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and energy were significantly different between the two 
genotype groups. Training of a neural network model 
for contrast and energy feature enabled genotype predic-
tion with 79–98% accuracy. Healthy leaf area estimated 
based on photosynthetic or quantum efficiency (Fv/
Fm > 0.75 as healthy) in chlorophyll fluorescence images, 
indicated significant variation (p < 0.05) between geno-
type groups at 10–25  days after inoculation (dpi). In 
susceptible genotype, healthy area was observed to 
decrease in significant proportion over time as compared 
to resistant type. Resistant genotype was less sensitive 
to infection as healthy leaf area (Fv/Fm > 0.75) remained 
unaffected between 10-25dpi.At canopy level, although 
differences in pixel intensity (Fv/Fm > 0.75) were noted 

Abstract  In pigeonpea, resistance against vascular 
wilt disease was assessed based on leaf images captured 
throughred-green–blue (RGB) and chlorophyll fluo-
rescence imaging sensors. At leaf level, wilt response 
in RGB images was characterized by changes in pixel 
intensities in red, green, and blue channels leading to 
variation in texture. Texture analysis based on gray level 
co-occurrence matrix (GLCM) was able to explain vari-
ation pattern between resistance and susceptible geno-
types. Extracted texture features particularly contrast 
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between inoculated and healthy (mock) particularly in 
susceptible types but differences between inoculated 
susceptible and resistant type were non-significant 
(p > 0.05). Although trained ML algorithms for leaf and 
canopy level images resulted low accuracy (41–54%) in 
genotype classification but with large number of images 
captured later than 15 dpi expected to increase in accu-
racy. A protocol to facilitate non-invasive imaging tech-
niques in association with machine learning tools is pro-
posed over the tedious, time consuming and error-prone 
conventional screening method.

Keywords  Vascular wilt · RGB · Chlorophyll 
fluorescence imaging (Chl-FI) · Quantum efficiency 
(Fv/Fm) · GLCM · Machine learning and Pigeonpea

Introduction

Pigeonpea (Cajanus cajan (L) Millsp.) is an important 
food legume grown in semi-arid tropical and subtropi-
cal farming systems under varied agro ecological sys-
tems of Asia and Africa. It provides high quality veg-
etable protein to human beings and one of the sources 
for animal feed and firewood. Globally, the area and 
production of pigeonpea is increased from 2.86 million 
hectares (mha) to 6.8 mha with the production increase 
from 1.96 million tons (mt) in1980s to 5.4 mton 2016-
17 (FAO STAT, 2018). India contributes major share of 
world legume production as more than 72% of pigeon-
pea is produced in India (Indiastat.com, 2018–19). 
It is grown in about 4.5 mha but productivity level is 
low (729 kg/ha) due to various biotic and abiotic con-
straints (Nene, 1980). Vascular wilt (Fusarium udum) 
is economically the most important soil borne disease, 
causes 30–100% loss of grain yield (Nene & Kannai-
yan, 1982; Upadhyay & Rai, 1992). Wilt symptom is 
well characterized by epinasty, followed by flaccidity, 
chlorosis, vascular browning and necrosis of the ter-
minal leaflets (Agrios, 2005). Infection starts through 
roots and the pathogen colonizes profusely in xylem 
vessels. The disease is widely prevalent particularly 
in medium and late duration varieties in most of the 
regions (Ahlawat et al., 2005; Okiror, 2002). Manage-
ment of vascular disease is very difficult as cultural, 
chemical and biological measures to control are gener-
ally ineffective (Nene 1980; Upadhyayand Rai 1992). 
The most effective control strategy is the use of resist-
ant cultivars (Nene & Kannaiyan, 1982). However, 

genotypic improvement is impaired due to lack of 
precise evaluation method and moreover inheritance 
of wilt resistance is largely unknown (Jain & Reddy, 
1995; Parupalli et al., 2017; Saxena et al., 2012; Singh 
et  al., 2016). Resistance evaluation through sick-plot 
method is laborious and error prone as heterogeneous 
soil environment affects inoculum concentration (Nene 
& Kannaiyan, 1982). Soil temperature plays important 
role in infection process and symptom expression often 
being not uniform evaluation process becomes lengthy 
and indecisive. A quick, reliable, automatic, easy and 
nondestructive method of high-throughput phenotypic 
technologies are urgently requiringfor precise detection 
and phenotyping of resistance (Rousseau et al., 2013; 
West et al., 2003 and Bock et al., 2010).

Host-pathogeninteraction is captured in images have 
a high potential in accurate detection, identification 
and quantification of diseases on different scales prior 
to visual symptoms (Mahlein et al., 2013). For fast and 
accurate detection as well as assessment of host–path-
ogen interaction image processing techniques have 
shown lots of prospects (Cui et  al., 2009; Kai et  al., 
2011). Transformation of RGB color images based on 
hue, saturation, and intensity color model enables object 
detection, recognition and estimation of different fea-
tures (Rafael, 2018). Generation of color co-occurrence 
matrix (CCM) and image textures are useful to identify 
or classify level of host–pathogen interactions (Huang, 
2007; Ha et al., 2017). Image texture provides informa-
tion in the spatial arrangement of colors or intensities 
in an image and the most frequently used approaches to 
detect and classify symptoms (Al-Saddik et al., 2018).
Specifically, RGB images have been used for plant dis-
ease identification (Pydipati et al., 2006) and evaluation 
of resistance (Diaz-Lago et al., 2003).

