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2017 to 2019, from five locations (Dooars, Kalim-
pong, Sikkim, Assam, and Darjeeling). These areas 
represent the major and commercially exportable 
best-quality Indian tea production belts. The Dar-
jeeling and Assam populations showed low to very 
high lethal concentration ratios (LCRs) (16.67 to 
140.32, respectively) to bifenthrin, deltamethrin and 
diflubenzuron while, highest LCR to quinalphos was 
observed in the Dooars population (119.81). Simi-
larly, very low to extremely high LCRs to emamec-
tin benzoate and flubendiamide (4.00 to 65.25 and 
16.43 to 148.94, respectively) were observed in all 
six populations. However, pyridalyl (LCR ≤ 77.09) 
and spinetoram (LCR ≤ 82.03) showed higher toxicity 
than that of cyantraniliprole (LCR ≤ 120.98) to field 
populations of H. talaca, irrespective of locations. 
The pairwise correlation coefficients of log  LC50 val-
ues revealed that emamectin benzoate was significant 
but negatively correlated with bifenthrin. LCRs to 
the tested insecticides were heterogeneous and highly 
variable among locations and years. Specific resist-
ance management strategies should be established, 
especially in locations where H. talaca has developed 

Abstract Management of the black looper 
Hyposidra talaca (Walker), the most demolishing 
foliage feeder of tea in Himalayan foothills, is based 
on the use of chemical insecticides, though poor field 
efficacy of various commercially formulated prod-
ucts has recently been reported. In the present study, 
insecticide resistance of H. talaca to some traditional 
and newer insecticides was evaluated from north-
eastern tea growing belt of India. Six populations of 
H. talaca were collected in three consecutive years, 
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very high levels of resistance to newer chemistry 
insecticides.
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Organophosphate · Pyrethroids · New molecules · 
Cross resistance

Introduction

The black inch worm or black looper Hyposidra talaca 
(Walker) (Lepidoptera: Geometridae) is considered 
one of the most destructive polyphagous pests to vari-
ous forest flora species in Australasian tropics, cover-
ing China, India, New Guinea, Indonesia, Taiwan, 
Hong Kong, Malaysia, Thailand and Australia (Inta-
chat et al., 2001; Mathew et al., 2005; Singh & Singh, 
2004; Winotai et  al., 2005). In 2006, H. talaca was 
first detected in tea [Camellia sinensis (L.) Kuntze] 
over the Sub-Himalayan zone of West Bengal (Das & 
Mukhopadhyay, 2008), but this pest has emerged as the 
major defoliator of tea plantations in entire North-East 
India by 2008 (Chutia et al., 2012; Das & Mukhopad-
hyay, 2009). The larval instars feed on both young and 
mature leaves of bushes, and under severe infestations, 
they cause up to 90 percent damage to crop (Basu 
Majumder, 2010). Beside various biological, envi-
ronmental and agro-climatic issues, repeated use of 
synthetic pesticides is recognized as one of the major 
reasons of the invasion of tea plantations by this new 
looper pest, H. talaca (Das & Mukhopadhyay, 2014; 
Mukhopadhyay & Roy, 2009).

Based on occupation and production value, tea is 
the most important crop in the eastern Himalayan 
Terai-Dooars and Assam and Darjeeling foothills 
(Biggs et  al., 2018). Tea plantations have occupied 
an area around 350,000 ha in the eastern Himalayan 
zone of India which is accountable for 70 per cent of 
the total national tea production (Gohain et al., 2012; 
Laskar & Thappa, 2015). Owing to the severity of H. 
talaca in North-Eastern tea plantations of India, the 
application of organophosphate (OP) and synthetic 
pyrethroid insecticides became the most effective 
way for the control of this pest (Basu Majumder et al., 
2012; Sannigrahi & Talukdar, 2003). However, as a 
result of non-rational spray strategies and overuse of 
active ingredients with a similar mode of action, the 
efficacy of insecticide for black looper management 

is being threatened by the possibility of resistance 
development (Saha, 2016).

