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Abstract The rapid standardization and specialization of

cloud computing services have led to the development of

cloud spot markets on which cloud service providers and

customers can trade in near real-time. Frequent changes in

demand and supply give rise to spot prices that vary

throughout the day. Cloud customers often have temporal

flexibility to execute their jobs before a specific deadline.

In this paper, the authors apply real options analysis

(ROA), which is an established valuation method designed

to capture the flexibility of action under uncertainty. They

adapt and compare multiple discrete-time approaches that

enable cloud customers to quantify and exploit the mone-

tary value of their short-term temporal flexibility. The

paper contributes to the field by guaranteeing cloud job

execution of variable-time requests in a single cloud spot

market, whereas existing multi-market strategies may not

fulfill requests when outbid. In a broad simulation of sce-

narios for the use of Amazon EC2 spot instances, the

developed approaches exploit the existing savings potential

up to 40 percent – a considerable extent. Moreover, the

results demonstrate that ROA, which explicitly considers

time-of-day-specific spot price patterns, outperforms

traditional option pricing models and expectation

optimization.

Keywords Cloud computing � Spot markets � Temporal

flexibility � Real options analysis � Decision support

1 Introduction

With cloud services’ continuously increasing usage and

business relevance, their market is becoming increasingly

solvent (Keller and König 2014). At the same time, stan-

dardization is increasing. This development has allowed

users to dynamically adapt their cloud services demand

from no to nearly unlimited resources (Mell and Grance

2011). In a rather recent move, Infrastructure-as-a-Service

(IaaS) providers, such as Amazon Web Services (AWS),

reflect the varying demand patterns by offering their ser-

vices at fluctuating spot prices (Karunakaran and Sundarraj

2015), which are volatile throughout the day (Ben-Yehuda

et al. 2013). This way, such providers seek constant server

utilization to avoid idle capacity and large peaks.

In many use cases, customers require the instant deliv-

ery of cloud services. Nevertheless, customers may defer

jobs, for instance, simulations, rendering jobs, and scien-

tific computations. Whenever customers do not require a

cloud service instantly and expect the spot prices to fall,

they can defer their demand in order to realize cost savings.

The time they are willing to wait for their computing job

opens a window of temporal flexibility.

Evaluating the cost savings potential of a customer’s

window of temporal flexibility is a complex task, since

cloud spot prices may change frequently, as we will

illustrate. Consequently, cloud customers require strategies

that take the tradeoff between the costs and the waiting
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time into consideration (Karunakaran and Sundarraj 2015;

Tang et al. 2012). Furthermore, cloud customers may not

even be aware of their temporal flexibility. We identify two

main obstacles to utilizing temporal flexibility in cloud

computing spot markets: First, decision support for cus-

tomers requires near real-time analytics on when and how

long to defer computing jobs given the uncertain price

development. Adequate IS or web services are required to

help exploit the existing savings potential optimally. Sec-

ond, deferring jobs requires customers to change their

demand behavior, which might inconvenience them.

Applying such IS or web services could also incur costs for

process implementation and additional planning, while

waiting for jobs could lead to opportunity costs. However,

such costs are highly dependent on customers’ individual

circumstances: the extent of their cloud services depen-

dency, IS infrastructure, employee training, etc. We con-

sequently focus on evaluating objectively measurable

savings, because cloud customers need an estimation of

their flexibility’s current value to weigh it against the

incurred expenses.

To address both obstacles, we apply real options anal-

ysis (ROA), which other IS research domains have estab-

lished as a valuation method designed to capture the

flexibility of action under uncertainty (Amram and

Kulatilaka 1999; Benaroch and Kauffman 1999; Trigeorgis

1996). We model a customer’s temporal flexibility as a

deferral option. This real option serves to determine a value

for the right to act or to await another opportunity over a

period. From this overarching research objective, we derive

our research question:

‘How can cloud services customers quantify and

exploit their demand flexibility’s monetary value

by using real options analysis and given uncertain

short-term price development?’

To address our research question, we adapt and apply

multiple option pricing models and process a dataset of

Amazon Elastic Compute Cloud (EC2) spot prices. Our

research objective covers a relevant real-world problem, as

cloud customers could profit from decision support for

when to purchase cloud services within a temporal flexi-

bility window to optimally exploit their savings potential.

Under market principles, such times of day would have

lower cloud service demand than the server capacity

available. Shifting jobs to these times contributes to bal-

ancing the cloud service demand and the supply.

We structure the remainder of this paper as follows: in

Sect. 2, we present related work on cloud computing

markets and ROA. In Sect. 3, we analyze our dataset of

EC2 spot prices. In Sect. 4, we adapt multiple approaches

to quantify and exploit the monetary value of short-term

temporal flexibility in cloud computing demand. We

thereafter evaluate these approaches in a historical simu-

lation and sensitivity analysis in Sect. 5. Finally, we dis-

cuss the results in Sect. 6 and conclude the paper in Sect. 7.

2 Cloud Computing Markets and Real Options

Analysis

2.1 Current Developments in Cloud Computing

Markets

Cloud computing with its pay-as-you-go model and flexi-

ble, on-demand resource allocation comprises three major

product categories: namely IaaS, Platform as a Service

(PaaS), and Software as a Service (SaaS) (Mell and Grance

2011). Keller and König (2014, p. 4) identify three recent

trends in cloud computing that ‘‘are likely to transform the

current cloud landscape’’:

• increasing standardization, especially viable in IaaS

• increasing SaaS specialization for particular user

groups, such as private users or specific industries

• increasing actor dependencies

These developments specifically occur in emerging

cloud marketplaces (Keller and König 2014). Major cloud

providers offer standardized products, such as virtual

machines with a given operating system, CPU, RAM, and

storage. However, especially in the IaaS context, the

standardization of cloud computing fosters an oligopolistic

market structure, in which the largest two providers (AWS

and Microsoft) provide the deployment environment of

about 70% of the current applications (Skyhigh Networks

2017). These companies profit from enormous economies

of scale, which might, however, stall innovation and pro-

gress in the cloud market (Bestavros and Krieger 2014).