In addition to texture analysis, monitoring photosyn-
thetic activity in leaves can rapidly assess early changes 
in photosynthetic properties (Maxwell & Johnson, 
2000; Scholes & Rolfe, 2009).Chlorophyll fluorescence 
imaging(Chl-FI) is a non-invasive, non-destructive 
method provides wealth of information on the timing and 
location of pathogen development as well as to under-
stand the regulation of photosynthesis from leaf to crop 
scale, allowing phenotyping of plants (Rolfe & Scholes, 
2010; Pérez-Bueno et al., 2019). Responses of the pho-
tosynthetic machinery to biotic stress (caused by patho-
gens) based on standard Chl-FI parameters (Fv/Fm, 
ΦPSII, qP and NPQ) has been utilized for evaluation 
of quite a large number of host–pathogen interactions 
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(Mahlein et al., 2013; Pérez-Bueno et al., 2019, Scholes 
& Rolfe, 2009; Simko et al. 2012) and resistance evalu-
ation (Chaerleet al., 2007; Rousseau et  al., 2013). Par-
ticularly, Fv/Fm parameter is used to diagnose and 
assess diseases since it is significantly correlated with 
visual severity of the pathogenic infection. For tobacco 
mosaic virus on tobacco leaves (Balachandran et  al., 
1994; Chaerle et al., 2007) and bacterial infection in bean 
(Rousseau et  al., 2013) and rice (Sebela et  al., 2018). 
Change in Fv/Fm parameter was used to presymptomatic 
diagnosis and disease assessment. Characteristics behav-
iour of Fv/Fm parameter for comparatively large number 
of diseases caused by fungal infection is summarized 
(Pérez-Bueno et  al., 2019). Hemileia vastatrix  on cof-
fee plants (Honorato Júnior et al. 2015), downy mildew 
on lettuce leaves (Bauriegel et  al. 2014) and grapevine 
(Csefalvay et al., 2009) powdery mildew and leaf blight 
in wheat (Kuckenberg et  al., 2009; Rios et  al., 2017), 
Rhizoctoniasolani in rice (Ghosh and Kanwar P, 2017), 
Botrytis cinerea in rice and tomato (Berger et al., 2004; 
Sekulska-Nalewajko et al., 2019), Pythium irregulare in 
ginseng (Ivanov & Bernards, 2016) and Rosellinia neca-
trix in avocado (Granum et al., 2015) where decrease in 
Fv/Fm value in infected tissue as compared to healthy 
has been well documented. However, Fv/Fm and other 
parameters do not always offer clear differences between 
healthy and infected tissues or do so at late stages of the 
disease (Pineda et al., 2018). Such uncertainty associated 
with Chl-FI data requires stringent statistical/mathemati-
cal solutions to enhance differences in response evalua-
tion. Machine learning algorithms (ML) are powerful 
and efficient tools in automation of model building pro-
cess and iteratively learn from noisy data to gain insights 
without explicit programming (Nichols et  al., 2019). 
ML has been used to identify patterns/genes/proteins 
involved in plant-pathogen interactions (Sperschneider 
et al., 2016) and identification of plant diseases (Kaundal 
et al., 2006; Mokhtar et al., 2015; Calderón et al. 2013).

Characterization of wilt response in terms of leaf 
symptoms captured in RGB and/or Chl-FI images 
particularly associated stress parameters may facili-
tate phenotyping of pigeonpeagermplasms. Further, 
use of machine learning algorithms is likely to assure 
accuratephenotyping and facilitate possible automa-
tion of the process. Development of assessment pro-
tocol for wilt response in pigeonpea based on non-
invasive imaging devices is anticipated for precise 
identification or classification of susceptible or resist-
ant genotypes required in crop phenomics.

In the current communication, vascular wilt response 
captured in leaf and canopy images was assessed to 
develop a protocol for phenotyping resistance in pigeonpea. 
A protocol based on integrated RGB and Chlorophyll fluo-
rescence imaging with machine learning tools was applied 
and proposed for resistance screening in pigeonpea.

Material and Methods

Pigeonpeaseedling preparation for evaluation of 
resistance

Pigeonpea genotypes consist of two susceptible and two 
resistant along with eight genotypes where wilt response 
not reported were considered for resistance evalua-
tion (Nene and Kannaiyan, 1982). Seeds of total of 12 
genotypes consists of: susceptible types ICP2376 (Acc 
No: ICP2-376) and Gulyallocal (Local landrace); resist-
ant types Asha (Acc no: ICP88719) and Maruti (Acc 
no: ICP8863); six cultivars BDN711 (Acc no: BDN 
2004–3), BDN708 (Acc no: BDN 711 × ICPL 20,096), 
BDN 716 (Acc no: BDN 2008–7), BSMR-736 (Local 
landrace), Pusa992 (Selection from ICPL 90,306) and 
Dharmaraj (Acc no: GRG-811); and two TS3R ( Acc no: 
Maruti-2) and TS3 (Local landrace) were collected from 
the Agriculture Research Station, Badnapura (Maha-
rashtra) Agriculture Research Station, Kalaburgi (Kar-
nataka) and Division of Genetics, ICAR-Indian Agricul-
tural Research Institute, New Delhi. Seeds were surface 
sterilized in 1% NaClO solution for 1 min and washed 
with distilled water before sowing. For sowing of seeds, 
earthen pots (dia 0.16 cm) filled with sterilized cocopeat 
and sand mixture (50:50) was used and 10 seeds were 
sown in each pot. Total of 100 plants for each genotype 
(10 pots) were raised in the greenhouse (National Phyto-
tron Facility) maintained at 28 °C ± 1.5 °C.