In the north-eastern tea growing regions, estate 
owners solely rely on chemical insecticides and can 
carry out up to 12 rounds of foliar applications from 
March to October to mitigate lepidopteran pests like 
H. talaca (Walker), Buzura suppressaria (Guenee), 
Eterusia aedea (Linnaeus), Cydia leucostoma Mey-
rick etc. (Gurusubramanian et  al., 2008). As bifen-
thrin, deltamethrin, diflubenzuron and quinalphos are 
broad-spectrum insecticides, they have been exten-
sively used for tea pests’ management (Gurusubra-
manian et al., 2008). Indeed, as a result of their low 
market price, these molecules have been applied since 
2008 for managing H. talaca on tea in North-East 
India. During the first years of utilization, reports of 
control failure have come since 2013 (Nain, 2015). 
With the approval by the Central Insecticide Board, 
Government of India, of new active ingredients such 
as emamectin benzoate and flubendiamide to con-
trol lepidopteran pests (NPATG, 2016; PPC, 2019), 
growers have new tools for a more rational insecticide 
control of H. talaca. Despite of this, there is a rising 
concern that insecticide resistance to the old and new 
generation insecticides become a common phenom-
enon (Roy et  al., 2017; Saha, 2016). In this sense, 
a baseline of the resistance status of H. talaca field 
populations is essential for development insecticide 
resistance management strategies in the study but also 
other tea growing areas threaten by this pest. In the 
present study, resistance status to some conventional 
and newer insecticides, frequently used against lepi-
dopteran caterpillars in the tea gardens, were deter-
mined for H. talaca of six field populations collected 
in Namchi, Tumsong, Kalchini, Kamalpur, Harishpur 
and Kumai.

Materials and methods

Insecticides

The commercial insecticides selected and tested 
were bifenthrin 7.9 SC (Bifen I/T, Oldham Chemi-
cals Company Inc.), cyantraniliprole 10.26 w/w OD 
(Benevia, DuPont India Pvt. Ltd.), deltamethrin 2.8 
EC (Decis, Bayer Crop Science), diflubenzuron 25 
WP (Bi-Larv, Bayer Crop Science), emamectin ben-
zoate 5 SG (Proclaim, Syngenta India), flubendiamide 
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480 SC (Fame, Bayer Crop Science), pyridalyl 10 EC 
(Sumipleo, Sumitomo Chemical Co. Ltd.), quinal-
phos 25 EC (Ekalux, Syngenta India), and spineto-
ram 11.7 SC (Delegate, Dow Agrosciences Pvt. Ltd.). 
Cyantraniliprole, pyridalyl and spinetoram are new 
generation biorational insecticides; emamectin ben-
zoate and flubendiamide are recently approved new 
active ingredients against the tea-looper complex in 
India (MUP, 2020); and bifenthrin, deltamethrin, dif-
lubenzuron and quinalphos are conventional mole-
cules belonging to synthetic pyrethroid, insect growth 
regulator (IGR) and organophosphates (OP) insecti-
cides, respectively.

Hyposidra talaca reference strain

An insecticide-susceptible population of H. talaca 
from Bidhan Chandra Krishi Viswavidyalaya 
(BCKV), Nadia, West Bengal, India, designated as 
Lab/Htal-IN, was employed as the reference strain in 
the present bioassays. This population was obtained 
by single-pair crosses using individuals collected 
from Sikkim University, Sikkim, India in 2014 and 
reared on green tea leaves in the insect and mite cul-
ture laboratory at 28 ± 2 ˚C temperature and 75–80% 
relative humidity with 14:10 (L:D) photoperiod for 
five years. This Lab/Htal-IN strain had never been 
exposed to the chemical insecticides. Thus, the mor-
tality data obtained from laboratory bioassay were 
used as an allusion for baseline susceptibility of vari-
ous insecticides.