Nevertheless, recent attempts, such as the Deutsche Börse

Cloud Exchange, the Cloud Commodities Exchange

Group, and the Massachusetts Open Cloud Exchange, have

opened the IaaS markets to smaller providers, thus

increasing the market dynamics. Moreover, standardized

application programming interfaces (API), which tools like

Swagger or CloudStack use, enable the dynamic exchange

of commoditized SaaS services, such as weather services

(Lewis 2013; Loutas et al. 2011a, b).

2.2 Cloud Computing Spot Prices

In cloud computing, AWS first introduced spot prices for

their computing service Amazon EC2 in 2009. AWS

operates EC2 spot instances in 14 locations with about 40

products (Amazon Web Services 2017), which can sub-

stitute one another. As AWS’ excess capacity, EC2 spot

instances are normally cheaper than regular on-demand
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instances based on a fixed price (Kamiński and Szufel

2015). Similar to spot markets for stocks, electricity, and

commodities, a market mechanism brings together demand

(bids) and supply (offers) in a Vickrey auction to form EC2

spot prices (Cheng et al. 2016). However, AWS applies a

hidden reserve price algorithm to artificially generate a

linear dependency between the availability and the spot

price that is consistent over multiple instance types and

locations (Ben-Yehuda et al. 2013).

Currently, there are different research streams on cloud

spot prices. One research stream applies reverse engi-

neering for a better understanding of EC2 spot instances

and to deconstruct AWS’ spot pricing mechanism [e.g.,

(Ben-Yehuda et al. 2013; Li et al. 2016a)]. These papers do

not provide decision support algorithms. As prices differ

between regions, a second research stream analyzes cus-

tomer strategies to reduce costs by spatially distributing the

use of spot instances [e.g., (Cheng et al. 2016; Marathe

et al. 2014)]. Since our objective is to study temporal

instead of spatial flexibility, we are more closely related to

a third research stream focusing on spot price prediction.

For example, Baughman et al. (2018) propose a model to

predict EC2 spot prices based on long/short-term memory

recurrent neural networks. Khandelwal et al. (2017) pro-

pose a model based on random forest regression for pre-

dicting EC2 spot prices one day and one week ahead.

These scholars demonstrate that their non-parametric

machine learning approach outperforms previous approa-

ches based on support vector machines (Arevalos et al.

2016) and artificial neural networks (Wallace et al. 2013).

Cai et al. (2018) criticize several existing models for being

static and neglecting the correlation of sequential cloud

spot prices. Instead, these authors propose two Markov

regime-switching autoregression models and one autore-

gressive integrated moving average model that integrate

new observable information dynamically to adjust price

predictions. These examples are just an excerpt from an

extensive research stream, which is, nevertheless, inap-

propriate for our purposes. Although these studies present

sophisticated models for spot price prediction based on

(auto)regression and machine learning, their point estima-

tors provide only limited decision support, as they do not

consider the type of customer service request and the rel-

evant optimization restrictions.

Vieira et al. (2015, p. 498) distinguish three categories

of service requests: ‘‘fixed-time requests’’ without temporal

flexibility (e.g., continuous monitoring tasks or websites),

‘‘floating-time requests’’ which can be interrupted and are

temporally flexible, and ‘‘variable-time requests’’ which

cannot be interrupted, but are temporally flexible. As we

aim to quantify and exploit cloud customers’ (short-term)

temporal flexibility, we will not further consider fixed-time

requests.

Research not only provides spot price predictions, but

also decision support in terms of bidding strategies for

floating-time and variable-time requests. Floating-time

requests require cloud customers to apply complex check-

pointing mechanisms and snapshots. Andrzejak et al.

(2010) present a probabilistic model that employs temporal

flexibility to optimize bidding strategies. By focusing on

cost-reliability trade-offs and the selection of instance

types, they conclude that cost savings negatively affect

execution time (and vice versa) and that switching from

standard or high-memory to high-CPU instance types can

save costs. Tang et al. (2012, 2014) advance this approach

by formulating a constrained Markov decision process

based on linear programming. These authors improve

Andrzejak et al.’s (2010) approach in terms of cost savings

and execution time. In these three papers, the researchers

set a price threshold and maximize the reliability of long-

dated computations (2.6 to 22.6 h) over a timeframe of

several days. Zafer et al. (2012) extend these approaches by

proposing a dynamic bidding strategy for floating-time

requests with a specific deadline. While their suggested

bidding strategy favors the use of EC2 spot instances due to

their lower costs, it can only guarantee that jobs will be

executed by a fixed deadline if it also uses EC2 on-demand

instances.

We aim to contribute to the research of variable-time

requests that must not be interrupted, such as MapReduce

jobs (Dadashov et al. 2014) and other highly parallelized

jobs (Kumar et al. 2018). Distributed analytics jobs, for

example, those using Hadoop or Spark, are particularly

suitable for variable-time requests (Kumar et al. 2018).

Zheng et al. (2015) and Tamrakar et al. (2017) analyze the

execution of MapReduce jobs, with the former concluding

that using spot instances from different markets can reduce

costs by 93% compared to regular on-demand cloud

instances, but can also increase computation time by 15%.

Zheng et al. (2015) and Zafer et al. (2012) model a fixed

deadline, but can only guarantee this by using additional

EC2 on-demand instances. In terms of the spot markets,

they try to balance the trade-off between the costs and the

reliability of the job execution.

Extending all previous literature on the topic, we con-

tribute an approach that guarantees to execute variable-

time requests in spot markets within a customer’s temporal

flexibility window. We design the approach to be easier to

understand and implement than other approaches, because

we reduce the decision complexity to ‘‘when to bid’’ (ig-

noring ‘‘how much to bid’’) by considering the expected

spot price development. We focus on one instance type on

one cloud spot market. In contrast to existing literature, we

implicitly assume that a customer’s bid is high enough for

the job execution to be uninterruptible. This assumption is

valid for Vickrey auctions, in which a bidder at most pays
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the common spot price instead of the bid. Our initial

motivation also requires our approach to evaluate short-

term temporal flexibility while explicitly considering

uncertainty. We have therefore chosen to apply ROA,

which explicitly suits this requirement (Kleinert and Stich

2010). Undertaking ROA requires the available distribution

of possible future spot prices; we therefore need to model

spot price development as a stochastic process instead of

applying regression models that yield point estimators.