Inoculum preparation ‑Fusarium udum spore 
suspension

The pathogen was isolated from the wilt infested 
pigeonpea samples (stem) collected from Gulbarga 
(hotspot for fusarium wilt diseases), Karnataka, India. 
Pathogenicity test was carried out through seed-
ling inoculation and reaffirmation of wilt symptoms. 
Purity of the isolate was established through single 
spore isolation and confirmation of the pathogen was 
based on the composition of large hooked conidia 
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along with sickle-shaped macroconidia and elliptical 
microconidia (Type specimen Fusarium udum main-
tained in ITCC, Indian Agricultural Research Insti-
tute New Delhi). The isolate was multiplied in potato-
dextrose-agar plates (28° ± 2  °C). Spore suspension 
in freshly sterilized distilled water was prepared 
from six-days old culture adjusting concentration to 
3.4 × 104 spore/mL and stored in deep fridge for short 
term use.

Seedling inoculation

Thirty days old seedlings were inoculated under 
greenhouse conditions (National Phytotron Facility) 
with F udum spore suspension (3.4 × 104/ mL). A 
5 mL of suspension was poured into each pot remov-
ing upper surface soil layer around the individual 
seedlings to facilitate direct contact with the root 
zone. For mock inoculation, seedlings were treated 
with distilled water. After inoculation, the seedlings 
were incubated in the greenhouse (day-night length 
14–10  h with 400–450  µmol  m−2  s−1, temperature 
28° ± 2  °C Day-night; relative humidity 74–77%, 
moisture content in pot soil below field capacity).

Assessment of wilt severity index (WSI) for evalu-
ation of resistance in pigeonpea genotypes.

Inoculated plants were observed dpily for the 
appearance of wilt symptoms. Twenty inoculated 
plants from each genotypes were randomly selected 
for scoring wilt severity. Individual plants were 
scored in 0–4 scale (Hervás et  al., 1995); 0- no vis-
ible symptoms; 1- slight yellowing or pale color in 
leaves normally topside of the plants; 2- leaf yel-
lowing and drooping; 3- leaf shedding and stunted 
plants; and 4-most of the leaves shedding and finally 
drying whole plants. Wilt severity index (WSI) was 
calculated at 5, 10, 15, 20 and 25 days based on the 
formula:

Si	� symptom severity
Ni	� number of plants with Si symptom
Nt	� total number of plants
G	� maximum rating scale.

Median time (days) for the development of 
20% WSI was calculated for each genotypes and 

(1)WSI(%) = Σ(Si × Ni)∕(G × Nt) × 100

designated as WSI20. WSI at 25 days after inocula-
tion (dpi) was considered as terminal wilt severity 
TWSI. Resistance component for WSI20 and TWSI 
for each genotypes was estimated (Parlevli et 1979; 
Poland et al., 2009).

Resistance component for WSI20 (RSI) and TWSI 
(MSI) was estimated:

where, X = test genotype; C = susceptible reference.
ICP2376 was used as susceptible check. Using RSI 

and MSI as components, relative resistance (R) level 
for the genotypes was estimated (Parlevli et al., 1979, 
Savary et al., 2012):

R is a dimensionless relative resistance coefficient 
which varies between 0 and 1: 0 ≤ R ≤ 1 in which 1 
corresponds to the highest level of resistance, while 
0 corresponds to maximum susceptibility. Genotypes 
were grouped based on k-means clustering as well as 
the membership of known resistant and susceptible 
genotypes included in the study.

Digital image acquisition of leaf symptoms for RGB 
image analysis

At 15 dpi, ten trifoliate leaves were collected from 
susceptible (ICP2376 and Gulyal local) and resist-
ant (Asha and Maruti) genotype. Ten trifoliate 
leaves also were collected from the mock-inoculated 
plants from the corresponding genotypes. A total of 
80 leaves (40 inoculated and 40 mock-inoculated) 
were considered for RGB images. Images were 
captured through a flatbed scanner (HP Scanner 
1136  M) at 600 dpi, adjusted to 3500 X 2500 pix-
els and saved in JPEG format. Red, green and blue 
color channels were separated from the images 
and mean pixel intensity as Rmean, Gmean and Bmean 
were determined through MATLAB 2021a (Math-
works, Natick, MA). Several parameters like Rmean 
+ Gmean + Bmean , Rmean / ( Rmean + Gmean + Bmean), 
Gmean / ( Rmean + Gmean + Bmean), Bmean / 
( Rmean + Gmean + Bmean), Gmean / Rmean, Bmean / Rmean, 
(Bmean-Gmean)∕(Bmean + Gmean) were estimated to com-
pare color intensity difference between the infected 

(2)RSI = 1 − [SI20(C)∕SI20(X)],

(3)MSI = 1 − −[TWSI(C)∕TWSI(X)],

(4)R = 1 − (1 − RSI) ∗ (1 −MSI),
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and healthy  images. For texture analysis, Haralick 
features (Haralick et al., 1973) were extracted in Gray 
Level Co-occurrence Matrix (GLCM) for Contrast, 
Correlation, Energy and Homogeneity using glcm 
function in MATLAB (2021a). GLCM was used to 
check how often pairs of pixels with specified val-
ues and spatial orientation occur in the images. Con-
trast (K) measures the local variations in gray level 
from a pixel to its neighbour in an image where, i and 
j are indices referring to the location of pixel (p) in 
the GLCM (Al-Saddik et al., 2018). It shows texture 
fineness.