Collection of field populations

Field populations of H. talaca at third to fifth instar 
larvae were collected from six different tea estates 
[Namchi tea garden, Ravangla (27.1012 ˚N, 88.2060 
˚E); Tumsong tea garden, Darjeeling (27.0353 ˚N, 
88.1755 ˚E); Kalchini tea estate, Dooars (26.4920 
˚N, 89.5265 ˚E); Kamalpur tea estate, Darjeeling 
(26.7073˚N, 88.3085˚E); Harishpur tea estate, Nam-
rup (27.2044 ˚N, 95.2656 ˚E); and Kumai tea estate, 
Kalimpong (26.9951 ˚N, 88.8287 ˚E)] in three major 
tea growing provinces (West Bengal, Assam, and 
Sikkim) of north-eastern India during 2017, 2018, 
and 2019 (Fig. 1). In each site, field individuals were 
collected by walking in a zig-zag pattern covering a 
3  ha area (Tong et  al., 2013). Collected individuals 

were taken to the BCKV laboratory. The larvae were 
reared separately under the laboratory condition on 
fresh and pesticide-free tender tea foliage in growth 
chambers at 28 ± 2 ˚C temperature, 75–80% relative 
humidity and 14:10 (L:D) photoperiod (Basu Majum-
der, 2010). The collected healthy larvae were individ-
ually transferred to tea shoots bearing 2–3 leaves and 
a bud with the help of a camel-hair brush. Each shoot 
placed in 50  ml Erlenmeyer flask (BRL_4980021, 
Borosil Glassworks Ltd.) containing pure water, was 
tightly plugged with absorbent cotton to retain it 
properly. The flasks were then preciously arranged 
in glass jars (diameter, 15 cm; height, 20 cm) tightly 
roofed with insect rearing nylon mesh, fitted with the 
help of a rubber band (9 flasks in each jar) and placed 
in the growth chambers. Replacement of shoots along 
with the cleaning of faecal matter was done after 
every 24  h and pupae were collected on alternate 
days. After the adult emergence, a pair of male and 
female moths were taken and taxonomic identifica-
tion was carried out using the key of Hampson (1985) 
and Holloway (1993). The rest of adults were taken 
into oviposition chambers with nylon mesh sides for 
adequate ventilation and fed on a 10 per cent honey-
protinex solution absorbed onto a clinical cotton ball. 
All the field-collected populations were fostered for at 
least one generation to obtain a homogenous popula-
tion with sufficient numbers of larvae before the bio-
assays were conducted.

Bioassays

A standard “leaf disk bioassay” method was fol-
lowed (Paramasivam & Selvi, 2017) by taking newly 
moulted 2nd  instar larvae to all tested insecticides 
except diflubenzuron. Serial dilutions as mg  L−1 of 
commercial formulations of the test insecticides were 
prepared using 0.1% Triton X-100 (a non-ionic wet-
ting agent) in double-distilled water. Fresh tea leaves 
were clipped into circular pieces (5 cm diameter) and 
dipped in the serially diluted insecticide solutions 
for 10  s. Then the treated leaves were air-dried at 
room temperature for 10  min and placed with their 
abaxial surface upwards in each Petri plate lined 
with moistened Whatman no. 1 filter paper. Leaf 
disks that were dipped in sterile diluents only were 
used as controls. Ten 2nd  instar larvae of H. talaca 
were introduced in each Petri plate and sealed with a 
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nylon mesh net. Nine different concentrations of each 
insecticide plus the control treatment were set. All 
the treatments were replicated four times to calculate 
the concentration mortality line (Das et  al., 2010). 
The Petri plates were then kept at the aforesaid con-
trolled conditions. Mortality data were recorded after 
48  h exposure to bifenthrin, cyantraniliprole, del-
tamethrin, emamectin benzoate, flubendiamide, and 
quinalphos and after 72 h with pyridalyl and spine-
toram. The “topical application” method of bioassay 
was employed for diflubenzuron by taking third instar 
larvae, just a day after moulting (Berry et al., 1993; 
Durmusoglu et al., 2015). Larvae were weighed and 
treated topically on the thoracic junctions with one of 
the nine dosages of diflubenzuron (10 larvae per con-
centration), ranging from 0.5–1200 mg  L−1 and rep-
licated four times. In the present study, 0.1 µl insecti-
cide solution per mg larval body weight was applied, 
using a hand micro-applicator (Burkard Manu-
facturing Co. Ltd., UK) equipped with one 50-II  

