
RESEARCH PAPER

BoSDL: An Approach to Describe the Business Logic of Software
Services in Domain-Specific Terms

Sebastian Schlauderer • Sven Overhage

Received: 1 November 2017 / Accepted: 8 July 2018 / Published online: 2 August 2018

� Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Abstract Modular SaaS platforms that can flexibly be

configured with software services, microservices, and the

advent of the API economy provide new opportunities to

realize even highly customized solutions in the cloud. The

success of such endeavors depends on the ability of con-

sumers to discriminate between offered services and

choose those best fulfilling the requirements, though. To

facilitate the assessment of services against functional

requirements, this article proposes the Business-Oriented

Service Description Language (BoSDL). It consists of: (1)

a meta-model with rules to describe the business logic, that

is, the functionality of a software service from a business-

oriented perspective; (2) a textual presentation format

based on English natural language; (3) a graphical notation

based on the UML. Findings from a controlled experiment

indicate that, compared to the state of the art, the infor-

mation provided with the BoSDL enhances the ability of

consumers to judge if software services satisfy existing

functional requirements.

Keywords Software as a service � Service description �
Service selection � Design science

1 Introduction

The growing Software as a Service (SaaS) market provides

enterprises with ever more opportunities to outsource even

complex and customized software applications into the

cloud (Rowsell-Jones et al. 2016). Promising opportunities

particularly arise with the emergence of modular SaaS

platforms like Salesforce, which can flexibly be configured

and extended by selecting and composing software services

with the desired functionality from providers of the sur-

rounding ecosystem (e.g., Salesforce’s AppExchange

marketplace). By configuring and extending such modular

SaaS platforms with services from a well-populated

ecosystem, even strongly customized and industry-specific

applications like enterprise resource planning systems can

be realized in the cloud today. The possibilities to build

highly customized SaaS systems on the basis of modular

architectures might even further increase with the spread-

ing of microservices – easily combinable software services

that each provide a specialized capability like inventory

management or billing (Pautasso et al. 2017) – and the

advent of the API Economy, in which firms increasingly

provide access to software capabilities and data that might

be of value in service systems (Vukovic et al. 2016).

Analysts emphasize that moving towards modular, flexibly

configurable SaaS systems can bring several advantages for

consumers such as a higher agility and increased scalability

(IBM 2014; Herbert et al. 2016). Likewise, establishing

modular SaaS systems can also benefit platform providers,

for instance by extending the range of application of their

platforms, and service providers, for instance by enabling

them to efficiently offer services as parts of the SaaS

system.

In general, service systems enable the (co-) creation of

value through the particular configuration of the involved

Accepted after two revisions by the editors of the special issue.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12599-018-0554-0) contains supple-
mentary material, which is available to authorized users.

Dr. S. Schlauderer (&) � Prof. Dr. S. Overhage
Chair of Industrial Information Systems, University of Bamberg,

An der Weberei 5, 96047 Bamberg, Germany

e-mail: sebastian.schlauderer@uni-bamberg.de

Prof. Dr. S. Overhage

e-mail: sven.overhage@uni-bamberg.de

123

Bus Inf Syst Eng 60(5):393–413 (2018)

https://doi.org/10.1007/s12599-018-0554-0

https://doi.org/10.1007/s12599-018-0554-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-018-0554-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-018-0554-0&domain=pdf
https://doi.org/10.1007/s12599-018-0554-0

actors and their resources (Vargo and Lusch 2004; Maglio

et al. 2009). The success of modular, flexibly configurable

SaaS systems accordingly depends on the consumers’

ability to assess available services and compose those best

fulfilling their requirements (Schlauderer and Overhage

2011; Polyviou et al. 2014; Sun et al. 2014). In well-pop-

ulated service ecosystems, there likely exist several alter-

native software services that provide support for a specific

task such as inventory management. Still, the provided

functionality can vary substantially, both with respect to

the business logic (e.g., different storage strategies might

be used) and the service quality (e.g., different levels of

availability might be achieved). Considering that complex

enterprise solutions are composed of several different

software services and that multiple candidates would have

to be inspected in each case, an efficient assessment

method is required. In such a scenario, especially approa-

ches that support the selection of commercial-off-the-shelf

(COTS) software cannot straightforwardly be applied due

to their limited scalability. These approaches have been

designed to facilitate the selection of a singular software

product out of a small set of candidates. To obtain the

information for the assessment of the candidates, they

typically rely on in-depth evaluations of test versions and

product catalogs (Kontio 1996; Land et al. 2008). If con-

ducted for multiple software services, such a procedure

would drastically increase the setup costs (Weyuker 2001).