2.3 Real Options Analysis in Information Systems

Research

ROA originated from financial option valuation with the

aim to evaluate managerial action flexibility that takes

uncertainty into consideration. Myers (1977, p. 163)

introduced the term real options as ‘‘opportunities to pur-

chase real assets on possible favorable terms.’’ Real options

comprise ‘‘discretionary decisions or rights, with no obli-

gation, to acquire or exchange an asset for a specified

alternative price’’ (Trigeorgis 1996, p. xi). IS researchers

started applying ROA in the 1990s in order to evaluate

managerial flexibility in information technology (IT)

investments (Ullrich 2013). Benaroch and Kauffman

(1999), for example, study the application of discrete-time

and continuous-time option pricing models for evaluating

investments in IT infrastructure, emerging technology,

application design prototyping, and technology-as-prod-

ucts. These scholars conclude that managers can apply

traditional option pricing models to non-traded IT assets

without loss of validity. Subsequently, Benaroch and

Kauffman (2000) examine a case in order to validate the

added value of deferral options for strategic IT investments

and elaborate on ROA’s advantages instead of traditional

IT investment evaluation methods. ROA’s application in IS

research focuses mainly on IT investment decisions in

general (Chen et al. 2009) or on specific technologies (Lee

and Lee 2011; Nwankpa et al. 2016; Wu et al. 2009;

Zimmermann et al. 2016).

In our targeted cloud computing research domain,

authors apply ROA to migration decisions (Naldi and

Mastroeni 2016; Yam et al. 2011), the extension of cloud

resources (Alzaghoul and Bahsoon 2013), investment

deferral (Alzaghoul and Bahsoon 2014), termination

management (Jede and Teuteberg 2016), and risk man-

agement regarding cloud services’ availability (Allenotor

and Thulasiram 2014). Compared to traditional IT invest-

ments, infrastructure services in cloud computing are more

separable, meeting the ROA requirement of ‘‘complete

markets’’ better (Ullrich 2013, p. 335). In line with the

development of cloud exchanges, Meinl and Neumann

(2009) propose establishing a contract market to enable

grid and cloud services’ customers and providers to trade

real options to reserve resources in advance. Náplava

(2016) uses ROA to evaluate external IaaS’s additional

flexibility compared to that of on-premise solutions. Klaus

et al. (2014) develop a model for service providers that

evaluates an option to shift excess demand for (e.g., cloud)

services to external vendors. This approach determines the

business value of shifting flexibility, which decision mak-

ers can subsequently use to justify investments in required

IS infrastructure.

Our literature review demonstrates ROA applications in

IT project and cloud computing business cases. To the best

of our knowledge, ROA has not yet been applied to support

a cloud service purchase by means of variable-time

requests. The research taxonomy of bidding strategy

design for cloud spot markets by Kumar et al. (2018) does

not list ROA as an already researched method, thus con-

firming our observation.

Nonetheless, we can build on ROA from other domains.

Fridgen et al. (2016) study intraday load-shifting flexibility

in the electricity spot market context. These authors pro-

pose an ROA-based algorithm to utilize temporal flexibil-

ity, adapting and applying the Cox et al. (1979) binomial

tree model for discrete-time option valuation. Similar to

our approach, they model temporal flexibility as a deferral

option: Although purchase before a specified deadline is

obligatory, this option gives customers the flexibility to

decide on their purchase time in order to exploit the cost

savings potential of volatile market prices. Although we

adapt their model in some respects, we apply, evaluate, and

compare multiple discrete-time approaches to ROA in the

light of our research question.

3 Cloud Spot Market Data Analysis

We base our study on a time series of Amazon EC2 spot

market data, which comprises prices and the associated

price changes. Encompassing 2 years of cloud spot market

operation, the data span the period January 1, 2015 to

December 30, 2016. We acknowledge Spot Price Archive

(Javadi et al. 2011), which downloaded a large dataset

ranging from January 2009 to December 2016 via the

Amazon EC2 API, as the source of this series of spot

prices. More precisely, we analyze historical data from the

EC2 spot instance ‘‘m1.xlarge’’ hosted in a North Virginia

data center (‘‘us-east-1’’ region). This type of cloud service

encompasses four virtual cores, 15 gigabytes of RAM, 350

gigabytes of hard-disk space, and high network perfor-

mance (Amazon Web Services 2017).

In Fig. 1, we provide an example of the hourly statistics

of historical 2016 data.
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In formulae, we denote references to averaged historical

input with a circumflex (^) and the cloud spot price at a

given time of day t with SðtÞ. We compute the historical

mean cloud spot price ŜðtÞ at time t:

ŜðtÞ ¼
Pn

i¼1 S tð Þi
n

ð1Þ

More precisely, ŜðtÞ is the arithmetic mean of n his-

torically observed prices at the time of day t. Further, RðtÞ
is the spot price change, or return, from t to tþ 1, which

we express relatively:

R tð Þ ¼ S tþ 1ð Þ
S tð Þ � 1 ð2Þ

We compute the historical mean return R̂ðtÞ from n

historically observed cloud spot returns:

R̂ tð Þ ¼ 1þ R tð Þ1
� �

� 1þ R tð Þ2
� �

� � � � � 1þ R tð Þn
� �� �1

n�1

ð3Þ

Because single returns may be interdependent growth

factors, we choose a geometric mean over an arithmetic

mean, which could yield false results in this case. More

precisely, if spot prices at a specific time of day follow a

positive or negative growth trend (increase or decrease, on

average, over some days, weeks, or months), applying an

arithmetic mean of historical returns to forecast spot prices

is likely to overestimate the expected developments,

especially regarding more than one estimation period

(Amenc and Le Sourd 2003).

In continuation, r̂ tð Þ is the historical standard deviation,

or volatility, of cloud spot returns. We compute r̂ tð Þ as the
geometric standard deviation:

r̂ tð Þ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�
Pn

i¼1

lnð1þR tð Þi
1þR̂ tð Þ Þ

� �2
r

ð4Þ

Figure 1 indicates that EC2 cloud spot prices for a ref-

erence timespan of 24 months are subject to time-of-day-

specific patterns of mean prices, mean returns, and return

volatilities. We therefore examine the following

hypothesis:

Hypothesis 1 One should extend traditional ROA

approaches with time-of-day-specific spot price patterns to

optimally exploit the monetary value of short-term tem-

poral flexibility in cloud computing demand.

