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Abstract Owing to advancements in artificial intelligence

(AI) and specifically in machine learning, information

technology (IT) systems can support humans in an

increasing number of tasks. Yet, previous research indi-

cates that people often prefer human support to support by

an IT system, even if the latter provides superior perfor-

mance – a phenomenon called algorithm aversion. A pos-

sible cause of algorithm aversion put forward in literature

is that users lose trust in IT systems they become familiar

with and perceive to err, for example, making forecasts that

turn out to deviate from the actual value. Therefore, this

paper evaluates the effectiveness of demonstrating an AI-

based system’s ability to learn as a potential countermea-

sure against algorithm aversion in an incentive-compatible

online experiment. The experiment reveals how the nature

of an erring advisor (i.e., human vs. algorithmic), its

familiarity to the user (i.e., unfamiliar vs. familiar), and its

ability to learn (i.e., non-learning vs. learning) influence a

decision maker’s reliance on the advisor’s judgement for

an objective and non-personal decision task. The results

reveal no difference in the reliance on unfamiliar human

and algorithmic advisors, but differences in the reliance on

familiar human and algorithmic advisors that err. Demon-

strating an advisor’s ability to learn, however, offsets the

effect of familiarity. Therefore, this study contributes to an

enhanced understanding of algorithm aversion and is one

of the first to examine how users perceive whether an IT

system is able to learn. The findings provide theoretical and

practical implications for the employment and design of

AI-based systems.

Keywords Algorithm aversion � Artificial intelligence �
Machine learning � Decision support � Advice taking

1 Introduction

Artificial intelligence (AI) research has extended the

capabilities of information technology (IT) systems to

support or automate tasks, such as medical diagnosis, credit

card fraud detection, and advertising budget allocation

(Anthes 2017). Accordingly, the deployment of AI-based

systems, i.e. IT systems employing capabilities developed

in AI research, is supposed to change substantially how

businesses operate and people work (vom Brocke et al.

2018; Ransbotham et al. 2017). AI researchers employ

various approaches to realize new capabilities, yet many

promising achievements are based on machine learning

(Jordan and Mitchell 2015). Market research companies

predict the market for IT systems employing machine

learning to grow with double-digit rates over the upcoming
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years (Columbus 2020). Regardless of the specific problem

domain, machine learning allows equipping IT systems

with the ability to learn, i.e. the capability to improve in

performance over time (Faraj et al. 2018). Such AI-based

systems can assist users in various situations concerning

their business and private life (Maedche et al. 2019).

A particularly important machine learning use case is

the support of decisions. Decision support systems (DSS)

have evolved in several waves in the past and the appli-

cation of machine learning promises another leap forward

(Watson 2017). Yet, existent decision-making and infor-

mation systems (IS) research suggests that people can be

reluctant to accept support from or delegate decisions to

DSS – a phenomenon called algorithm aversion (Dietvorst

et al. 2015; Castelo et al. 2019).1 This phenomenon con-

stitutes a serious issue for businesses employing DSS:

Since even simple algorithms can outperform humans in

many decision tasks (Kuncel et al. 2013; Elkins et al.

2013), rejecting the advice of DSS often leads to inferior

decisions. Furthermore, potential gains of combining

human and algorithmic insights (Dellermann et al. 2019)

cannot be realized if decision makers are unwilling to take

algorithmic advice into account.

Previous studies, however, reached conflicting conclu-

sions regarding the conditions under which algorithm

aversion emerges (Logg et al. 2019). Specifically, there is a

debate about whether people generally prefer human

advice to algorithmic advice (Castelo et al. 2019) or

whether people’s reliance on an algorithm only decreases

after becoming familiar with the algorithm, which means to

observe its performance (Dietvorst et al. 2015). Existing

research has suggested various causes for algorithm aver-

sion (Burton et al. 2020). A prominent idea among those

studies is that people are less forgiving toward erring

algorithms than toward erring humans (Dietvorst et al.

2015) because people disregard the possibility that algo-

rithms can overcome their shortcomings and grow from

them. In the context of decision support, erring means to

provide advice that in the end turns out to be not fully

accurate as is common for decisions under uncertainty.

Accordingly, people tend to rely less on an algorithmic

advisor than on a human advisor after becoming familiar

with the advisor and observing the advisor to err, even if

the erring algorithmic advisor objectively outperforms the

erring human advisor. In this study, we juxtapose the two

understandings of algorithm aversion in the context of

decision support to answer the following research question:

RQ1 Do people exhibit a general algorithm aversion or

do they prefer human to algorithmic decision support only

after observing that the decision support errs?

If people indeed shun erring algorithmic support

because they disregard the possibility that algorithms can

improve, demonstrating the opposite (i.e., an algorithm’s

ability to learn) should alleviate algorithm aversion.

However, existing research has not examined whether there

are differences in algorithm aversion to DSS with and

without the ability to learn. Therefore, we specifically

investigate whether demonstrating an algorithm’s ability to

learn can contribute to overcoming algorithm aversion. We

focus on the ability to learn for two reasons: Demonstrating

an algorithm’s ongoing improvement in performance to

users is theoretically intriguing because this design feature

may counter users’ algorithm aversion and consequently

increase their willingness to rely on particular AI-based

systems. Moreover, the increasing application of machine

learning in practice is especially relevant for tasks that

algorithms can support, such as classification or forecasting

(Jordan and Mitchell 2015). Therefore, we pose a second

research question:

RQ2 Does demonstrating an algorithm’s ability to learn

alleviate algorithm aversion?

To answer our research questions, we conducted an

incentive-compatible online experiment with 452 subjects.