micro-syringe (MS-N50; Shizuoka, Japan). Larvae 
treated similarly with the sterile solution only, served 
as control. Treated larvae were immediately placed 
on respective fresh tea shoots in 50  ml Erlenmeyer 
flask with all the aforementioned arrangements and 
monitored daily. Mortality of treated larvae was 
assessed when they failed to moult or did not react 
to soft piercing after emerging as adults by the sur-
vivors. Larvae were assumed to be dead if no coor-
dinated movement was observed after probing 
with a soft hair brush (Gurusubramanian & Bora,  
2007).

Data analyses

Concentration-mortality regressions for the Lab/Htal-
IN population and each insecticide tested were esti-
mated assuming a normal distribution of the binomial 
variable ‘probability of response’ based on probit 
analysis using PoloPlus statistical software version 

Fig. 1  Collection sites of H. talaca field populations from different tea plantations in north-east India

986 Phytoparasitica (2021) 49:983–1002



1 3

2.0 (LeOra Software Company, USA). Same proce-
dure was also followed in the concentration–response 
experiments for different field-collected populations 
and the tested insecticides. Lethal concentration ratios 
(LCR) (relative toxicity ratios) and 95% confidence 
limits were calculated for  LC50 to compare changes 
in susceptibility between laboratory-susceptible (Lab/
Htal-IN) and field strains (Vanaclocha et  al., 2019). 
Lethal concentrations  (LC50) were considered signifi-
cantly different when LCR confidence limits did not 
include 1 (Robertson et al., 2007).

Among the tested insecticides, a cross-resistance 
mechanism was estimated by pairwise correlation 
coefficients of log  LC50 values of the field strains by 
the Pearson correlation through the XL-Stats com-
puter program (Tong et al., 2013).

Results

Toxicity of insecticides to the H. talaca reference 
strain

The  LC50 values of the nine insecticides for Lab/Htal-
IN are depicted in Table 1. Toxicity was highest for 
spinetoram but was also high for cyantraniliprole, 
emamectin benzoate and flubendiamide. Results of 
bioassays for conventional insecticides showed that 
deltamethrin was less toxic than bifenthrin (toxicity 
ranking) in pyrethroids tested, while diflubenzuron 
followed by quinalphos were proved to have low-
est toxicities with  LC50 values of 3.52  mg  L−1 and 
3.24 mg  L−1, respectively. Among the newer genera-
tion novel molecules tested, pyridalyl was the least 
toxic against the laboratory strain of H. talaca.

Resistance of H. talaca field strains to four traditional 
insecticides

The resistance to bifenthrin in H. talaca was the low-
est in a population collected from Namchi, while the 
highest resistance was obtained in Harishpur popula-
tion collected during May 2019 (Table  2). For del-
tamethrin, the LCRs for populations collected in 
2019 from Tumsong and Harishpur were 107.52 and 
111.41 respectively, similar to that acquired for the 
Kamalpur population collected in 2017 (98.81). The 
 LC50 values of the Namchi populations, collected in 
2017, 2018 and 2019, bioassayed with diflubenzuron 
were significantly higher than that of the reference 
population with LCRs ranging from 25.34 to 60.63. 
However, the field strains of H. talaca in all six loca-
tions revealed higher LCRs in 2018 (ranged from 
38.80 to 117.10) compared to 2019 (LCRs ranged 
from 10.92 to 42.79). Regarding quinalphos, the  LC50 
values for Kalchini population collected in 2018 and 
2019 and Harishpur and Kumai populations collected 
in 2019 were between 95.90 mg  L−1 and 139.58 mg 
 L−1.