To facilitate the setup of service systems, service

description approaches have been emphasized in service

science literature as a means to make external properties of

provided services explicit rather than relying on their

observation (Maglio et al. 2009; Ferrario et al. 2012). In

the SaaS domain, several such approaches exist, allowing

providers to specify relevant software service properties

and to communicate them to potential consumers so that

they can be compared to existing requirements (Ferrario

et al. 2012; Terzidis et al. 2012). Interestingly, however,

the vast majority of software service description approa-

ches focuses on the specification of contractual terms (e.g.,

pricing models), quality of service levels, and the pro-

gramming interface (Sun et al. 2014). For consumers, this

information provides a basis to determine the eligibility of

a software service from a commercial point of view, to

assess the fulfillment of existing non-functional require-

ments, and to verify the technical compatibility of a soft-

ware service. Yet, so far there only exist a few approaches

with limited expressive power to specify the business logic,

that is, the functionality of a software service from a

business-oriented perspective (Sun et al. 2014). Therefore,

it remains difficult for consumers to determine whether a

software service also fulfills existing functional require-

ments, although this actually is the most important selec-

tion criterion (Repschlaeger et al. 2012; Polyviou et al.

2014). Studies of leading SaaS marketplaces confirm that

especially the information provided with respect to the

business logic of software services does not suffice to

support an efficient assessment and selection (Hrach and

Alt 2018; Schlauderer and Overhage 2011). As far as

functional requirements are concerned, consumers are

hence often required to treat software services like expe-

rience goods, whose appropriateness becomes entirely

clear only after intensive use and observation.

To fill this literature gap and better support the assess-

ment and comparison of software services against func-

tional requirements, we propose the Business-Oriented

Service Description Language (BoSDL). It has been

designed as a lightweight approach to specify the business

logic, that is, the functionality of a software service from a

business-oriented perspective. With the design of the

BoSDL, we examine the following research questions:

How can the business logic of software services be speci-

fied in domain-specific terms? How does a specification of

the business logic in domain-specific terms affect the

assessment and selection of software services? The

resulting BoSDL consists of three elements: (1) a theoret-

ically grounded meta-model with rules to describe the

business logic of a software service as system of domain-

specific concepts; (2) a textual format to specify the busi-

ness logic in a standardized form of English natural lan-

guage; (3) a graphical format to depict the business logic in

a two-dimensional way. Construction of the BoSDL is

based on the design science research (DSR) approach (Ii-

vari 2007; Hevner et al. 2004; Gregor and Hevner 2013).

Established DSR principles particularly demand to evalu-

ate the usefulness of the developed artifact in its intended

context (Gregor and Hevner 2013). We therefore chose to

examine the usefulness of the BoSDL for the assessment

and selection of software services in a controlled experi-

ment with 126 participants.

The results of our research contribute to the emerging

service systems engineering (SSE) discipline, which

‘‘seeks to advance knowledge on models, methods, and

artifacts that enable or support the engineering of service

systems’’ (Böhmann et al. 2014). In particular, we provide

novel evidence-based knowledge on the design of service

description languages, which are frequently emphasized in

literature as a means to make service properties explicit

that are relevant for the configuration of service systems

(Maglio et al. 2009; Ferrario et al. 2012). In this respect,

the presented BoSDL provides a nascent design theory with

operational principles (Gregor and Hevner 2013) governing

the description of the business logic of software services,

an area that has not been addressed sufficiently yet (Poly-

viou et al. 2014; Sun et al. 2014). In the SaaS domain, the

BoSDL complements existing description approaches,

which focus more on describing the quality, the

123

394 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

programming interface, and/or contractual properties of

software services (Polyviou et al. 2014; Sun et al. 2014).

While we designed the BoSDL specifically with software

services in mind, the resulting description remains inde-

pendent of their software-technical realization. The BoSDL

might hence even be generalizable to more precisely

describe the business logic of services outside the SaaS

domain.