We test Hypothesis 1 by comparing ROA approaches

with and without consideration of time-of-day-specific spot

price patterns. Moreover, we verify our modeling decision

to apply ROA by examining the following hypothesis:

Hypothesis 2 One should not only model the time-of-

day-specific mean prices (or returns), but also the return

volatilities to optimally exploit the monetary value of

short-term temporal flexibility in cloud computing demand.

We test Hypothesis 2 by applying naive expectation

optimization as an alternative to ROA. In the following

section, we introduce the respective models. Thereafter we

evaluate the models on historical EC2 spot market data.

4 Model Development

4.1 Discrete-Time Spot Price Modeling

In this section, we present multiple approaches to support

decisions to utilize temporal flexibility in cloud spot
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markets. We assume a situation in which a customer is

temporally flexible (e.g., for some hours) and aims for the

lowest possible price in this time window. However, an

individual deadline indicating the time at which the cus-

tomer requires the cloud services at the latest, limits tem-

poral flexibility. Hence, the customer’s decision problem

is, given the deadline, to defer demand up to the (ex-ante)

optimal (cost-minimal) point in time.

Employing ROA, we can model customers’ temporal

flexibility to defer cloud demand as a deferral option,

because they can sell their right to instantly purchase cloud

services. This deferral option’s value depends specifically

on cloud spot prices’ (the option’s underlying) stochastic

development and the customer’s deadline at which pur-

chase would be obligatory. The deferral option expires

right before the given deadline. The customer may exercise

the option (i.e., purchase cloud services) only once at an

arbitrary decision point in time. The deferral option is

therefore similar to an American call option in capital

markets.

Assumption 1 Until the deferral option expires, a cus-

tomer can decide in discrete time increments of equal

length whether to exercise the option or not.

In Assumption 1, we limit the decision points in time to

a finite and equally distributed number for simplicity’s

sake. Although approaches that allow continuous-time

option pricing and decision making (e.g., Black and

Scholes 1973) offer more freedom of action, which would

make them preferable, they are rather complex. In partic-

ular, there are as yet no closed-form solutions for the

continuous-time pricing of American call options under

consideration of time-of-day-specific mean prices, returns,

and return volatilities. Instead, we research discrete-time

approaches that are simple, yet accurate enough to con-

siderably exploit a temporally flexible customer’s savings

potential. To test both hypotheses in consideration of

Assumption 1, we have chosen to adapt, apply, and com-

pare the following discrete-time approaches to customer

decision support in cloud spot markets:

1. The binomial tree approach of Cox et al. (1979)

2. The binomial tree approach of Tian (1993)

3. Expectation optimization

Cox et al. (1979) were the first authors to develop a

discrete-time version of the famous option pricing model

by Black and Scholes (1973). They modeled the stochastic

movements of an underlying and a matching option as a

binomial tree. They prove that this model converges toward

the Black–Scholes formula for decreasing-length time

increments. Tian (1993) modified Cox et al.’s (1979)

binomial tree formulae by matching the discrete-time

process’s skewness with the continuous-time process. Via

numerical simulations on stock prices, Tian demonstrates

that this model improves the accuracy of the convergence

toward the Black–Scholes model. Although there are other

derivatives of Cox et al.’s option pricing model (e.g., Amin

1991; Jarrow and Rudd 1983; Leisen and Reimer 1996),

our approaches already provide valuable insights into dis-

crete-time ROA’s potential as a tool for decision support in

cloud spot markets. Whereas Cox et al. (1979) and Tian

(1993) do not model the time-of-day-specific patterns of

their underlying, we apply both approaches in their native

form and with this model extension (to test Hypothesis 1).

4.2 Binomial Tree Approaches without Time-of-Day

Specific Patterns

In the following, we present Cox et al.’s (1979) and Tian’s

(1993) traditional approaches without consideration of the

time-of-day-specific spot price patterns, which we intro-

duce afterward.

Assumption 2 Cloud spot prices are log-normally dis-

tributed, while the returns of cloud spot prices are normally

distributed.

Following Mazzucco and Dumas (2011), we assume that

the returns of cloud spot prices are normally distributed

(and that cloud spot prices are therefore log-normally

distributed). In respect of EC2 spot prices, this assumption

is ‘‘adequate but not perfect, as the distribution of the spot

prices is more heavily-tailed’’ (Mazzucco and Dumas 2011,

p. 297).

Assumption 3 Cloud customers are risk-neutral in their

decisions.

Since both Cox et al. (1979) and Tian (1993) develop

their approaches by assuming normally distributed returns

and risk-neutral decision makers, we also require these

rather technical assumptions. For the sake of our model’s

simplicity and in the light of our valid results, we consider

these limitations adequate.

Cox et al. (1979) and Tian (1993) apply a binomial tree

to model their underlying’s stochastic process. The tree

starts at the current point in time ðt ¼ t0 ¼ 0Þ before

forking in discrete time increments into future nodes (i.e.,

future price levels) up to the option’s expiration (denoted

t ¼ TÞ. Consequently, at each node, with the exception of

end nodes, the underlying is expected to move either in an

upward or a downward direction. Cox et al. (1979) and

Tian (1993) describe the binomial tree by means of the

following parameters: u� 1 and d� 1 are constant factors

for the (expected) extent of the underlying’s upward and

downward movements within one time increment. Both

approaches depend on the historical return volatility r̂ and

the risk-free interest rate rf (which are both constant in
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these traditional models). A condition is that u � d ¼ 1 and

u[ 1þ rf [ d. Moreover, p� 1 is the constant probability

of the underlying moving in an upward direction. Con-

versely, 1� p is the constant probability of a downward

movement. The approaches by Cox et al. (1979) and Tian

(1993) suggest the following formulae to derive the

expected price development in an arbitrary time increment

t to tþ 1:

S tþ 1ð Þu¼ S tð Þ � u ð5Þ

S tþ 1ð Þd¼ S tð Þ � d ð6Þ

In Fig. 2, we illustrate an exemplary binomial tree for

our underlying (cloud spot prices).