Within this experiment, participants had to solve a fore-

casting task while deciding to what degree they would rely

on an erring advisor to increase their odds of receiving a

bonus. We manipulated the advisor to examine how its

nature (i.e., human vs. algorithmic), its familiarity to the

participants (i.e., unfamiliar vs. familiar), and its ability to

learn (i.e., non-learning vs. learning) affect the partici-

pants’ reliance on the advice. Our results do not indicate a

general aversion to algorithmic advice but a negative effect

of familiarity on the participants’ willingness to accept

algorithmic advice. However, if the algorithm is able to

learn, the negative effect of familiarity disappears.

Our study makes a major, threefold contribution to

research on algorithm aversion and the interaction with AI-

based systems: First, we shed light on the algorithm aver-

sion phenomenon by substantiating that becoming familiar

with an erring algorithm is an important boundary condi-

tion for this phenomenon. Second, we demonstrate that the

experience during the familiarization with an algorithm

plays a key role in relying on an algorithm’s advice. Third,

we provide first insights on an AI-based system’s ability to

learn as an increasingly important but hitherto underex-

plored design characteristic, which may counter algorithm

1 We acknowledge that an algorithm is a processing logic to solve a

task and that it is, thus, only a part of an IT system. Since previous

research has labeled the phenomenon addressed in this study as

algorithm aversion although users rather interact with IT systems than

with algorithms, we use the terms algorithm and IT system

interchangeably in this study. The same applies to the terms

algorithmic advisors and DSS.
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aversion. Thereby, we answer the call for research on

individuals’ interaction with AI-based systems (Buxmann

et al. 2019). Our findings also hold important implications

for the design and employment of continually learning

systems. Specifically, developers may seek to emphasize

these systems’ ability to learn in order to enhance users’

tolerance for erring advice and, thus, reliance on support

from AI-based systems.

2 Theoretical Foundations

2.1 Algorithm Aversion

The literature on algorithm aversion is rooted in the con-

troversy over the merits of clinical (i.e., based on deliberate

human thought) and actuarial (i.e., based on statistic

models) judgement in different domains, such as medical

diagnosis and treatment (Meehl 1954; Dawes 1979; Dawes

et al. 1989; Grove et al. 2000). Overall, this research

concludes that actuarial data interpretation is superior to

clinical analysis but that humans nevertheless show a ten-

dency to resist purely actuarial judgement. This resistance

extends to the use of algorithmic decision support when

compared to human advice (Promberger and Baron 2006;

Alvarado-Valencia and Barrero 2014). Evidence from IS

research supports these findings: For instance, Lim and

O’Connor (1996) demonstrate that people underutilize

information from DSS when making decisions. Elkins et al.

(2013) find that expert system users feel threatened by

system recommendations contradicting their expertise and

thus tend to ignore these recommendations. Furthermore,

the results by Leyer and Schneider (2019) indicate that

managers are less likely to delegate strategic decisions to

an AI-based DSS than to another human. While most

empirical evidence supports the existence of algorithm

aversion, other studies observed an appreciation of algo-

rithmic advice (Dijkstra et al. 1998; Logg et al. 2019) or

even an exaggerated reliance on AI-based systems (Dijk-

stra 1999; Wagner et al. 2018). Similarly, Gunaratne et al.

(2018) reveal that humans tend to follow algorithmic

financial advice more closely than identical crowdsourced

advice. Therefore, our study seeks to contribute toward

untangling these contradicting findings. Table A1 in the

digital online appendix (available online via http://link.

springer.com) provides an overview of recent studies on

algorithm aversion.

When comparing studies on algorithm aversion, it is

important to note that two differing understandings of the

term algorithm aversion exist (Dietvorst et al. 2015; Logg

et al. 2019). Dietvorst et al. (2015) coined the term for the

choice of inferior human over superior algorithmic judge-

ment. However, their study specifically shows that people

shun algorithmic decision making after having interacted

and thus becoming familiar with the particular system. The

commonly proposed reason for this behavior is that users

devalue algorithmic advice after observing the algorithm to

err, which means following the algorithmic advice still

holds the risk of making suboptimal decisions (Prahl and

Van Swol 2017; Dietvorst et al. 2015; Dzindolet et al.

2002). In contrast, other studies require participants to

decide about their reliance on algorithmic advice before

becoming familiar with the algorithm’s performance

(Castelo et al. 2019; Longoni et al. 2019; Logg et al. 2019).

These differences result in two varying understandings of

what algorithm aversion is: unwillingness to rely on an

algorithm that a user has experienced to err versus general

resistance to algorithmic judgement. Our study aims at

improving our understanding of algorithm aversion by

investigating both understandings of this phenomenon in

one common setting.

Previous research has suggested manifold predictors of

algorithm aversion, such as the perceived subjectivity and

uniqueness of tasks (Castelo et al. 2019; Longoni et al.

2019), the decision maker’s expertise (Whitecotton 1996)

as well as the algorithm’s understandability (Yeomans

et al. 2019). Burton et al. (2020) assorted possible causes of

algorithm aversion into five categories: decision makers’

false expectations regarding the algorithms’ capabilities

and performance, lack of control residing with the decision

maker, incentive structures discriminating against the use

of algorithmic decision support, incompatibility of intuitive

human decision making and algorithmic calculations, and

conflicting concepts of rationality between humans and

algorithms. This study addresses the first of these cate-

gories: It specifically deals with the reasoning that people

are less lenient toward algorithms than toward other

humans because people expect algorithms to be perfect and

do not believe that algorithms can overcome their errors

(Dietvorst et al. 2015; Dawes 1979), whereas humans gain

experience over time (Highhouse 2008). If this reasoning

were true, then people should exhibit lower aversion

toward an erring algorithm demonstrating the ability to

learn than toward an erring algorithm that does not

demonstrate the ability to learn. Existent studies have

suggested several measures to enhance the use of DSS:

allowing for minor adjustments of the algorithm by the

decision maker (Dietvorst et al. 2018); improving the

system design (Fildes et al. 2006; Benbasat and Taylor

1978); and training decision makers in the DSS use (Green

and Hughes 1986; Mackay and Elam 1992). However,

despite the increasing application of machine learning, we

do not yet know how decision makers react to advice by

AI-based systems that demonstrate the ability to learn and,

thus, perceivably improve over time. We address this

research gap in this study.
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2.2 Ability to Learn