Correlation (R): measures the linear dependence 
of gray-level in a co-occurrence matrix or in other 
words, correlation intensity between neighboring 
pixels

�i and  �j are the averages of row i and column j in a 
GLCM, respectively �iand�i are the standard devia-
tions of row i and column j in a GLCM, respectively.

Energy (E) known as an angular second moment, it 
is simply the sum of squared elements in the GLCM, 
It measures the uniformity in an image

Homogeneity (H) is a measure of closeness of a 
distribution of elements in the GLCM to the diagonal. 
Homogeneity is unity for diagonal GLCM. This is the 
case where all the pixels in the original image have 
the same value as their neighbor.

The extracted texture features in GLCM for sus-
ceptible and resistant genotypes were statistically 
compared using unpaired t-test (Welch two sample 
tests, SPSS24) to examine the significant difference 
between the two genotype groups. For extracted fea-
tures, an artificial neural network (ANN) classifier 
(back propagation with input layer, hidden layers and 
output layer) was trained for identification of wilt 
response in the two genotype groups. For training 

(5)K =
∑

ij
(i − j)2p (i, j)

(6)R =
∑

i,j

(

i − �i

)

(j − �j) p (i, j)

�i �i

(7)E =
∑

ij
p (i, j)2

(8)H =
∑

i,j

p (i, j)

1 + (i − j)

the network, five case studies were made dividing the 
dataset into 90, 85, 80, 75 and 70%. After training 
the model, remaining data set 10, 15, 20, 25 and 30% 
were used as validation set for unbiased evaluation of 
the network. Further a test dataset was also used to 
examine an unbiased evaluation of the final network 
model and to observe the error rate in prediction. 
Finally, selection of hyper parameters (neuron layers) 
in the network configuration was chosen.

Chlorophyll fluorescence measurement for estima-
tion of maximum photosynthetic efficiency or quan-
tum efficiency parameter (Fv/Fm).

Preparation of materials for chlorophyll 
measurement

For chlorophyll measurement 20 pots (polypropyl-
ene dia 0.16 cm) from each of the 12 genotypes were 
inoculated (at 30 days) with F udum spore suspension 
along with equal number of control set (mock-inoc-
ulation with sterilized distilled water). All the pots 
were maintained in the chamber having uniform light 
and temperature (28° ± 2  °C). For image acquisition 
at leaf level, ten random trifoliate leaves were picked 
up at 0, 5, 10, 15, and 20 dpi. For canopy level image, 
top view of the whole plant was considered only at 
15 dpi. For mock inoculation, equal number of leaves 
and plants from all the genotypes were maintained.

Chlorophyll fluorescence measurement, image 
acquisition and processing

Chlorophyll fluorescence images were captured using 
Crop Reporter (Phenovasion Life Sciences, Wage-
ningen, The Netherlands), a high-resolution multi-
spectral imaging sensor installed at NanajiDeshmukh 
Plant Phenomics Center, IARI, New Delhi. Prior to 
image capture and acquisition, leaf and whole plant 
samples prepared were dark adapted for 15 min using 
chambers integrated with Scanalyzer 3D Phenotyping 
System (LemnaTec GmbH, Aachen, Germany). Later, 
time-lapse image of 24 frames per sample were cap-
tured within 1430 ms using sensor set up. The pixel 
intensity values of dark-adapted images were consid-
ered as F0 (minimum level of fluorescence). Subse-
quently, saturated pulse intensity (TF 800) of red-light 
flash with power LED 40 was used before capturing 
the fluorescence image. The maximum pixel intensity 
values from fluorescence images (Frame number 3 to 
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24) were considered as Fm (maximum level of fluo-
rescence). The recorded images (1388 × 1038 spatial 
resolution) were processed using LemnaGrid soft-
ware (LemnaTec GmbH). Raw RGB images (16-bit 
grey scale) were demosaiced using Adaptive Homo-
geneity Directed (AHD) algorithm to reconstruct a 
full color image from the incomplete output from the 
image sensor. The demosaiced pixels of these images 
were segregated into foreground and background pix-
els using normalized Fm intensity and Otsu threshold-
ing filters. Edge noise was removed through erosion 
and dilatation steps before composing all parts identi-
fied as plant to one object. Grey calculators were used 
appropriately for calculating variable fluorescence 
value (Fv=Fm- F0), where the pixel intensity values of 
F0 was subtracted from pixel intensity values of Fm. 
Finally, maximum quantum yield of PSII photochem-
istry was derived as the ratio Fv/Fm and expressed as 
pixel-to-pixel information on the fluorescence image.