Under consideration of Assumptions 2 and 3, we can

apply Cox et al.’s (1979) formulae:

u ¼ er̂�
ffiffiffiffi
Dt

p
ð7Þ

d ¼ e�r̂�
ffiffiffiffi
Dt

p
ð8Þ

p ¼ erf�Dt � d

u� d
ð9Þ

The parameter Dt quantifies the time increments

between the decision nodes in the binomial tree, which is

Dt ¼ 1 in our case. Similarly, we can apply Tian’s (1993)

formulae, which (only) differ in terms of the u and d:

u ¼ V

2
� erf�Dt � Vþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2V� 3

p� �
with

V ¼ er̂
2�Dt

ð10Þ

d ¼ V

2
� erf�Dt � Vþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2V� 3

p� �
with

V ¼ er̂
2�Dt

ð11Þ

In both approaches, modeling the underlying’s binomial

tree is the prerequisite for option pricing. In each of the

tree’s nodes, a cloud customer must decide on whether to

exercise the deferral option (i.e., to purchase cloud

services) or not (i.e., to wait for another time increment).

After exercising the deferral option, the optimization ter-

minates. If the customer does not exercise the deferral

option at time t ¼ T at the latest, he/she reaches the indi-

vidual deadline in the next discrete time step (t ¼ Tþ 1)

and must purchase cloud services then. Technically

speaking, modeling a deadline is already an extension of

Cox et al.’s (1979) and Tian’s (1993) traditional models,

which Fridgen et al. (2016) introduced for the former

approach. Both approaches start option pricing by analyz-

ing the possible exercise values in the binomial tree’s end

nodes:

CðTÞ ¼ max X� SðTÞ; 0f g ð12Þ

SðTÞ is the expected cloud spot price at a specific end

node in the binomial tree at time T. X is the exercise or

strike price of the deferral option, which we explain later. If

X is greater than SðTÞ, exercising the option in T is

preferable, leaving the deferral option with a value greater

than zero; however, if it is not, the customer should wait for

one time increment and purchase cloud services at the

individual deadline.

For every decision node that is n 2 f1; . . .;Tg periods

before T, the customer can compute the deferral option’s

value by applying the following formula by Cox et al.

(1979):

C T� nð Þ ¼ max
X� S T� nð Þ;

p � C T� nþ 1ð Þ þ 1� pð Þ � C T� nþ 1ð Þ

� �

ð13Þ

Except for the end nodes in T, each decision node

receives two values: that of the immediate cloud service

purchase (i.e., the deferral option’s exertion at that time)

and that of deferring the purchasing decision for (at least)

one time increment (i.e., the ‘‘time value’’ of exercising it

later). The latter requires an algorithm for a probability-

weighted valuation, since, from a single decision node’s

Fig. 2 Exemplary binomial tree

for a deferral option with three

remaining time increments
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perspective, the tree forks into an upward and downward

direction. The maximum of both values constitutes the

deferral option’s value at the relevant decision node. Note

that since both approaches conduct the option pricing from

the end nodes in T to root t0, computing the time values of

every decision node for t ¼ T� n can draw on already

computed option values in t ¼ T� nþ 1. The algorithm

terminates as soon as it obtains the deferral option’s value

in t0 (i.e., the current point in time). Cloud customers can

now compare the value of ‘‘exercising immediately’’ and

‘‘exercising later,’’ deciding accordingly. If customers

decide to wait for the next time increment, they need to

update the observable price information and repeat the

binomial tree construction and the option evaluation. Note

that if customers can only purchase cloud services at cer-

tain times (i.e., at certain decision nodes), the deferral

option complies with a Bermudan call option (or even with

a European call option if they can only decide in t ¼ T).

Modeling a Bermudan (or European) call option only

means modifying Eq. 13 for non-decision nodes by

removing the right and value of the immediate exertion.

4.3 Modeling Time-of-Day-Specific Patterns

We follow Fridgen et al. (2016) as follows to model the

time-of-day-specific spot price patterns in order to test

Hypothesis 1:

• Since we evaluate the monetary value of temporal

flexibility in the short term (i.e., a maximum of several

hours), the risk-free interest rate is insignificantly low,

and we can set rf ¼ 0.

• We consider the time-of-day-specific spot price pat-

terns by assuming mean reversion, i.e., for each

discrete time step, the spot price is expected to move

(‘‘revert’’) to either the mean price level or according to

the mean return, historically observed at the respective

time of day. The same applies to volatilities.

• In keeping with both the traditional models created to

evaluate options in capital markets, we treat these

mean-reverting movements like discrete dividend

payments.

• We model binomial parameters time-dependently, i.e.,

u(t), d(t), and p(t), because of the time-of-day-specific

volatility patterns r̂ tð Þ.

While Fridgen et al. (2016) extend the approach by Cox

et al. (1979) with mean reversion to the time-of-day-

specific mean price and volatility patterns, we also apply

Tian’s (1993) model and mean reversion to the time-of-

day-specific mean return patterns. Financial asset pricing

usually exhibits stationary mean returns, but non-stationary

mean prices (Rossi and Spazzini 2014), which makes the

former preferable for deriving predictions in these markets.

Stationarity makes historical data a more appropriate esti-

mator of future movements. As we could not find any

related work concerned with stationarity analysis in cloud

spot markets, we apply both approaches to model time-of-

day-specific patterns and compare them.

In the following, we present relevant extensions of

Eqs. 5 and 6 given the time-of-day-specific mean prices

and returns.

Equations 5 and 6 with time-of-day-specific mean pri-

ces (Fridgen et al. 2016):

S tþ 1ð Þut¼ S tð Þ � u tð Þ þ h � Ŝ tþ 1ð Þ � S tð Þ
� �

ð14Þ

S tþ 1ð Þdt¼ S tð Þ � d tð Þ þ h � Ŝ tþ 1ð Þ � S tð Þ
� �

ð15Þ

Equations 5 and 6 with time-of-day-specific mean

returns:

S tþ 1ð Þut¼ S tð Þ � u tð Þ þ S tð Þ � h � R̂ tð Þ ð16Þ

S tþ 1ð Þdt¼ S tð Þ � d tð Þ þ S tð Þ � h � R̂ tð Þ ð17Þ

Parameter h 2 0; 1½ � expresses the mean-reversion

speed, controlling the speed with which the process reverts

to the time-of-day-specific mean price or return patterns. A

mean-reversion speed of h ¼ 1 implies complete mean

reversion during one time increment. In contrast, h ¼ 0

implies no mean reversion.