AI researchers employ various approaches to realize

computational capabilities (Russell and Norvig 2010). The

approach that enabled most of the recent breakthroughs in

AI research is machine learning (Jordan and Mitchell

2015). Mitchell (1997, p. 2) defines machine learning as

follows: ‘‘A computer program is said to learn from

experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.’’ Specifically,

machine learning allows equipping systems with func-

tionalities via data-based training instead of manual cod-

ing. We refer to such systems as AI-based systems because

machine learning is part of the AI domain. Owing to

algorithmic improvements, the increasing availability of

training data, and decreasing costs of computation,

machine learning has spurred substantial progress in the

realization of several computational capabilities, such as

computer vision, speech recognition, natural language

processing, and decision support within AI-based systems

(Jordan and Mitchell 2015).

When incorporating machine learning in IT systems, we

can distinguish between training prior to system deploy-

ment (until the system meets specific performance thresh-

olds) and ongoing (i.e., continual) learning after system

deployment (Parisi et al. 2019). The latter is necessary if

the available data is insufficient to train the system up to a

desired level or if the system must be able to adapt to

varying environmental conditions or user characteristics.

For instance, DSS that depend on their users’ personal

information suffer from a cold-start problem at the begin-

ning of their use (Liebman et al. 2019). Among continually

learning systems, we can further differentiate between

those that explicitly involve users in the learning process

(i.e., interactive or cooperative learning) and those that

implicitly improve over time (Amershi et al. 2014; Saun-

ders et al. 2016). In case of explicit learning, the user is part

of the training loop and can exert influence on the process.

Examples of explicit learning applications are data labeling

(Wang and Hua 2011) and video game design (Seidel et al.

2018). Implicit learning systems improve over time without

depending on explicit user feedback by either relying on

other data sources or observing users’ behavior. Search

engines, for instance, optimize the ranking of their search

results by drawing upon clickstream data (Joachims and

Radlinski 2007).

Whereas previous research has investigated the human

role in interactive learning settings (Amershi et al. 2014),

little is known about users’ reactions toward implicit

learning systems. Zhang et al. (2011) show that retailer

learning conceptualized as the quality of personalized

product recommendations on an e-commerce website

reduces customers’ product screening and evaluation costs

while enhancing decision-making quality. Besides this

study, we are not aware of research that has investigated

whether humans perceive the ability to learn of AI-based

systems and, if so, which consequences these perceptions

have. Given the increasing use of machine learning and

early calls for research on this matter (Liang 1987), our

study seeks to provide first evidence on AI-based system

users’ perceptions of the ability to learn.

3 Hypotheses Development

The common result of early research on the appreciation of

algorithmic judgement is that people generally prefer

human judgement despite its oftentimes inferior quality

(Dawes et al. 1989). However, recent research findings on

the effects of advisor nature (i.e., human or algorithmic)

challenge this conclusion: On the one hand, underutiliza-

tion of algorithmic advice may at least partially reflect the

decision maker’s overconfidence and egocentric advice

discounting (Logg et al. 2019; Soll and Mannes 2011).

Therefore, it is important to compare the reliance on

algorithmic judgement not against the decision maker’s

own judgement but against the reliance on another human’s

judgement. On the other hand, several studies on algorithm

aversion have employed tasks, such as recommending

jokes (Yeomans et al. 2019) or medical treatment (Prom-

berger and Baron 2006). The quality of decisions in these

settings is often subjective or depends on the decision

maker’s personal characteristics (Longoni et al. 2019;

Castelo et al. 2019). However, Castelo et al. (2019) show

that algorithm aversion reduces if people perceive tasks to

be more objective. Logg et al. (2019) and Gunaratne et al.

(2018) even gather evidence for algorithm appreciation in

several numeric forecasting tasks. The control group find-

ings by Dietvorst et al. (2015) and the results by Prahl and

Van Swol (2017) substantiate the idea of algorithm

appreciation unless people have become familiar with an

erring algorithm’s performance. Following this recent

evidence, we suggest that in a decision task with an

objectively measurable outcome that is independent of the

decision maker’s personal characteristics, there is no rea-

son to generally devalue advice from an algorithm the

decision maker is not familiar with. Instead, human deci-

sion makers may even favor algorithmic advice because an

algorithmic advisor’s abilities are complementary to their

own while those of a human advisor are not (Prahl and Van

Swol 2017; Dellermann et al. 2019; Dawes 1979).

Accordingly, we hypothesize:
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H1 For an objective and non-personal decision task,

human decision makers exhibit algorithm appreciation if

they are unfamiliar with the advisor’s performance.

While the literature generally offers mixed results

regarding preferences for advisor nature, there is clear

evidence of experience with an erring algorithmic advisor

having a negative effect on the reliance on this advisor

(Dietvorst et al. 2015; Prahl and Van Swol 2017). An

important precondition for this effect is that the experience

with the algorithmic advisor allows decision makers to

determine that the advisor errs. Otherwise, people tend to

continually rely on incorrect advice (Dijkstra 1999). A

common explanation for this phenomenon is that people

expect an algorithm’s advice to be perfect (Dzindolet et al.

2002; Highhouse 2008). However, in decisions under

uncertainty neither humans nor algorithms can provide

perfect advice. A disconfirmation of this expectation then

leads to lower reliance on the algorithm compared to a

similarly performant or even inferior human (Dietvorst

et al. 2015). This reasoning is also in line with IS research

on continued system use (Bhattacherjee and Lin 2015).

Following the call by Castelo et al. (2019) for more

research on how experience with algorithms influences

their use, we thus propose:

H2a For an objective and non-personal decision task,

familiarity with an advisor’s performance moderates the

effect of advisor nature on a human decision maker’s

reliance on the advice if the advisor errs.