For comparison of wilt response between genotypes, 
proportion of healthy leaf area for each sample as a fea-
ture was estimated in HSV plane separately based on 
Fv/Fm values and apparent visual symptoms on leaves.

Experimental design and data analysis on maximum 
photosynthetic efficiency

At leaf level, wilt response in relation to maximum 
photosynthetic efficiency (derived from chlorophyll 
fluorescence images) in susceptible (ICP2376) and 
resistant (Maruti) genotypes was assessed. Photosyn-
thetically healthy leaf area (Fv/Fm > 0.75) was esti-
mated by image segmentation (on HSV color plane) 
selecting ten random leaves (each replication) to 
compare wilt response at 0–20 dpi. For comparison 
of healthy leaf area between the genotypes factorial 
ANOVA was performed using Generalized Linear 
Model (SPSS 24).

At canopy level (whole plant view), weighted 
pixel count was estimated as sum of the product 
between mid-point of interval (for Fv/Fm 0.70–0.80, 
0.80–0.90 and 0.90–1.00) and pixel intensity divided 
by total pixel intensity. For estimation of weighted 
pixel count for each genotypes ten images from each 
of inoculated and mock samples were considered. 
Weighted pixel counts for the twelve genotypes were 
shown in tornado chart and for their comparison inde-
pendent sample t-test was performed. Subsequently, 
relative pixel counts (%) for all the inoculated 

samples (genotypes) were fitted in polynomial curves. 
Polynomial curves (R2 = 0.98) were compared based 
on non-parametric Kolmogorov–Smirnov test (skewed 
data).

Image features and machine learning

Infected areas as features in Chlorophyll fluorescence 
images (leaf as well as whole plant view) were esti-
mated by segmenting the images in HSV color plane 
based on Fv/Fm value comparing healthy image. 
Threshold value (Fv/Fm > 0.75) matched with healthy 
area and marked as brown (> 0.75), symptomatic as 
yellow (0.52 to < 0.75) and blue (< 0.52). The relative 
areas were estimated for all the 12 genotypes that are 
grouped under three categories (susceptible, tolerant 
and resistant based on resistance index estimates).

For classification of CFI images based on extracted 
features in each category of images (susceptible, tol-
erant and resistant), five machine learning algorithms 
(K-nearest neighbor, Support Vector Machine, Ran-
dom Forest Classifier, Decision Tree Classifier and 
Naïve Bayes) were trained to classify the genotypes 
for developing prediction model. ML algorithms, 
trained with large collection of noisy data on relative 
leaf areas, were tested for their prediction accuracy 
after removing skewness and correlation from the 
dataset. To reduce skewness in the data points sca-
lar transforms of relative leaf areas was performed 
by subtracting the mean and dividing by the standard 
deviation to shift the distribution to have a mean of 
zero and a standard deviation of one. To omit correla-
tion, skewness, and outliers of the dataset PCA was 
performed.

Results

Wilt severity index (WSI) and grouping of genotypes

Typical wilt symptoms, pale yellowing and drooping 
of leaves, were noted in the inoculated plant as com-
pared to mock inoculation. Time taken for expres-
sion of 20% wilt severity index (WSI20) indicated 
variations between the genotypes (Table  1 and Sup-
plementary Fig.  1). The WSI20 was noted to vary 
from the minimum 8 to maximum 18  days. Termi-
nal wilt severity (TWSI at 25 dpi) also shown vari-
ations between the genotypes as the minimum and 
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maximum values were noted 9.3 and 97.5 respec-
tively. Clustering based on the RSI and MSI, indi-
cated genotypes could be grouped into three distinct 
as RSI and MSI were significant (p < 0.05) for three 
groups. Three groups were separated by the R values 
0.71 and above, between 0.30 to 0.70and below 0.30. 
Based on cluster membership of the known resistance 
and susceptible genotypes three groups were desig-
nated as resistant (R values 0.71 and above), toler-
ant (between 0.30 to 0.70 tolerant) and susceptible 
(below 0.30 as susceptible).

It appeared that assessment of resistance based 
on leaf symptoms fairly correspond with the pattern 
of wilt response in the genotypes. Therefore, wilt 
response in pigeonpea genotypes based on the leaf 
symptoms can serve as the reference indicator for 
resistance evaluation. Otherwise, leaf symptoms cap-
tured in the image has the potential for phenotyping 
resistance.

RGB image analysis of reference genotypes

Typical wilt symptoms on leaves were visible within 
a week or two after inoculation as pale yellowing 
and drooping was distinct in comparison to mock-
inoculated leaves (Fig. 1). In the inoculated samples 
mean pixel intensity particularly for red, green and 

blue color increased proportionately as compared to 
the samples of mock-inoculated leaves (Fig. 2a, b, c 
and d). Parameters in ratio estimated out of the mean 
pixel intensity did not show much difference to distin-
guish between inoculated and mock inoculated sam-
ples. Changes in pixel intensities of color channels 
had reflected changes in the gray values of inoculated 
and mock-inoculated groups. Differences in gray val-
ues were characterized by the changes in image tex-
ture. Spatial variation in pixel intensities in regions 
and tone based on gray level co-occurrence indicated 
significant difference between the resistant and sus-
ceptible genotypes. Texture features particularly con-
trast and energy had significant variation (p < 0.01) 
between resistant and susceptible groups (Table  2 
and Fig.  3).Significant difference in feature patterns 
between the resistant and susceptible genotypes is a 
valuable indicator to develop neural network model to 
classify genotypes in terms of wilt severity or other-
wise resistance.