Additionally, we model the strike price XðtÞ as the

(time-dependent) opportunity costs of exercising the option

during the flexibility window before the deadline. Hence,

XðtÞ depicts the expected cloud spot price if the customer

were to wait until the obligatory purchase in Tþ 1, i.e.,

X tð Þ ¼ SðTþ 1Þ. The deferral option can therefore be

interpreted as an option to buy before the individual

deadline at relevant opportunity costs X tð Þ. At every

decision node in the tree, we compute XðtÞ as follows (for,
respectively, the mean prices and the returns):

X tð Þ ¼ S tð Þ þ h � Ŝ tþ 1ð Þ � S tð Þ
� �

þ � � � þ h
� Ŝ Tþ 1ð Þ � S Tð Þ
� �

ð18Þ

X tð Þ ¼ S tð Þ þ h � S tð Þ � R̂ tð Þ þ � � � þ h � S Tð Þ � R̂ Tð Þ
ð19Þ

Technically, common option pricing approaches assume

a constant strike price and ROA literature has been criti-

cized for violating this assumption (Ullrich 2013). Fridgen

et al. (2016) therefore keep the strike price constant;

however, they sacrifice savings by not allowing an update

of the strike price when receiving new market information.

If the strike price can develop stochastically, an option

pricing approach must explicitly take the relevant process

for deriving the option’s value correctly into account. The

following reasoning allows us to apply a valid stochastic

process for the strike price: As the strike price only
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depends on one stochastic factor S tð Þ, we obtain exactly

one value for X tð Þ at each decision node in S tð Þ’s binomial

tree. Note that our definition of opportunity costs X tð Þ does
not comprise a further inconvenience regarding the cus-

tomer’s willingness to defer the purchase of cloud services,

but only takes cost differences into account due to the

volatile spot prices and the individual flexibility window.

Table 1 summarizes all the real options approaches that

we adapt, apply, and compare.

When one applies Cox et al.’s (1979) and Tian’s (1993)

traditional approaches, determining the optimal point in

time to purchase cloud services is trivial. Following

established option pricing theory, by early exercising

American call options on underlying assets that pay no

dividends (in our case, that do not consider the time-of-

day-specific patterns) cannot be optimal (Hull 2014; van

Hulle 1988). The same would apply to continuous-time

models, such as those of Black and Scholes (1973). Both

approaches would therefore not early exercise the option,

but instead wait until t ¼ T to decide to either purchase at

that time [at a price SðT)] or to wait for the deadline at

t ¼ Tþ 1 to purchase at a price SðTþ 1Þ.
In addition to our real options approaches, we apply

naive expectation optimization to test Hypothesis 2. In t0,

naive expectation optimization compares the currently

observable price information with the expected prices in

each upcoming time step in the flexibility window. The

expected prices equal the historically recorded mean prices

at the relevant time of day. Expectation optimization sug-

gests that in order to purchase cloud services, customers

should choose the time with the lowest expected spot price.

Compared to our real options approaches, this naive

approach does not consider return volatilities.

5 Evaluation and Sensitivity Analysis

Simulations are a rigorous evaluation technique (Gregor

and Hevner 2013). We therefore conducted historical

simulations on our EC2 dataset (Sect. 3) to evaluate our

approaches regarding their suitability to quantify and

exploit the monetary value of short-term temporal flexi-

bility in cloud computing demand. We implemented our

approaches by means of Microsoft Excel with Visual Basic

for application macros and performed statistical tests in R.

In randomly assembled scenarios that could have occurred

in the past, we analyzed how well our approaches would

have realized spot price savings. Our macros followed the

following steps in each simulation run:

1. Select an approach (cf. Table 1 or naive expectation

optimization).

2. Select a random date and time of day from the

historical time series as the starting point (between

January 1, 2015 and December 30, 2016).

3. Select a random temporal flexibility window TFW 2
f1; 2; . . .; 12g [increments]. Initially, the increment

length IL (i.e., the time between two decision nodes)

was constant at IL ¼ 60 [min].

4. For real options approaches with the time-of-day-

specific patterns: Select a random mean-reversion

speed h 2 0; 0:25; 0:5; 0:75; 1f g and a reference timespan

RTS 2 f7; 30; 60; 90g [days]. From the chosen starting

point in time (2.), look back RTS days in the past to build

expectations of the time-of-day-specific price (or return)

and the volatility patterns.

5. Run the specific approach’s algorithm.

6. After termination (i.e., after the purchase of cloud

services), compare the purchase price to the spot price

S0 that was viable at the beginning of the TFW, and

which a purchase without temporal flexibility would

have realized. Compute the realized absolute and

relative savings. With this information, divide the

realized absolute savings by the maximum possible

absolute savings within the TFW (which the algorithm

would have obtained if perfect information were

available), in order to compute the exploitation of the

existing savings potential.

We distinguish two types of parameters: exogenous

(scenario) and endogenous (model) parameters. IL, TFW,

and starting time are exogenous parameters drawn to

construct a simulation scenario. In contrast, approach

selection, RTS, and h are endogenous parameters. Both

parameter types differ in the cloud customers’ possibility to

freely select endogenous parameters, although they might

not be able to influence the exogenous parameters. Hence,

Table 1 Real options approaches applied to schedule flexible demand in cloud spot markets

Traditional (without time-of-day-specific patterns) With time-of-day-specific

price patterns

With time-of-day-specific

return patterns

Cox et al. (1979) 4 4 (Fridgen et al. 2016) 4

Tian (1993) 4 4 4
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in order to maximize their savings, cloud customers try to

select endogenous parameters optimally. We conduct and

analyze the results of six million simulation scenarios, one

million for each approach, which approximates the maxi-

mum number of rows in our Microsoft Excel worksheets.

Since Cox et al.’s (1979) and Tian’s (1993) traditional

approaches optimize identically (cf. Sect. 4.3), we sum-

marize both models in one approach. Table 2 depicts our

results.