H2b For an objective and non-personal decision task,

human decision makers rely more on the advice of an

unfamiliar algorithm than on the advice of a familiar

algorithm if the advisor errs.

H2c For an objective and non-personal decision task,

human decision makers exhibit algorithm aversion if they

are familiar with the advisor’s performance and the advi-

sor errs.

If experiencing an algorithm to err causes a deterioration

of reliance on this algorithm’s advice owing to unmet

performance expectations (Dzindolet et al. 2002; Prahl and

Van Swol 2017), a positive experience of an algorithm’s

performance may conversely encourage a decision maker

to rely on the algorithm (Alvarado-Valencia and Barrero

2014). In their study of algorithm aversion, Dietvorst et al.

(2015) measured a set of beliefs about differences between

human and algorithmic forecasts from the participants’

perspective. While the participants thought that algorithms

outperformed humans in avoiding obvious mistakes and

weighing information consistently, they strongly believed

that humans were much better than algorithms at learning

from mistakes and improving with practice. However, in

light of the recent technological advances in AI and the

increasing use of machine learning (Jordan and Mitchell

2015), these beliefs are not necessarily accurate, especially

in the domain of objective and non-personal decision tasks.

Likewise, we suggest that an algorithm’s ability to learn

(i.e., to improve over time) can reduce the detrimental

effect that familiarity with an erring algorithm has on the

decision maker’s reliance on the algorithm’s advice. Nat-

urally, this is only possible if users can recognize the

algorithm’s ability to learn, which means the algorithm

must demonstrate this ability. Furthermore, we expect this

effect to hold only for algorithmic advisors because human

advisors are expected to be able to learn. Therefore, our last

hypotheses are:

H3a For an objective and non-personal decision task,

demonstrating an advisor’s ability to learn moderates the

effect of advisor nature on the reliance on a familiar and

erring advisor.

H3b For an objective and non-personal decision task,

human decision makers rely more on the advice of a

familiar and erring algorithm with the ability to learn than

on the advice of a familiar and erring algorithm without

this ability.

H3c For an objective and non-personal decision task,

human decision makers do not exhibit algorithm aversion if

they are familiar with the advisor’s performance and the

advisor is erring but has the ability to learn.

Overall, we suggest that the nature of an advisor in an

objective and non-personal decision task has an effect on

the decision maker’s reliance on the advice in favor of an

algorithmic advisor (H1). However, becoming familiar

with the advisor’s performance before deciding whether to

rely on its advice moderates this effect if the advisor errs

(H2a). As a result, the reliance on a familiar and erring

algorithmic advisor is lower than the reliance on an unfa-

miliar algorithmic advisor (H2b) and lower than the reli-

ance on a familiar and erring human advisor (H2c). Lastly,

an algorithm’s ability to learn moderates the effect of

advisor nature on the reliance on a familiar advisor (H3a)

such that the ability to learn increases the reliance on a

familiar and erring algorithmic advisor (H3b) and resolves

algorithm aversion (H3c).

4 Method

4.1 Experimental Design and Procedure

To test the hypotheses, we conducted an incentive-com-

patible online experiment in accordance with most research

on algorithm aversion (Burton et al. 2020). An online
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experiment fitted the purpose of our study because it

allowed us to measure the potential effects precisely and

with high internal validity. Our experiment had a between-

subject design with manipulations of advisor nature (hu-

man vs. algorithmic), familiarity (non-familiar vs. famil-

iar), and ability to learn (non-learning vs. learning). Since

the ability to learn can affect decision makers’ behavior

only if they are familiar with the advisor, we could not

employ a traditional full factorial design. Instead, we

subdivided the experimental groups becoming familiar

with the advisor into those experiencing a non-learning and

those experiencing a learning advisor. Table 1 depicts our

experimental design.

In our online experiment, we asked the participants to

make a forecast within a business setting. The experimental

procedure comprised six steps (see Fig. 1): In the first step,

we welcomed all the participants and instructed them to

answer all questions thoroughly. Furthermore, we informed

them about the presence of attention checks, the monetary

incentivization, and the payment modalities. The second

step encompassed the introduction of our experimental

setting. We asked the participants to imagine working as a

call center manager and being responsible for the staffing.

The call center had just recently acquired a new client. The

number of incoming calls for this client’s hotline opera-

tions now had to be estimated on a regular basis to make

appropriate staffing decisions. The participants’ task was to

estimate the number of incoming calls for a specific day

and the accuracy of their estimation partly determined their

remuneration for taking part in the study. Accordingly, the

participants had an incentive to put their best effort in the

estimations. We chose this task because it is a common

forecasting problem in business, of objective and non-

personal nature, and suitable for machine-learning-based

IT support (Ebadi Jalal et al. 2016; Fukunaga et al. 2002).

The participants received several aids, which enabled them

to make sophisticated estimations. First, we told the par-

ticipants that the number of calls on an average day would

be 5000. Second, the participants received information

about six variables influencing the number of calls on a

specific day:

• The quarter of the year (ranging from Q1 to Q4);

• The day of the month (ranging from 1 to 31);

• The day of the week (ranging from Monday to Friday);

• The running of a promotion campaign (either yes or

no);

• The recent sales (in percent below or above average);

and

• The recent website traffic (in percent below or above

average).

For all of these variables, we provided the participants

with a short explanation about their effects on the number

of incoming calls. Third, the participants received an

advisor’s estimation based on the six variables’ specific

values on the date for which the participants had to make

their forecast. Lastly, we told the participants that they had

to make eight training estimations before their final and

incentivized estimation.