Training ANN, with two hidden layers hav-
ing 10 and 5 nodes in layer 1 and 2 respectively 
was observed to map the input layer with output 
labels fairly and classified the genotype groups with 
79–98% accuracy (Table  3). Different sets for vali-
dation particularly with 10–25% sample data gave 
higher levels of accuracy (92–100%) but reduced 

Table 1   Assessment of resistance in known reference geno-
types (susceptibility and resistance) and unknown genotypes 
based on resistance components for RSI and MSI, in 30 days 

old pigeonpea seedlings inoculated with F udum spore sus-
pension (3.4 × 104 /mL) and maintained in glasshouse 
(28° ± 1.5 °C)

WSI = Wilt severity index; Resistance component for RSI = 1-[WSI20(C)/WSI20(X)]; TWSI = Terminal wilt severity index; Resist-
ance component for MSI = 1-[TWSI(C)/TWSI(X)]; Resistance for RSI and MSI together (RR) = 1- (1- RSI) *(1-MSI); R < 0.3 as 
susceptible, between 0.3 to below 0.7 as tolerant and ≥ 0.7 as resistant

Genotypes WSI 20 (days) TWSI (%) Resistance for WSI 
20 (RSI)

Resistance for 
TWSI (MSI)

Resistance (R) for 
RSI and MSI

Remarks

ICP2376 10.0 91.5 0 0 0 Susceptible
Maruti 18.0 9.3 0.44 0.9 0.94 Resistant
Gulyal local 10.0 93.4 0 0 0 Susceptible
BDN 711 9.1 43.4 0 0.53 0.53 Tolerant
BDN 708 8.0 58.7 0 0.36 0.36 Tolerant
TS-3R 11.0 38.4 0.09 0.58 0.62 Tolerant
Asha 16.0 17.6 0.38 0.81 0.88 Resistant
TS-3 10.0 97.5 0 0 0 Susceptible
GRG 811 12.0 32.8 0.17 0.64 0.7 Resistant
Pusa 992 10.3 92.5 0.03 0 0.03 Susceptible
BDN716 9.3 92.8 0 0 0 Susceptible
BSMR736 8.8 95.6 0 0 0 Susceptible
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when sample data increased to 30%. Test samples 
used for testing the model accuracy in prediction was 
observed to increase as the sample set increased up to 
25% level. It indicated with large number of observa-
tion (images) could improve the training accuracy or 
otherwise increase model fitness for the better predic-
tion or classification of genotypes.

It was evident that RGB images on leaves are use-
ful to explain differential vascular wilt response in 
pigeonpea genotypes.

Maximum photosynthetic efficiency or quantum 
efficiency parameter (Fv/Fm) and classification of 
genotype groups

At leaf level, photosynthetic efficiency param-
eter (Fv/Fm) was compared to distinguish between 
infected and healthy leaf samples. Photosynthetic 
efficiency parameter in inoculated and mock sam-
ples indicated Fv/Fm ≥ 0.75 correspond with healthy 
area (segmented in HSV plane as yellow to brown 
area) and below 0.75 correspond to wilt infection 
(Fig. 4). Parameter Fv/Fm below 0.44 was observed 
to match with visible wilt symptoms (blue area seg-
mented in HSV plane). Ratio between 0.48–0.74 

corresponded with leaf portion not apparently 
showing any symptoms but photosystem II got 
altered due to infection. Quantum efficiency param-
eter (Fv/Fm ≥ 0.75) measured in terms of fluores-
cent yellow–brown area was higher in healthy leaf 
samples (mock-inoculated) and remained almost 
constant till 20 dpi in all the genotypes irrespec-
tive of resistance. In inoculated samples of sus-
ceptible genotype (ICP2376), the healthy area 
was observed to reduce over time (0–20 dpi) as 
compared to mock-inoculated samples (Fig.  4). In 
resistant genotype (Maruti) contrastingly healthy 
area in inoculated samples more or less remained 
unchanged over time. Comparison of mean healthy 
area in the leaf samples of susceptible and resist-
ant genotypes indicated significant difference 
(p < 0.001) at 15–20 dpi although variation was 
not prominent at 10 dpi (Fig.  4). Significant inter-
action (p < 0.01) was recorded between genotype 
and day of observations (dpi). Resistant genotype 
appeared to be less affected in terms of photosyn-
thetic efficiency as the reduction trend in healthy 
area was stabilized by 15–20 dpi in comparison to 
susceptible genotype where downward trend contin-
ued. It was evident that wilt response measured in 

Fig. 1   Characteristics pale yellowing and flaccidity of leaves 
in susceptible pigeonpea genotype (ICP2376 and Gulyal local); 
slight yellow and normal looking leaves of resistant geno-
types (Asha and Maruti) noted at 15 days after soil-inoculation 

(30  days seedlings inoculated with F udum spore suspension 
3.4 × 104 and maintained in glasshouse 28° ± 1.5  °C) in com-
parison to the mock-inoculation (distilled water)
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terms of photosynthetic efficiency parameter could 
be used as index for making quantitative differ-
ence between the genotypes. Otherwise, quantum 

efficiency signals could be used as sensible indica-
tor for discrimination of pigeonpea genotypes.