Resistance of H. talaca field strains to two new 
recommended insecticides

Toxicities of new recommended insecticides against 
different field populations of H. talaca are listed in 
Table  3. Populations collected from Namchi, Tum-
song, Kalchini, Harishpur and Kumai in 2017–2019 
showed varying levels of resistance to emamec-
tin benzoate, while Kamalpur strain exhibited an 
increasing trend. For flubendiamide, the  LC50 val-
ues for Harishpur populations collected in 2017 and 
2019 and Kalchini population collected in 2018 were 

Table 1  Baseline 
susceptibilities of Lab/
Htal-IN population to 
selected insecticides

a Toxicity ranking of 
each insecticide for Lab/
Htal-IN according to their 
estimated  LC50 

Insecticides n total Slope (± SE) χ2 df LC50 (mg  L−1) Ranka 95% limits

Bifenthrin 7.9 SC 440 1.82 ± 0.29 0.23 4 1.27 6 0.82–1.44
Cyantraniliprole 10.26 OD 400 2.56 ± 0.35 1.12 4 0.72 2 0.45–1.24
Deltamethrin 2.8 EC 440 1.79 ± 0.48 2.59 4 2.86 7 2.03–3.90
Diflubenzuron 25 WP 520 1.18 ± 0.30 1.26 5 3.52 9 1.28–4.19
Emamectin benzoate 5 SG 400 1.91 ± 0.52 1.42 4 0.84 3 0.61–1.23
Flubendiamide 480 SC 400 2.42 ± 0.31 0.85 4 0.93 4 0.58–1.32
Pyridalyl 10 EC 360 0.86 ± 0.22 0.54 5 1.12 5 0.88–2.07
Quinalphos 25 EC 440 0.94 ± 0.15 2.16 4 3.24 8 2.72–4.08
Spinetoram 11.7 SC 360 1.69 ± 0.27 1.67 4 0.58 1 0.33–1.02
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between 68.71 and 88.24 mg  L−1. However, LCRs for 
Kalchini populations collected in 2017 and 2019 were 
relatively higher (> 110) than for Namchi populations 
(ranged from 16.43 to 33.52).

Resistance of H. talaca field strains to three novel 
bio-rational insecticides

The LCRs for cyantraniliprole ranged from 5.98 
to 120.98 for all the field populations collected and 
bioassayed in 2017–2019 (Table 4). The  LC50 value 
for Harishpur strain collected in 2018 was 73.83 mg 
 L−1, resembling that obtained for the Kalchini strain 
collected in 2019 (87.11  mg  L−1). For pyridalyl, all 
 LC50 values were significantly different from that of 
the Lab/Htal-IN. LCRs ranged from 9.09 to 77.09, 
13.47 to 39.26 and from 18.91 to 48.63 for all the 
field populations collected in 2017, 2018 and 2019, 
respectively. Out of six field strains bioassayed 
for spinetoram, Kalchini strain showed a very low 
level of resistance consistently (LCRs 5.96 to 9.03), 
while other populations displayed moderate to high 
level with LCRs in the range of 19.31 to 82.03 was 
observed.

Pairwise correlations between log LC50 values 
of tested insecticides

Correlation between conventional insecticides and 
new-generation biorational molecules was not sig-
nificant (P < 0.05) except emamectin benzoate, which 
was significant but negatively correlated with bifen-
thrin (Table 5). A significant correlation was audited 
between bifenthrin, deltamethrin and quinalphos 
(P < 0.01), whereas resistance to deltamethrin exhib-
ited no correlation with resistance to other molecules 
except bifenthrin (P < 0.05). Lack of cross-resistance 
was observed for cyantraniliprole, diflubenzuron, 
flubendiamide, pyridalyl and spinetoram in field pop-
ulations of H. talaca.