After receiving this information, the participants had to

answer several comprehension questions before proceeding

to the third step of the experimental procedure (see

Table A7 in the digital appendix). This third step com-

prised the eight training estimations and was inspired by

Dietvorst et al.’s (2015) experimental setting. This training

phase was necessary to ensure that the participants could

become familiar with the advisor. The participants in the

conditions of not becoming familiar with the advisor had a

training phase without the advisor to prevent confounds

that could potentially distort the results. After completing

the training estimations, we once more informed the par-

ticipants that their ninth and final estimation (i.e., serious

phase) would determine the variable share of their pay-

ment. The final forecast constituted the fourth step of the

experiment and included the measurement of the dependent

variable. This step was followed by a post-experimental

questionnaire containing control and demographic vari-

ables (step 5). In the sixth and last step, we informed the

participants about the accuracy of their final estimation and

provided them with payment details.

4.2 Experimental Treatments

We administered our experimental treatments in the second

and third step of the experimental procedure. In H-U and

A-U (i.e., the unfamiliar advisor conditions), the partici-

pants read in the scenario explanation that they would

familiarize themselves with the task during the eight

training estimations. However, for the ninth estimation,

which determined the participants’ bonus payments, they

would receive an advice from an advisor. Depending on the

experimental condition, we introduced the advisor either as

an ‘‘Industry Expert’’ (H-U) with long-standing experience

in the field or as a ‘‘Prediction Software’’ (A-U) with a

Table 1 Experimental design

Human Algorithmic

Unfamiliar H-U A-U

Familiar Non-learning H-F-N A-F-N

Learning H-F-L A-F-L
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long-standing product history in the field. As such, the

participants knew from the beginning that they would

encounter an advisor in the last stage of the scenario. In

contrast to H-U and A-U, we explained the remaining

groups (i.e., the familiar advisor conditions) that they

would also receive advice throughout the training estima-

tions in the scenario. The advisor introductions for H-F-N

and H-F-L were the same as for H-U (i.e., the human

advisor conditions) and the advisor introductions for A-F-

N and A-F-L were the same as for A-U (i.e., the algo-

rithmic advisor conditions).

The eight training estimations in the third step of the

experiment proceeded as follows: For each round, we

showed the participants a specific date along with the levels

of the six variables listed in the last section. We selected

the eight dates randomly and presented them to the par-

ticipants in chronological order. While the levels of the first

three variables (quarter of the year, day of the month, and

day of the week) depended on the chosen date, we gener-

ated the levels for the remaining variables (promotion

campaign, recent sales, and website traffic) randomly for

each of the dates. All the participants saw the same dates

and the same variable levels in the same order. Based on

the six variable levels, we calculated a true number of calls

for each date, which the participants did not know but had

to estimate. The digital appendix contains an explanation

of the exact calculations (Tables A2–A6). At the end of

each training round, we revealed the true value to the

participants such that they could evaluate the accuracy of

their estimation. In H-U and A-U, this happened immedi-

ately after the participants had submitted their estimations

because no advisor was involved in these conditions. In the

other groups, the participants received the advisor estima-

tion after submitting their estimation but before receiving

the true value. The participants in these conditions could,

thus, not only evaluate their own but also the advisor’s

estimation performance, i.e. becoming familiar with the

advisor. The advisor estimations did not differ between

human and algorithmic advisors but between non-learning

(H-F-N and A-F-N) and learning advisors (H-F-L and A-F-

L). While advisors of either nature erred, the learning

advisor continually improved in performance, whereas the

non-learning advisor did not (see Fig. 2). The average

change in prediction errors from round to round (i.e., the

error fluctuation) was the same for both types of advisors

(12.3%). However, the non-learning advisor had a lower

average prediction error (5.5%) than the learning advisor

(6.3%). Furthermore, both types of advisors had the same

accuracy in the eighth round (4.5%). Accordingly, a

favorable perception of the learning advisor is

attributable neither to overall performance advantages

during the training nor to a lower prediction error in the

eighth training round, which might have caused unintended

recency effects on the following incentivized estimation.

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Instructions Scenario
Explanation

Training Phase
Round 1-8

Serious Phase
Round 9

Post-Experiment
Questionnaire

Final Information

Own estimation

Advisor estimation

Actual number

Call center

Actual number of 
round 9

Bonus 

Only H-F & A-F

Own estimation

Advisor estimation

Revised estimation

Fig. 1 Experimental procedure
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The convex shape of the learning curve with decreasing

performance gains based on additional data corresponds to

the learning pattern of machine learning algorithms when

applied in new contexts as represented by the new call

center client in our scenario (NVIDIA Corporation 2020).

To ascertain that the advisor’s estimations were not too

far from or too close to the participants’ estimations and

thus created unintended confound, we conducted a pretest

with 248 participants from Amazon Mechanical Turk. The

participants had to provide estimations in a scenario similar

to our final experiment. The average prediction error of the

participants’ estimations was 5.5%. Therefore, we designed

the advisors’ estimations in our actual experiment to have a

similar prediction error on average.

Lastly, we conducted a second pretest with 267 partic-

ipants from Amazon Mechanical Turk experiencing one of

the six treatments to examine whether our experimental

treatments would work as intended. We used manipulation

checks for perceived learning (e.g., ‘‘The Prediction Soft-

ware gained a good understanding of how to properly

estimate the number of calls.’’) by Alavi et al. (2002),

anthropomorphism (e.g., ‘‘The source of advice is …’’

‘‘machinelike … humanlike’’) by Bartneck et al. (2009) and

Benlian et al. (2020), and familiarity with the advisor (e.g.,

‘‘Overall, I am familiar with the Industry Expert’’) by

Gefen (2000) and Kim et al. (2009). Table A11 in the

digital appendix contains the manipulation checks. The

results of the second pretest indicated that all treatments

would work as intended: First, H-F-L and A-F-L exhibited

a significantly higher level of perceived learning than H-F-

N and A-F-N (F = 5.53, p\ 0.05). Second, H-F-N, H-F-L,

A-F-N, and A-F-L exhibited a significantly higher level of

familiarity than H-U and A-U (F = 3.00, p\ 0.1). Lastly,

H-U, H-F-N, and H-F-L exhibited a significantly higher

level of anthropomorphism than A-U, A-F-N, and A-F-L

(F = 4.46, p\ 0.05).