At canopy level, weighted pixel intensity estimated 
at 15 DPI showed significant difference (p < 0.05, 
independent sample t-test) between inoculated and 
mock samples for seven genotypes while in five 
genotypes did not show any difference (Fig.  5a). 
For inoculated samples of all the genotypes, plot-
ting relative pixel count (%) for Fv/Fm parameter 
indicated difference between the genotypes as they 
got separated by two distinct peaks (Fig.  5b). For 
susceptible genotypes, peaks were observed mostly 
in the class interval 70–80 whereas in resistant and 
tolerant genotypes in 80–90 class intervals indicat-
ing tolerant and resistant genotypes had less sensitiv-
ity to the infection. Resistant genotypes observed to 

Fig. 2   Comparison of mean pixel intensity in red, green 
and blue color channel in the infected leaf images of pigeon-
pea genotypes (a = ICP2376, b = Gulyal Local, c = Asha, 

d = Maruti) at 15 days after inoculation (30 days old seedlings 
inoculated with F udum spore suspension and maintained in 
glasshouse at 28° ± 1.5 °C)

Table 2   Features extracted for texture analysis based on gray 
level co-occurrence matrix for resistant and susceptible groups 
of pigeonpea genotypes inoculated (30  day’s old seedlings) 
with the pathogen (F. udum)

Features Resistant-
inoculated

Susceptible-
inoculated

Unpaired t-test (p 
values)

Contrast 0.005 0.003 2.747 × 10–5 *

Correlation 0.996 0.994 0.8035
Energy 0.891 0.921 1.276 × 10–5 *

Homogeneity 0.997 0.998 0.5355
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be less affected by wilt infection as compared to sus-
ceptible ones;somewhat similar trend was observed 
at leaf levelobservation. However, fitted polynomi-
als (R2 = 0.98 with low RMSE) for the relative pixel 
count (%) curves were shown to be non-significant 
(p > 0.05, Kolmogorov–Smirnov test). It indicated at 
15 dpi wilt response based on Fv/Fm parameter may 
not be sufficient for classification of genotypic behav-
ior in pigeonpea. Non-significant trendin the existing 
data set (canopy level) assumed low predictability in 
pattern recognition for any statistical model desired-
for genotype classification.

To predict a possible trend or pattern in the geno-
types based on Fv/Fm parameter, dataset from leaf 
as well as canopy view images wereused to train 
five machine learning algorithms (https://​github.​
com/​SHUBH​AJYOT​IDAS/​Image-​based-​high-​throu​
ghput-​pheno​typing-​for fusarium-wilt-resistance-
in-pigeon-pea-Cajanus cajan). Training algorithms 
showed about 52–54% accuracy in classification of 

the genotypes except decision tree where perfor-
mance was comparatively low (Table  4). Remov-
ing dimensionality and increasing interpretabil-
ity without minimizing information in the dataset 
Naive Bayes algorithm had shown improved trend 
and clustering of data. Weights in the models were 
noted to configure the outputs in general but each 
individual prediction was characterized by low bias 
and high variance. A model with high variance 
indicated that the data set represented accurately 
but lead to overfitting or otherwise insufficiency in 
training data.

It became indicative that for better accuracy in 
genotype prediction or to improve performance 
in predictability requires large number of features 
from input data (images) from large number of gen-
otypes. In addition, image capture of little advanced 
level of infection (later than 15 dpi) might generate 
wilt response pattern for genotypes classification. 
With possible improvement in methodology, an 

Fig. 3   Textural features 
contrast and energy 
extracted from the RGB 
images for susceptible 
and resistant pigeonpea 
genotypes at 15 days 
after inoculation with F 
udumspore suspension (on 
30 days seedlings)
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Table 3   Artificial Neural Network (ANN) with hyper parameters for classification of pigeonpea genotype groups based on extracted 
features on gray level co-occurrence matrix

Case Study Epochs Layer 1 
Neurons

Layer 2 
Neurons

Accuracy (%) Validation 
Split (%)

Validation 
Accuracy (%)

Test Validation 
Split (%)

Test 
Accu-
racy (%)

1 30 10 5 93.75 10 100 10 87.50
2 30 10 5 98.25 15 100 15 83.33
3 30 10 5 94.12 20 92.31 20 100
4 30 10 5 95.56 25 100 25 100
5 30 10 5 79.49 30 82.35 30 83.33
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image-based protocol has been proposed for pheno-
typing pigeonepa germplasms (Fig. 6).

Discussion

Image based assessment for wilt resistance has been 
performed to predict pigeonpea genotypes. Vascu-
lar wilt response captured through RGB and Chl-FI 

techniques has appropriately detected features for 
genotype classification. Textural pattern in RGB 
images and photosynthetic efficiency parameter (Fv/
Fm) from Chl-FI are the indicators to distinguish 
infected leaves from the healthy ones. Difference in 
texture features and Fv/Fmindex for healthy leaf area 
has been useful in classifying genotype in suscepti-
ble and resistant or tolerant types. Therefore, image 
based evaluation has an application potential in crop 

Fig. 4   At leaf scale photosynthetic efficiency (Fv/Fm) in (a) 
susceptible (ICP2376) and resistant (Maruti) genotype at 0, 5, 
10, 15 and 20 dpi (inoculated with spore suspension 3.4 × 104/
mL) maintained in glasshouse (28° ± 1.5 °C), and (b) compari-

son of relative healthy leaf area (Fv/Fm > 0.75) estimated from 
the chlorophyll fluorescence images of susceptible and resist-
ant genotypes
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phenomics for identifying resistance in pigeonpea. 
However, higher accuracy in genotype classification 
or prediction could be achieved with further refine-
ment of the assessment procedure.