Overall, the results favor Hypotheses 1 and 2. More

precisely, statistical two-sample t tests indicate maintaining

the null hypothesis that, after configuration, approaches I–

IV yield superior averaged relative savings and exploit

more savings potentials than the traditional approaches

(V) and the expectation optimization (VI). In contrast to

approaches I–IV, V does not model mean reversion,

approach VI does not model volatility, and approaches V

and VI are impossible to configure without parameters h
and RTS.

In respect of arbitrary random parameters, Table 2

illustrates that approaches II and IV yield superior aver-

aged savings compared to approaches I and III. However,

as this relationship reverses when configuring all four

approaches with optimal h and RTS, the performances of

approaches I and III are comparatively more dependent on

their parameters. In Fig. 3, we show how the averaged

relative savings reacted to altering parameters (univariate

sensitivity).

Figure 3 indicates that the performance of approaches I

and III depends significantly on the selection of h and RTS.

More precisely, the performance depends strongly on

recent historical price information (shorter RTS), which

indicates fast changing price levels in our EC2 dataset.

Moreover, since a higher h improves the results signifi-

cantly, historical price information seems to be a valuable

predictor. The performance of approaches II and IV also

depends significantly on the RTS selection. As a longer

RTS is optimal in this case, our dataset shows slower

changing return levels than price levels. The insignificance

of h indicates that relative savings depend less on the

approaches’ capability to predict the time-of-day-specific

return levels. A longer TFW increases the option values by

increasing the action flexibility (Hull 2014), which is in

line with common option pricing theory. Figure 4 uses

histograms to illustrate these four approaches (after con-

figuration with optimal parameters).

Figure 4 indicates that modeling time-of-day-specific

price patterns instead of returns patterns is preferable (but

only when configuring these models). According to

Table 2, applying approaches following Tian (1993)

instead of those following Cox et al. (1979) is preferable,

although not statistically significantly. The Tian (1993)

approaches may be slightly better performing due to the

increasing accuracy of their convergence toward the

Black–Scholes model (cf. Section 4.1). The better perfor-

mance of modeling time-of-day-specific price patterns

Table 2 Evaluation results of applied approaches before and after configuration of endogenous model parameters

Savings with random parameters Savings after configuration with optimal h and RTS

Averaged

absolute savings

to S0 (¢)

Averaged

relative savings

to S0 (%)

Exploitation of

savings potential

(%)

Averaged

absolute savings

to S0 (¢)

Averaged

relative savings

to S0 (%)

Exploitation of

savings potential

(%)

I. Cox et al. (1979)

with price patterns

0.03649 0.80813 21.76075 h ¼ 1, RTS ¼ 7d

0.06857 1.51294 40.45341

II. Cox et al. (1979)

with return patterns

0.05682 1.25749 33.65950 h ¼ 0:25, RTS ¼ 30d

0.06474 1.43051 37.49308

III. Tian (1993) with

price patterns

0.03761 0.83261 22.26482 h ¼ 1, RTS ¼ 7d

0.07337 1.61352 40.91032

IV. Tian (1993) with

return patterns

0.05707 1.26403 33.93849 h ¼ 0, RTS ¼ 30d

0.06763 1.49416 38.53289

V. Traditional Cox

et al. (1979) and Tian

(1993)

0.00929 0.20560 5.51305 Not available

VI. Expectation

optimization

0.05572 1.23367 33.08806 Not available

Two-sample t test: Reject H0 hypothesis that the mean savings of V � the mean savings of I–IV with optimal h and RTS ? approaches I–IV

preferable***

Two-sample t test: Reject H0 hypothesis that the mean savings of VI � the mean savings of I–IV with optimal h and RTS ? approaches I–IV

preferable***

***Represents a significance level of 0.1%, **a significance level of 1%, and *a significance level of 5%
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indicates that historical price information is a better esti-

mator of spot price development over a few hours than

return information. However, as approaches I and III’s

performances decline strongly with longer RTSs, this

relation might reverse with longer TFWs (e.g., several

weeks). Future research could analyze this hypothesis.

Finally, we run another one million simulated scenarios

to test approaches I–IV’s sensitivity to IL. We therefore

randomize IL 2 f30; 60; 120; 180g [min], while we keep

TFW ¼ 6 h (a multiple of all IL) and the unconfigured

parameters. Figure 5 shows that longer ILs tend to yield

lower averaged relative savings. This observation is plau-

sible, as a longer IL within a constant TFW reduces the

number of decision nodes in the binomial tree and, there-

fore, the action flexibility to react to short-term spot price

development.

6 Discussion

Our evaluation results could lead to the assumption that an

extension of the Tian (1993) model with a mean reversion

to time-of-day-specific price patterns is preferable. Such a

generalized assumption is not, however, valid, because our

results are strongly dependent on our dataset of a single

Amazon EC2 spot instance in a specific location, and on

our chosen simulation parameters. We actually evaluated

representative scenarios and parameter sets to demonstrate

that ROA can be a suitable decision support method when

customers, given their temporal flexibility and the uncer-

tain spot price development, wish to purchase cloud ser-

vices at minimal costs.

As a measure of uncertainty, volatility increases a real

option’s value (Hull 2014). Lower volatility decreases
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Fig. 3 Univariate parameter sensitivity of averaged relative savings for approaches I–IV
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temporal flexibility’s value, because it lets one expect

fewer savings from spot price movement. When applying

ROA to our EC2 dataset, we observed that its return

volatilities yielded rather low savings. More precisely, our

configured approaches I–IV’s relative savings averaged

about 1.5 percent. However, this is already equal to

exploiting about 40 percent of the existing savings poten-

tial (on average, cf. Table 2).