4.3 Measures

The measurement of our dependent variable was part of the

incentive-compatible estimation (step 4) in our experiment.

Previous studies on algorithm aversion made use of dif-

ferent instruments to measure a decision maker’s reliance

on advice. Whereas a number of studies required their

participants to fully rely on either the advice or their own

judgement (Dietvorst et al. 2015), we chose to use a more

fine-grained measure. Specifically, we followed Logg et al.

(2019) in employing the judge-advisor paradigm (Sniezek

and Buckley 1995) to measure the advisor’s influence on

the decision maker. In the context of our experiment, this

framework requires the decision maker to provide an initial

estimation before receiving the advisor’s estimation (like

during the training phase in step 3) and an adjusted esti-

mation after receiving the advice, which was not the case in

the training estimations. The decision maker’s initial esti-

mation, adjusted estimation, and the advisor’s estimation

then allow calculating the weight of advice (WOA):

WOA ¼ adjusted estimation� initial estimation

advisor0s estimation� initial estimation

A WOA of 0 means that decision makers do not adjust

but remain with their initial estimation and thus ignore the

advice. In contrast, a WOA of 1 represents a full adoption

of the advisor’s estimation. Any values in between reflect

the degree to which decision makers take their initial

estimation and the advisor’s estimation into account for

their adjusted estimation. Values below 0 or above 1 may

also occur if decision makers believe that the true value lies

outside the interval of their initial and the advisor’s esti-

mation. Whereas several studies decide to winsorize such

values (Logg et al. 2019), we retained these values as they

were. Departing from the advisor’s estimation (WOA\ 0)

or overweighting the advisor’s estimation (WOA[ 1) may

be due to the participants’ deliberate choices depending on

their experience with their own and the advisor’s
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Fig. 2 Prediction errors of

advisors for each training round
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performance in the training phase (Prahl and Van Swol

2017). Based on the WOA values within the different

experimental groups, we intended to apply bootstrapped

moderation analyses to test H2a as well as H3a and

ANOVAs with planned contrasts to test the remaining

hypotheses.

Besides our dependent variable, we measured several

control and demographic variables in the post-experimental

questionnaire (see Tables A8 and A9 in the digital

appendix). Among those were the participants’ trusting

disposition (Gefen and Straub 2004), personal innovative-

ness (Agarwal and Prasad 1998), experience in working for

call centers as well as calling hotlines, and knowledge

about call centers (based on Flynn and Goldsmith (1999)).

Furthermore, we asked the participants for their age, gen-

der, and education. Between the control and demographic

variables, we placed an attention check (see Table A10 in

the digital appendix). Lastly, we measured the participant’s

perceived realism of the scenario.

4.4 Data Collection

To collect sample data, we recruited participants from

Amazon Mechanical Turk, a viable and reliable crowd-

sourcing platform for behavioral research and experiments

(Karahanna et al. 2018; Behrend et al. 2011; Steelman et al.

2014). Using Amazon Mechanical Turk is a suitable sam-

pling strategy for our research, as it enables us to reach

users who are internet savvy but not expert forecasters.

Since experienced professionals have been shown to rely

less on algorithmic advice than lay people, our sample is

thus more conservative (Logg et al. 2019). We restricted

participation to users who are situated in the U.S. and who

exhibited a high approval rating (i.e., at least 95%) to

ascertain high data quality (Goodman and Paolacci 2017).

Moreover, we incentivized the attentive participation by

mentioning that participants could receive up to twice the

base payment as a bonus, depending on the accuracy of

their final estimation.

From 636 participants completing the questionnaire, we

removed those who failed the attention check or inserted

values for the incentivized ninth estimation below 100. We

further removed participants who exhibited outlier char-

acteristics in the ninth estimation in the form of excep-

tionally fast (i.e., less than 7 s) or slow (i.e., more than

99 s) estimation times in any of the estimations. The final

sample comprised 452 participants. Table 2 provides

descriptive information of the analyzed data set.

To confirm the participants’ random assignment to the

different experimental conditions based on our control and

demographic variables, we conducted Fisher’s exact tests

for the categorical variables and a MANOVA for the

metric variables. There are no significant differences in

trusting disposition, personal innovativeness, experience in

working for call centers as well as calling hotlines, and

knowledge about call centers between the six experimental

groups (all p[ 0.1). We also did not find differences

regarding demographics in terms of gender, age, or edu-

cation (all p[ 0.1). Lastly, the participants across all

groups indicated that they perceived the experiment as

realistic (mean = 5.6; std. dev. = 1.1).

5 Results

We tested our hypotheses by conducting a series of anal-

yses in IBM SPSS Statistics 25.

To test H1 – the effect of advisor nature on WOA if the

advisors are unfamiliar – we conducted an ANOVA com-

paring H-U with A-U. The test revealed no significant main

effect between the two groups (F = 2.14, p[ 0.1). As

such, H1 is not supported in that the participants do not

significantly rely more on the unfamiliar algorithmic

advisor than on the unfamiliar human advisor.