Discussion

Insecticide resistance of H. talaca has been stud-
ied very briefly and has rarely been documented 
(Roy et  al., 2021; Saha, 2016). The occurrence of 
traditional insecticides resistance along with new-
generation biorational molecules in H. talaca from 

major tea growing zones of North-East India is 
reported here for the first time. In the present study, 
it has been observed that LCRs were heterogeneous 
among the insecticides and also variable among sea-
sons, years and locations. This indicates the potenti-
ality of H. talaca field populations to develop resist-
ance to a wide range of insecticides.

In the case of pyrethroids, most of the field popu-
lations especially Kamalpur and Harishpur showed 
very high LCRs (> 90) to both bifenthrin and deltame-
thrin except the populations collected from Namchi 
(≤ 18.92). A similar level of poor toxicity of cyper-
methrin  (LC50 > 250  mg  L−1), another old-generation 
pyrethroid compound, was also found in the population 
of H. talaca collected in tea ecosystem of Darjeeling 
(Das et al., 2010). This could be linked to the common 
reliance on the use of synthetic pyrethroids against 
looper pest complex in these regions (Roy et al., 2017). 
The high LCRs to both bifenthrin and deltamethrin 
observed in the present study may be attributable to the 
impolitic use of different synthetic pyrethroid insecti-
cides (eight to ten applications per year) in most of the 
Darjeeling and Assam tea gardens (Gurusubramanian 
et  al., 2008). Moreover, the report of poor field effi-
cacy of deltamethrin at the recommended dose against 
H. talaca from North-Eastern tea estates of India 
(Basu Majumder et al., 2012), Spodoptera litura from 
China (Tong et  al., 2013) and Helicoverpa armigera 
from Pakistan (Hussain et al., 2014), corroborates our 
findings.

High to very high LCRs (> 100) to diflubenzuron 
encountered in the present investigation in Tumsong 
and Harishpur populations of H. talaca, could be 
imputed to the widespread usage of this IGR com-
pound by the tea growers over a long period (Guru-
subramanian et  al., 2008). In these areas, difluben-
zuron is among the most used IGR insecticides for 
the control of various insect pests of tea like tea 
mosquito bug, thrips, jassids etc. (Saha, 2016). In 
contrast, populations of H. talaca collected from 
Kumai, showed LCRs for diflubenzuron between 
10.92 and 38.80. The incidence of high efficacy of 
diflubenzuron in Kalimpong region is transparent 
from the results of previous literatures (Ghatak & 
Reza, 2007; Gurusubramanian & Borthakur, 2005), 
and this could be related to the decreasing resistance 
to this molecule. Besides, we hypothesized that the 
application of some ready-mix insecticides (difluben-
zuron + deltamethrin, novaluron + indoxacarb and 
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lufenuron + emamectin benzoate) has allowed the 
Kalimpong population of H. talaca to remain suscep-
tible to diflubenzuron. For example, susceptibility of 
Plutella xylostella (L.) to bifenthrin increased when 
this insecticide was mixed with indoxacarb, spinosad 
and emamectin benzoate (Attique et al., 2006). Simi-
larly, spraying cotton with pyrethroid and organo-
phosphate combinations has apparently prevented the 
development of pyrethroid resistance in the Helicov-
erpa armigera (Hübner) (Martin et al., 2000).