Nonetheless, our results are especially relevant for the

following three reasons: First, cloud services are becoming

cost-intensive for many companies. For example, if Snap

Inc., which recently announced that it would spend $2

billion on Google cloud services over a 5-year period (US

SEC 2017), achieved realizable savings of 1.5 percent, this

would amount to an absolute amount of $6 million per

year. Second, other cloud spot instances exhibit higher

return volatilities (Ekwe–Ekwe and Barker 2018) and,

therefore, higher savings potentials than the one referred to

in our dataset. Future research should therefore analyze and

compare different cloud spot instances to identify promis-

ing application scenarios for our ROA. Third, we expect

the return volatilities in multiple cloud spot markets to

increase in the future, because the rapid standardization of

cloud services should liberalize the market structures

further. More cloud providers offering spot prices should

also increase the competition and liquidity on the supply

side. On the demand side, recent trends like cloud bursting,

which prevents peak load in companies’ data centers by

adding external cloud resources (Lilienthal 2013), will

increase demand for cloud services. The latter will lead to

trading volumes growing, which will, in turn, increase the

return volatility (Wang and Yau 2000).

If cloud customers intend to apply our ROA algorithms

within, for instance, their batch job schedulers, they need to

identify suitable computation jobs for deferral (e.g., train-

ing machine learning models). Moreover, job schedulers

must integrate the relevant cloud service provider’s API

(e.g., Query API for Amazon EC2, or the AWS SDKs) to

automatically compare spot prices and the job backlog.

This approach takes the boundary conditions of cloud

service providers’ customers, such as the service level

agreements with their own customers, into consideration,

which allows them to optimally decide which jobs to out-

source to their provider and at what time.

Furthermore, beside to AWS, our ROA is transferable to

emerging cloud spot markets: Recently, the Deutsche

Börse Cloud Exchange, the Cloud Commodities Exchange

Group, and the Massachusetts Open Cloud Exchange have
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Fig. 4 Histograms of relative savings for approaches I–IV with optimal h and RTS
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initiated market places that provide spot prices. One could

also apply our ROA to other domains, such as electricity

and surge pricing, as long as some time-of-day-specific

spot price patterns reoccur: Since we build on Fridgen

et al.’s (2016) approach, electricity market researchers

could inversely utilize our approaches. Surge pricing has

also seen the first research on price forecasting (e.g.,

Laptev et al. 2017).

Cloud providers too can benefit from customers apply-

ing our approaches. They could, for instance, categorize

spot instance bidders into more and less flexible customers.

Flexible customers contribute to an improved server uti-

lization (i.e., less idle resources), as they can ‘‘smooth out

some of the computation requests with monetary incentives

and lead to a more efficient use of Cloud infrastructure’’ (Li

et al. 2016b, p. 7). According to Zhang et al. (2014), this

more efficient resource allocation leads to higher provider

revenue than fixed-price cloud services, which might be a

competitive advantage in the market. To stimulate this

benefit, providers could develop business models and

provide cloud customers with dedicated decision support

tools. However, flexible customers are more likely to avoid

providers’ price peaks, which may lead to a slight decline

in the provider revenue, but could result in higher earnings

due to the lower overall costs. Subsequent research could

analyze these incentives for cloud providers to support or

impede flexible cloud customers.

7 Conclusion, Limitations, and Future Research

The rapid standardization and specialization of cloud

computing services have led to the development of cloud

spot markets on which cloud service providers and cus-

tomers can trade in near real-time. The frequent changes in

demand and supply give rise to spot prices that vary

considerably throughout the day. Depending on the cate-

gory of a service request, cloud customers often have

temporal flexibility to execute their jobs. We apply ROA to

the domain of cloud computing spot prices to quantify and

exploit the monetary value of short-term temporal flexi-

bility in cloud computing. We adapt different ROA

approaches that, at consecutive points in time, decide

whether to purchase cloud services immediately or to defer

purchase. In our analysis of real-world data from an

Amazon EC2 spot instance, we identify time-of-day-

specific price patterns. Adapting existing ROA approaches

to these patterns, we demonstrate the benefits of such

approaches for cloud customers.

Our modeling approaches have technical limitations that

subsequent research could address. First, we assume a

normal distribution of returns, which does not necessarily

hold true for cloud spot prices. Second, anomalies such as

technical issues at the cloud provider might cause imme-

diate and unpredictable price movements (spikes) that our

stochastic process cannot predict. Third, for reasons of

complexity, we limit our research to discrete-time models,

although analytical approximations of or numerical solu-

tions for continuous-time models and decision making

would offer more action flexibility. Fourth, we limit our

discrete-time models to extensions of Cox et al.’s (1979)

and Tian’s (1993) approaches.

Besides temporal flexibility, cloud customers could also

exploit their spatial flexibility, as cloud spot prices still lack

liquidity and are not necessarily arbitrage-free given the

different providers and locations (Cheng et al. 2016;

Fridgen et al. 2017). Further influencing factors, such as the

home bias, amplify arbitrage opportunities, which cloud

customers could seize by buying and selling cloud capac-

ity. Future research could therefore integrate the opti-

mization of temporal and spatial flexibility.
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Fig. 5 Univariate sensitivity of averaged relative savings to interval length for approaches I–IV
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Cloud customers, service providers, and scholars may

embed the proposed ROA in their decision support systems

to optimize the execution of variable-time requests in cloud

spot markets. This novelty has the potential to not only

generate monetary benefits, but to also increase cloud spot

markets’ adoption.
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Fridgen G, Häfner L, König C, Sachs T (2016) Providing utility to

utilities: the value of information systems enabled flexibility in

electricity consumption. J Assoc Inf Syst 17(8):537–563

Fridgen G, Keller R, Thimmel M, Wederhake L (2017) Shifting load

through space – the economics of spatial demand side manage-

ment using distributed data centers. Energ Polic 109:400–413.

https://doi.org/10.1016/j.enpol.2017.07.018

Gregor S, Hevner AR (2013) Positioning and presenting design

science research for maximum impact. MIS Q 37(2):337–355.

https://doi.org/10.25300/misq/2013/37.2.01

Hull JC (2014) Options, futures, and other derivatives. Pearson,

Upper Saddle River

Jarrow RA, Rudd A (1983) Option pricing. Irwin, Homewood

Javadi B, Thulasiramy RK, Buyya R (2011) Statistical modeling of

spot instance prices in public cloud environments. In: IEEE 4th

international conference on utility and cloud computing (UCC),

Victoria, pp 219–228

Jede A, Teuteberg F (2016) Valuing the advantage of early

termination: adopting real options theory for SaaS. In: 49th

Hawaii international conference on system sciences, Koloa,

pp 4880–4889
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