For H2a, we conducted a bootstrap moderation analysis

with 10,000 samples and a 95% confidence interval (CI)

with data from H-U, A-U, H-F-N, and A-F-N to test

whether familiarity moderates the effect of advisor nature

(Hayes 2017, PROCESS model 1). The results of our

moderation analysis (see Fig. 3) show that familiarity

Table 2 Descriptive sample information

Groups N Mean

WOA (%) Age Gender (male) (%)

H-U 68 58.0 40.6 45.6

A-U 83 74.6 41.5 54.2

H-F-N 72 64.2 39.3 44.4

A-F-N 70 39.9 40.0 54.3

H-F-L 70 54.9 39.1 35.7

A-F-L 89 63.6 38.1 52.8
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Fig. 3 Interaction plot for H-U, A-U, H-F-N, and A-F-N
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moderates the effect of advisor nature on WOA (interaction

effect = - 0.41, standard error = 0.18, p\ 0.05). Specifi-

cally, the effect of advisor nature reverses when the advisor

is familiar (effect = - 0.24, standard error = 0.13) com-

pared to when the advisor is unfamiliar (effect = 0.17,

standard error = 0.13), supporting H2a. To test H2b and

H2c, we conducted a two-way independent ANOVA with

planned contrasts among the same groups. The interaction

effect between advisor nature and familiarity is significant

(F = 5.20, p\ 0.05), thus confirming the results of our

moderation analysis. The pairwise comparison between

A-U and A-F-N (p\ 0.01) is significant and that between

H-F-N and A-F-N (p\ 0.1) is marginally significant.

These results provide support for H2b and weak support for

H2c.

For H3a, we conducted a bootstrap moderation analysis

with 10,000 samples and a 95% confidence interval with

data from groups H-F-N, A-F-N, H-F-L, and A-F-L to test

whether demonstrating the ability to learn moderates the

effect of advisor nature if the advisor is familiar (Hayes

2017, PROCESS model 1). The results of our moderation

analysis (see Fig. 4) show that demonstrating the ability to

learn moderates the effect of advisor nature on WOA (in-

teraction effect = 0.33, standard error = 0.16, p\ 0.05).

Specifically, the negative effect of interacting with an

algorithmic (vs. human) familiar advisor reverses when the

familiar advisor demonstrates the ability to learn (ef-

fect = 0.09, standard error = 0.11) compared to when the

familiar advisor does not learn (effect = - 0.24, standard

error = 0.12), supporting H3a. We again conducted a two-

way independent ANOVA with planned contrasts among

the same groups to test H3b and H3c. The interaction effect

between advisor nature and ability to learn is also signifi-

cant (F = 4.24, p\ 0.05), thus confirming the results of

our moderation analysis. Similarly, the pairwise compar-

ison between A-F-N and A-F-L is significant (p\ 0.05),

while the pairwise comparison between H-F-L and A-F-L

is not (p[ 0.1). These results support both H3b and H3c.

6 Discussion

Algorithm aversion has spurred controversial discussions

in previous research, which resulted in differing under-

standings of this phenomenon. In this study, we set out to

contribute toward clarifying what algorithm aversion is and

under which conditions algorithm aversion occurs. Previ-

ous studies have produced conflicting findings about

whether people are generally averse to algorithmic judge-

ment or avoid algorithms only if they perceive these

algorithms to err. Furthermore, we sought to investigate

whether demonstrating an algorithm’s ability to learn may

serve as an effective countermeasure against algorithm

aversion, given that this ability becomes increasingly

prevalent in AI-based systems. We studied these questions

by simulating a forecasting task within a business setting.

The accuracy of both the decision makers’ and the simu-

lated advisors’ estimations were objectively measurable

and did not depend on the decision makers’ personal

characteristics. These important boundary conditions are

true for many business decisions but should be considered

when comparing our results with those of earlier studies

(Castelo et al. 2019).

According to our results, humans do not generally (i.e.,

without being familiar with the advisor) prefer human to

algorithmic advice. While we hypothesized the opposite

(i.e., algorithm appreciation) to be true in the context of our

study, our findings do not support this claim. Instead, the

participants in our experiment relied to a similar degree on

advice coming from an unfamiliar human and an unfa-

miliar algorithmic advisor. The role of familiarity, how-

ever, distinguishes the two understandings of algorithm

aversion. Following the reasoning of Dietvorst et al.

(2015), people shun algorithmic but not human advice after

becoming familiar with the advisor. In other words,

familiarity with the advisor interacts with nature of the

advisor. The results of our experiment strongly support this

claim and, thus, the understanding of algorithm aversion

put forward by Dietvorst et al. (2015). Becoming familiar

with the advisor reduced the reliance on the algorithmic but

not on the human advisor despite their performance (i.e.,

the accuracy of their estimations in the training period)

being identical.

What are possible reasons for this interaction? We

adopted a line of argument from prior research, which

suggests that erring weighs more severely for algorithmic

than for human advisors because humans may overcome

their weaknesses while algorithms may not (Highhouse

2008; Dzindolet et al. 2002; Dietvorst et al. 2015). If this

were true, demonstrating an algorithm’s ability to learn

should reduce algorithm aversion. Therefore, we manipu-

lated the advisor’s performance during the training
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estimations, which allowed the participants to become

familiar with the advisor. Demonstrating the ability to learn

requires the advisor to improve during the training esti-

mations. This, in turn, means that the learning advisors

initially must have a higher prediction error than the non-

learning advisors to prevent strong performance differences

between them. Accordingly, demonstrating the ability to

learn means to elicit even higher algorithm aversion ini-

tially and compensating this disadvantage through

improvement over time. Indeed, our results show that users

honor an algorithm’s ability to learn. The participants in

our experiment relied more on the learning than on the non-

learning algorithmic advisor in their incentivized estima-

tion. Moreover, we could not find differences between

reliance on the learning algorithmic advisor and reliance on

the learning human advisor. These findings strongly sup-

port the idea that demonstrating an algorithm’s ability to

learn is a promising countermeasure against algorithm

aversion. Furthermore, our results indicate that people’s

beliefs about differences between humans’ and algorithms’

abilities to learn contribute to algorithm aversion. How-

ever, these beliefs are not necessarily accurate, given that

machine learning enables IT systems to overcome errors by

considering subsequent feedback on their performance.

Demonstrating an AI-based system’s ability to learn may,

thus, update these beliefs and prevent costly behavioral

biases in decision making.