Considerable resistance to quinalphos observed in the 
present study could be attributed to the excessive appli-
cation of various OP insecticides in the tea ecosystem 
of Kalchini and Harishpur. H. talaca can be subjected 
to up to six applications of profenophos, dimethoate 
and phosalone per year (Gurusubramanian et al., 2008), 
used to mitigate the tea red spider mite and some 
phloem sap-sucking insect pests, which can also flour-
ish cross-resistance with quinalphos. Considering the 
verity that the aforesaid molecules are OP compounds, 
the similar chemistry as quinalphos, this is not a sudden 

consequence. Similar circumstance has been reported 
for Diaphorina citri (Pardo et al., 2018), Spodoptera exi-
gua (Ishtiaq et al., 2012) and Quadraspidiotus pernicio-
sus (Buzzetti et al., 2015), whereby the OP compounds 
showed the highest resistance for the populations col-
lected at places with the severe application of insecticides 
belonging to this class.

Members of new recommended insecticides against 
H. talaca (NPATG, 2016; PPC, 2019) exhibited varying 
levels of resistance, which will be conducive in creating 
management strategies. However, it is difficult to explain 
why emamectin benzoate and flubendiamide resulted in 
higher resistance in the Dooars and Assam populations, 
and comparison of the log  LC50 values of tested mol-
ecules showed incident of correlation within emamec-
tin benzoate and bifenthrin, which suggest a possibility 
of cross-resistance mechanism. This situation could be 
associated with two factors. First, the detoxification aug-
mentation causes metabolism resistance and involves 
some enzymes like general esterases (GEs) and glu-
tathione S-transferase (GSTs) have various isoenzymes 

Table 5  Pairwise correlation coefficient comparison among log  LC50 values of the selected insecticides on different field strains of 
Hyposidra talaca 

Superscripts impart the significance of regression
SCM Sodium Channel Modulators, RRM Ryanodine Receptor Modulators, ICB  Inhibitors of Chitin Biosynthesis affecting CHS1, 
GLUCL Glutamate−Gated Chloride Channel Allosteric Modulators, UMOA Unknown Mode of Action, ACHI Acetylcholinesterase 
Inhibitors, NACHR Nicotinic Acetylcholine Receptor Allosteric Modulators−Site 1

Bifenthrin 
(SCM)

Cyan-
traniliprole 
(RRM)

Deltamethrin 
(SCM)

Diflubenzu-
ron (ICB)

Emamectin 
benzoate 
(GLUCL)

Flubendiamide 
(RRM)

Pyridalyl 
(UMOA)

Quinalphos 
(ACHI)

Bifenthrin 
(SCM)

Cyan-
traniliprole 
(RRM)

0.294NS

Deltamethrin 
(SCM)

0.5380.011 0.456NS

Diflubenzuron 
(ICB)

0.153NS 0.629NS 0.251NS

Emamectin 
benzoate 
(GLUCL)

 − 0.4610.029 0.158NS  − 0.462NS 0.859NS

Flubendiamide 
(RRM)

0.259NS 0.546NS 0.080NS 0.013NS 0.259NS

Pyridalyl 
(UMOA)

 − 0.426NS 0.406NS 0.135NS 0.094NS 0.381NS 0.198NS

Quinalphos 
(ACHI)

0.2940.008 0.324NS 0.3090.003 0.330NS 0.485NS  − 0.451NS 0.296NS

Spinetoram 
(NACHR)