Vascular wilt in pigeonpea is well characterized 
by pale yellowing and drooping exhibited in the 
leaves. Manifestation of yellowing and drooping is 
ascribed to relative increase in pixel intensities par-
ticularly blue and red channels. High pixel intensity 
in blue and red color channel is reported to be associ-
ated with plant stress indicating changes in stomatal 

conductance and chlorophyll degradation (Bock 
et  al., 2010). In pigeonpea, characteristics increase 
in pixel intensities particularly in red and blue chan-
nels can be ascribed to plant stress causing changes 
in stomatal conductance and chlorophyll degrada-
tion. Fakrentrapp et al. (2019) has reported significant 
increase in intensities for blue and red colour chan-
nel in inoculated tomato plants than the mock inocu-
lated ones. Ha et al. (2017) has used RGB images for 
detection of vascular wilt in radish based on texture 
analysis. Association of blue ratios B/BG or B/BR 

Fig. 5   Comparison of Chl-FI parameter at canopy scale a) 
weighted pixel intensity above Fv/Fm ≥ 0.75 (tornado chart) 
andb) quantum efficiency (Fv/Fm) curve in terms of relative 

pixel count (%) in inoculated (30 days old seedling subjected 
to soil-inoculation with 3.4 × 10 4 /mL) pigeonpea genotypes 
at 15 dpi

Table 4   Machine learning algorithms for classification of pigeonpea genotype groups based on photosynthetic efficiency parameter 
or quantum efficiency (Fv/Fm)

Algorithms Accuracy of 
simple dataset

Accuracy of after removing 
skewness & correlation

Accuracy of after apply-
ing scalar transform

Accuracy of after 
applying PCA trans-
form

K Nearest Neighbour 52.39 52.39 52.39 52.39
Random Forest Classifier 52.60 51.54 53.48 52.45
Decision Tree Classifier 44.52 41.93 45.06 48.23
SVM 53.25 52.39 54.37 54.10
Naive Bayes 45.91 51.86 45.91 52.40
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in vascular wilt is also reported and shown to be the 
best indicators of early-stage infection by Verticillium 
wilt in olive (Calderón et  al. 2013). However, spec-
tral indices like, Photochemical Reflectance Index 
(PRI), structural, chlorophyll and carotenoid indices 
are noted to detect only moderate to severe V. dahl-
iae infection in olive. Al-Saddik et al (2018) has used 
a combination of spectral and textural data to identify 
and detect grapevine yellowing. Therefore, texture 
features from leaf images have potential in pheno-
typing pigeonpea genotypes as far as wilt response 
is concerned. Although hyperspectral images have 
not been considered but its possibility as an indicator 
needs to be explored.

Chl-FI parameter has indicated regulation of pho-
tosynthesis from leaf to crop scale can reflect wilt 
response in pigeonpea. Response in terms of Chl-FI 
parameters to biotic stress caused by pathogens has 
been utilized for evaluation of quite a large number 

of host–pathogen interactions (Mahlein et al., 2013; 
Perez-Buenoet al. 2019, Scholes & Rolfe, 2009; 
Simko  et al., 2012; Rousseau et  al., 2013; Chaerle 
et al., 2007). In the present study, Chl-FI data at leaf 
level has provided a relatively pure signal of wilt 
symptoms, which helps understanding their features 
to classify genotypes. However, differences in can-
opy level could not be ascertained universally for all 
the genotypes except susceptible genotypes. At can-
opy level signals influenced both by the plant struc-
ture and morphology could not extend wilt response 
for genotype classification. Large number of sample 
images and/or consideration of wilt response later 
than 15 dpi accuracy is expected to increase. Con-
sideration of other standard Chl-FI parameters like 
ΦPSII, qP and NPQ in addition to Fv/Fm might 
increase the resolution for genotype classification. 
Chl-FI parameters do not always offer clear differ-
ences between healthy and infected tissues or do so 

Fig. 6   Protocol for phenotyping vascular wilt resistance in pigeonpea based on RGB and chlorophyll fluorescence imaging
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at late stages of the disease (Pineda et  al., 2018). 
Therefore, combinatorial imaging analysis with 
more parameters and use of ML algorithms offers 
operational decision-making process easier where 
large number of image samples may be involved in 
screening process (Calerdon et al. 2013).

To sum up, current finding makes some fore-
grounds to improve quantitative analysis for group-
ing of pigeonpea genotypes through imaging tech-
niques. Genotype grouping taking features from 
large number of genotypes can be a possible way to 
improve prediction performance and thus making 
an automated process. Inclusion of other standard 
Chl-FI parameters as features may likely to generate 
more accurate mapping between image input and 
output. Therefore, combination of most sensitive 
indices or features at leaf and canopy levels may be 
a reasonable approach to make automation of phe-
notyping process.
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