7 Implications

Our findings hold important implications for understanding

decision makers’ reliance on AI-based systems under

uncertainty, thereby answering the call for research on

individuals’ reaction to and collaboration with AI-based

systems (Buxmann et al. 2019).

We contribute to previous literature on algorithm aver-

sion by comparing the reliance on an unfamiliar and a

familiar algorithmic advisor to the reliance on an unfa-

miliar and a familiar human advisor of identical perfor-

mance. Algorithm aversion was evident only if decision

makers were familiar with the advisor. Therefore, we rec-

ommend using the term algorithm aversion only for the

negative effect that familiarization with an algorithmic

advisor has on reliance on this advisor, as was initially

suggested by Dietvorst et al. (2015). Our results, further-

more, suggest that a general aversion to algorithmic

judgement does not exist in objective and non-personal

decision contexts. Different findings in early and recent

studies on this topic may partly stem from the growing

diffusion of algorithms in people’s everyday life and a

corresponding accustomation to algorithms.

Additionally, we show that the experience during

familiarization determines the effect that becoming famil-

iar with an algorithmic advisor has on relying on this

advisor. We argue that if the experience does not meet

decision makers’ expectations of the advisor, the decision

makers’ reliance decreases. This is a reasonable reaction.

However, if decision makers’ expectations of an algorith-

mic advisor are overly high (i.e., decision makers expect an

algorithmic advisor to provide perfect advice under

uncertainty), this reaction may lead to an irrational dis-

counting of algorithmic advice. Our results indicate this

effect by contrasting the familiarization with an erring

algorithmic advisor with the familiarization with an iden-

tical human advisor. Yet, improving the experience during

the familiarization is an effective countermeasure against

this effect. We find that demonstrating the ability to learn

(i.e., improving over time) is such a countermeasure.

Specifically, the continual improvement of the learning

algorithmic advisor in our experiment outweighed its initial

performance deficits in comparison to the non-learning

advisor. To the best of our knowledge, our study is the first

to show that users can recognize an algorithm’s ability to

learn and that this perception has positive effects on the

users’ behavior toward the algorithm.

Practitioners may also gain useful insights from our

study. Companies that provide or seek to employ DSS in

contexts under uncertainty should consider possible nega-

tive effects of users becoming familiar with IS. To counter

these effects, companies employing DSS in such contexts

should manage their employees’ expectations of what IT

systems can and cannot accomplish. Regarding the current

debate on the effects of AI-based systems as black boxes

(Maedche et al. 2019), our findings suggest that IS devel-

opers should invest in demonstrating and communicating

the abilities of their IT systems to users. In case of AI-

based systems with the ability to learn, this includes

transparently demonstrating the system’s performance

improvements over time. Potential measures to emphasize

these improvements are displaying performance compar-

isons to previous advices and periodical reports on the

performance development of IT systems.

8 Limitations and Suggestions for Further Research

Like any research, our study has a few limitations, which

also provide leads for further research. First, we designed

our study as a simulated online experiment. Even though

the experiment was incentive-compatible and of high

internal validity, the results do not represent reliance on an

algorithmic advisor with a highly consequential decision.

Similarly, the participants in our experiment were crowd-

workers acquired on Amazon Mechanical Turk. These
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participants are likely to be more tech-savvy than the

average population and may thus be less likely to exhibit

algorithm aversion. As such, it would be interesting to test

our hypotheses in a longitudinal field study with a real-

world algorithmic advisor to strengthen external validity.

Second, our study only constitutes an initial investigation

into how demonstrating the ability to learn affects relying

on algorithmic advice. Our experimental treatment con-

fronted the participants with an algorithmic advisor

exhibiting a stylized learning curve to allow for an unbi-

ased comparison to a non-learning advisor. However, we

know little about how bad the initial performance may be

without losing decision makers’ confidence in the advisor

or how decision makers’ marginal value of an additional

advisor improvement develops over time. Furthermore, we

modeled the ability to learn as a continual improvement

from estimation to estimation but actual machine learning

may also entail temporal performance losses. Therefore,

future research should examine the role of boundary con-

ditions in the effect of demonstrating the ability to learn,

such as the impact of estimation volatility and mistakes

during learning. Moreover, future research can explore

possible mediators explaining the effect (e.g., trusting

beliefs and expectation-confirmation) of the ability to learn

on user behavior. Constructs potentially influencing the

aforementioned effect as further moderators include user

(e.g., personality types or culture), system (e.g., usefulness

or transparency), and task (e.g., complexity or conse-

quentialness) characteristics. Third, our study used a task

of objective nature to study the relationship between

algorithm aversion and demonstrating an algorithm’s

ability to learn. Since previous research has shown algo-

rithm aversion to be more severe for tasks of a subjective

and personal nature than for tasks of an objective and non-

personal nature (Castelo et al. 2019; Longoni et al. 2019),

future research may investigate whether demonstrating an

algorithm’s ability to learn can also alleviate algorithm

aversion for subjective and personal tasks. Fourth, our

results support the reasoning that people exhibit algorithm

aversion for objective and non-personal tasks only if they

experience the algorithm to err. However, algorithms, like

humans, cannot provide perfect recommendations for

decisions under uncertainty. Future research may therefore

inspect people’s expectations of algorithms and the con-

ditions under which these expectations are disconfirmed.

9 Conclusion

Overall, our study is an initial step toward better under-

standing how users perceive the abilities of AI-based sys-

tems. Specifically, we shed light on how familiarity and

demonstrating the ability to learn affect users’ reliance on

algorithmic decision support. Our findings not only show

that familiarity with an erring algorithmic advisor reduces

decision makers’ reliance on this advisor but also that

demonstrating an algorithm’s ability to learn over time can

offset this effect. We hope that our study provides an

impetus for future research on collaboration with and

acceptance of AI-based systems as well as actionable rec-

ommendations for designing and unblackboxing such

systems.
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