0.189NS 0.580NS  − 0.065NS 0.028NS 0.311NS 0.120NS 0.328NS 0.047NS
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(Das & Mukhopadhyay, 2014; Prasad & Mukhopadhyay, 
2015; Roy et al., 2021). Cross-resistance might be pos-
sible when a single molecule selects specific isoenzymes, 
which can act on other molecules. We hypothesized that 
the significant correlation between emamectin benzo-
ate and bifenthrin is due to the association of bifenthrin 
selected specific isoenzymes with the emamectin. A sig-
nificant higher correlation between emamectin benzo-
ate and abamectin has been reported from Spodoptera 
litura in Pakistan (Ahmad et al., 2008), our study does 
not derive this result, although both the molecules bind 
to the GABA-gated chloride channel. Second, lack of 
recommended dose-dependent application of both ema-
mectin benzoate and flubendiamide in the tea estates of 
Dooars and Assam compared to Darjeeling since 2016 
(Roy et al., 2021). A piece of relevant information should 
be kept in mind that Darjeeling tea is plucked in the form 
of “two leaves and a bud” to produce high-quality green, 
black, white and oolong tea through partial oxidation 
(Gohain et al., 2012), while Dooars and Assam tea are 
used to produce CTC (crush, tear, curl) tea through full 
oxidation process and fine plucking is not done (Laskar 
& Thappa, 2015). For this reason, degradation of applied 
insecticides is found to be more spontaneous in Dooars 
and Assam tea than that of Darjeeling tea while process-
ing (Bajwa & Sandhu, 2014; Pan et  al., 2015), which 
might be attributable to the improper usage of flubendi-
amide and emamectin benzoate by the tea growers of for-
mer and subjected to higher LCR than the later.

Like flubendiamide, high LCRs to cyantraniliprole 
found in both Kalchini and Harishpur populations 
of H. talaca, could be linked with cross-resistance 
between these compounds belong to the same chemi-
cal group or act of similar detoxification enzymes. 
Pyridalyl and spinetoram exhibited low to high LCRs 
in different field-collected strains of H. talaca. The 
minimal usage of newer molecules is also associated 
with their high market price, which many small tea 
growers could not afford. However, it is important 
to note that blending newer molecules with tradi-
tional insecticides is a very common practice among 
the tea growers (Saha, 2016), may annul the benefits 
of insecticide combinations. Such irrational tank-
mix formulations can also result in cross or multiple 
resistance that may exaggerate across another class 
of chemistry, further ensnaring pest management 
(Ahmad et al., 2009). On the other hand, an interest-
ing thing observed in the present study that the Nam-
chi populations of H. talaca showed low levels of 

toxicity against emamectin benzoate and spinetoram 
compared with OP and pyrethroid insecticides. The 
high LCRs to these novel molecules may be attribut-
able to the significant use of some microbial deriva-
tive insecticides in Sikkim. In January 2016, the Sik-
kim government declared the state as the first organic 
state of India (Gopi et  al., 2016; Meyer, 2019). On 
this circumstance, many farmers possibly started 
to use some green level insecticides like emamectin 
benzoate and spinetoram as biologically originated 
“semi-organic” inputs to combat various insect and 
mite pests of crops including tea (Buragohain, 2020; 
Rao, 2017), which could be linked to the present 
observation.

H. talaca has recently emerged as a serious defoliator 
of tea in North-Eastern India and the control of this pest 
has relied solely on chemical insecticides. Due to the lack 
of suitable resistance management strategies, calendar-
based application of pesticides is a general practice among 
the tea producers, which could be the most probable cause 
for the development of insecticide resistance. However, 
the findings gathered in the present study have poten-
tially significant conjugations for insecticide resistance 
management. The implementation of a resistance man-
agement plan is suggested, especially in locations where 
H. talaca has developed very high levels of resistance to 
newer insecticides. Some alternative management prac-
tices like crop sanitation (Roy et al., 2013), augmentation 
of natural predators and parasitoids (Sinu et al., 2011), use 
of microbial insecticides like nuclear polyhedrosis virus 
(Ghosh et al., 2015; Sinu et al., 2015) and some botanicals 
(Roy et al., 2015) and rotation of insecticide classes (Roy 
et al., 2017) could be included in the plan. Also, the use of 
highly resistant molecules could be suspended at the con-
cerned areas for a few years to increase the susceptibility 
of H. talaca populations against those molecules in the 
coming future. Therefore, an extensive IPM programme 
along with appropriate insecticide resistance management 
techniques will be the ideal option for successful control 
of this black looper on tea in India.
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