reduce it to 15NH4

+. After incubation for a designated
time, the 15NH4

+ ratios and concentrations are measured using
an isotope ratio mass spectrophotometer equipped with an
elemental analyzer (EA-IRMS). To preclude the possibility
of 15NO3

  immobilization by microbes, some studies added
NH4

+  simultaneously to samples to inhibit microbial uptake
of NO3

  (Rütting et al. 2011).

3. Effects of Global Climate Change on Inorganic N
Cycling in Ocean Ecosystems 

Effects of increasing pCO2

Increasing pCO2 in ocean surface waters can increase N2

fixation rates because N2-fixing organisms use CO2 as a C
source. One of the major N2 fixing species is Trichodesmium,
which is responsible for up to 50% of total marine N2 fixation
(Mahaffey et al. 2005) and is widely used in experiments to
test the effects of pCO2. An increase in pCO2 to that projected for
the year 2100 (atmospheric CO2 750 ppm) enhanced N2 fixation
of Trichodesmium by 35 to 65% (Hutchins et al. 2007; Kranz et
al. 2009); this increase amplifies the influx of organic N and
nutrients to oligotrophic ocean ecosystems and can possibly
support other inorganic N transformation rates by supplying
energy sources. However, responses of other Trichodesmium
species, diatoms/diazotrophs (e.g., Crocosphaera watsonii),
and unicellular cyanobacteria to increasing pCO2 are not
known. In addition, the long-term response of N2 fixers to
elevated pCO2 is not known; nor are interactions of the CO2

effects coupled with the influence of other trace nutrients
(e.g., iron (Fe) and phosphate (P)) or other potentially limiting
factors, such as light and temperature, therefore conclusions
about the general trends should be treated with caution
(Hutchins et al. 2009). 

In addition, an increase in pCO2 can increase C-fixation
rates of nitrifiers and anammox bacteria because they consume
CO2 as a C source and exploit the low affinity of the RuBisCO
enzyme for CO2. However, as of yet no experimental results
have demonstrated that elevated pCO2 influences nitrification or

anammox rates and interactions between N2 fixation and
nitrification and anammox processes. Thus, research should
be conducted to determine the effect of increasing pCO2 on
N cycling, and this should consider the various factors, including
microbial composition and structure, the role of limiting factors,
and interactions across the processes. 

Ocean acidification 
Some 30 to 40% of anthropogenic CO2 has dissolved in the

ocean, and has caused ocean pH to drop by ~0.1 compared to
preindustrial levels; an additional 0.3–0.4 decline is anticipated by
the year 2100 (Calderia and Wickett 2003). Dissolved CO2

reacts with water molecules; this reaction releases H+ which
combines with carbonate ions  to form bicarbonate ions
( ), thereby decreasing  concentration and seawater
pH. The ocean acidification (OA) caused by dissolution of
CO2 in seawater inhibits N cycling, especially process such
as nitrification that involve pH-dependent redox reactions.
Because the pH determines the NH3/NH4

+ equilibrium in
seawater (NH3 + H+ F NH4

+ ; pKa = 9.3) (Zeebe and Wolf-
Gladrow 2001), the reduction of pH decreases the ratio of
NH3 to NH4

+ (Fig. 2). Previous research showed that cultures
of Nitrosococcus oceani, a widespread ammonia oxidizer,
decreased their rates of nitrification by 20–36% with a 0.4–
0.5 pH decrease because the bacteria preferred to use NH3

rather than NH4
+ (Ward 1987).

A pH reduction of 8.1 to 7.84 will decrease the proportion
of [NH3] to the total [NHx] from 6.3 to 3.5% (Fig. 2) and this

CO3
2

HCO3
 CO3

2

Fig. 2. The percentage of [NH3] and [NH4
+]  in total [NHX] vs. pH.

This figure was modified from the supplementary material
published by Beman et al. (2010). The values were calculated
using [NH3] = [NH4

+ ] × 10(pH-pKa), where pKa = 9.3 (Zeebe
and Wolf-Gladrow 2001)
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pH decline will lead to a 3–44% reduction in nitrification
rates in the Atlantic and Pacific Oceans (Beman et al. 2011).
A pH decrease of 0.1 in ocean waters could decrease its
emission of N2O by up to our current annual anthropogenic
N2O emissions from both fossil fuel combustion and industrial
activity (Beman et al. 2011). In addition, decreased nitrification
rates could reduce the supply of NO3

  to ocean ecosystems;
this decline could drive a change from NO3

 -supported to
NH4

+-supported primary production. Thus, smaller organisms,
pico and nano-phytoplankton, that mainly consumes NH4

+ will
have an advantage in nutrient uptake, but large phytoplankton
such as diatoms that mainly uptake NO3

 will be at a disadvantage
(Yool et al. 2007). Contrary to these expectations, Piontek et
al. (2013) showed that OA increased the activity of bacterial
extracellular hydrolytic enzymes. This increased activity
was because of an enhanced nutrient regeneration under OA
conditions, though this did not cause any change in nitrification
rates or N2O production in shelf regions (Clark et al. 2014).
These results imply that nitrifiers in coastal zones might already
be adapted to acidic conditions; if this is true, then the responses
of nitrifiers to OA conditions could vary depending on the
site characteristics. 

Deoxygenation
One consequence of global warming is ocean deoxygenation,

O2 solubility in water decreases as temperature increases,
also the increased temperature of surface seawater enhances
upper-ocean stratification, thereby reducing the O2 supply to
the ocean interior (Bopp et al. 2002). Ocean models predict
that the global ocean oxygen inventory will be reduced by 1
to 7% over the next century due to global warming; this decline
will continue and expand the ODZs and thereby influence
biogeochemical N cycling (Keeling et al. 2010). 

At O2 < 5 M, heterotrophic bacteria use NO3
 as an electron

acceptor instead of O2, and by this process ultimately create
anoxic conditions and influence inorganic N transformations.
For example, denitrification and anammox processes are
enhanced due to an increase in NO3

  respiratory processes,
but nitrification is inhibited by O2 limitation; as a result,
NO3

 is removed, but NH4
+  accumulates (Codispoti et al.

2001; Deutsch et al. 2007). However, we do not yet know
how the combined effects of OA and deoxygenation will
affect nitrification and denitrification rates and N2O production
on global ocean scales. In addition, we do not know how the
reduction in the supply of NO3

  because of OA will affect
denitrification rates under deoxygenated conditions. 

Anthropogenic N deposition
Approximately 67 Tg of anthropogenic N per year is directly

deposited to the open ocean from the atmosphere (Duce et al.
2008). Nitrification and denitrification rates can be enhanced by
atmospheric N deposition due to the supply of bioavailable N to
nitrifiers and denitrifiers (Tyrrell 2011). This atmospheric N
deposition increases surface ocean primary production (up
to ~0.3 Pg C y-1) from where bioavailable N is transported
through the surface waters to the deep ocean. This enhanced
nitrification and denitrification driven by N deposition can
drive an increase in emission of N2O by up to 1.6 Tg N2O y-1,
which is about 1/3 of total oceanic N2O emissions (Duce et
al. 2008). However, OA and deoxygenation also influence
the N2O emission so that we do not know yet how the combined
effect of increasing N deposition, OA and deoxygenation
controls inorganic N cycling and N2O emission.

4. Conclusion

Inorganic N transformation rates vary depending on
biogeochemical properties (e.g. concentrations of NO2

 , NO3
 ,

NH4
+, organic C, and O2; pH and the intensity of reducing

conditions). In particular, the supply of electron acceptors
and donors mainly control each inorganic N transformation
rate so that interactions or competition among processes
(e.g. coupled nitrification-denitrification or ammonification-
nitrification; or competition between denitrification and
anammox for nitrite uptake) has an important effect on their rates.
Using mesocosm experimental work as a tool for understanding
global climate change’s effect on ocean inorganic N cycling
it has been found that N2 fixation rates increased in response
to increased pCO2. However, the responses of N2 fixers varies
depending on the community structures, and with little long-
term experimental and field research conducted conclusions
about the general trends of pCO2 effect on N2 fixation should
be treated cautiously. Other effects of global climate change
such as increased atmospheric N deposition and surface ocean
deoxygenation can enhance denitrification rates due to an
increase in the supply of NO3

 to denitrifiers and formation
of anoxic conditions favorable to denitrification, thereby
increasing the emission of N2O from ocean to atmosphere.
However, deoxygenation and acidification could reduce the
supply of O2 and NH4

+ to nitrifiers and thereby suppress
nitrification which would, in turn, reduce the supply of NO3



to denitrifiers and consequently reduce emissions of N2O
(Table 1). Thus, we do not know yet whether atmospheric N
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deposition will offset the deoxygenation and acidification
effects of decreased nitrate supply to denitrifiers. In addition,
research on the combined influences of deoxygenation,
acidification and N addition on inorganic N cycling has not
yet been conducted. Therefore, the effect of global climate
change on the environmentally significant biogeochemical
cycling of inorganic N coupled to N2O emission is far from
being understood and any apparently meaningful conclusions
should be considered with caution; comprehensive research
on these complex situations and how they are controlled by
the ocean ecosystem is needed. 
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