The remaining presentation follows established guide-

lines for the publication of DSR studies (Gregor and

Hevner 2013): in Sect. 2, we discuss related work and the

purpose of our approach in more detail. Section 3 elabo-

rates on the specific design science research approach that

was adopted in our study. In Sect. 4, we introduce the

BoSDL and its constituents. Section 5 describes the eval-

uations conducted to demonstrate the feasibility and use-

fulness of the BoSDL. In Sect. 6, we discuss the research

contributions, implications for academia and practice, and

future research directions.

2 Background and Related Work

Successful SaaS platforms that can flexibly be configured

with services from well-populated provider ecosystems, the

emergence of microservices, and the prophesied advent of

the API Economy open up promising opportunities to

realize even customized enterprise applications in the

cloud. From a SSE perspective, however, the trend towards

SaaS systems with modular, flexibly configurable archi-

tectures also poses new challenges. Generally, it appears

still necessary ‘‘to enhance the possibilities for modular-

ization, standardization, contextualization and re-configu-

ration of service components’’ (Böhmann et al. 2014). An

important measure to better support the design of modular,

flexibly configurable SaaS systems is to enable service

consumers to efficiently discriminate between alternative

services and select the ones best fulfilling their require-

ments (Turner et al. 2003).

To facilitate an assessment and matchmaking against

existing requirements, the importance of software

descriptions as an equivalent to product descriptions in

other engineering disciplines has been emphasized repeat-

edly in software engineering literature. A software

description describes the functionality of a software artifact

by specifying ‘‘in precise terms the intended effect of a

piece of software’’ (Gehani and McGettrick 1986). With

service descriptions, the SSE discipline has adopted a

comparable concept to specify the service functionality and

help matching the provider’s offering to the consumer’s

needs (Turner et al. 2003). Especially in the context of

modular SaaS systems, which are composed of multiple

software services, service descriptions are discussed as a

crucial success factor to facilitate the assessment and

configuration process (Turner et al. 2003; Repschlaeger

et al. 2012).

2.1 Related Work

Basically, a software service can be regarded as an offered

functionality (or set of functionalities) that consumers can

invoke to support a business task. The functionality of a

software service is determined by its implementation and

offered by means of an interface, which defines one or

more accessible operations as well as the information that

is exchanged when an operation is invoked by a consumer.

To ascertain if a software service is able to support a

particular business scenario, the consumer has to assess the

provided functionality against his/her requirements. In

general – and in compliance with reference architectures

such as the Architecture of Integrated Information Systems

(ARIS, Scheer 2000) –, the functionality of a software

service can be expressed on three abstraction layers

(Turner et al. 2003; O’Sullivan 2006): the conceptual layer

expresses the business logic, that is, the provided func-

tionality from a business-oriented perspective; the quality

layer expresses the service quality, that is, the functionality

from a performance-oriented perspective; the technical

layer expresses the programming interface, that is, the

functionality from a programmatic perspective. The

description of the service functionality is often comple-

mented with a specification of commercial characteristics

such as the terms of pricing and contract (Barros and

Oberle 2012).

To determine in how far the different abstraction layers

are taken into consideration by existing service specifica-

tion and matchmaking approaches, we conducted a litera-

ture search following the recommendations given by

Webster and Watson (2002). In particular, we queried the

AIS Electronic Library, IEEE Digital Library, ACM Dig-

ital Library, EBSO Host, and Google Scholar using key-

words such as ‘‘description’’, ‘‘specification’’, ‘‘quality’’,

‘‘functionality’’, or ‘‘semantics’’ together with ‘‘service’’

and ‘‘software’’. The results of our literature analysis

indicate that the vast majority of service description and

matchmaking approaches concentrates on properties of the

technical and quality layers. For instance, several estab-

lished approaches such as the Web Service Description

Language (WSDL) or the Web Ontology Language for

Services (Chinnici et al. 2007; Martin et al. 2005) only

support the specification of the methods and data types of

the programming interface. Regarding the technical layer,

there furthermore exists a whole plethora of approaches

that can be used to specify additional elements of the

programming interface like pre- and post-conditions,

notifications, or transactions (Akkiraju et al. 2005; Graham

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 395

et al. 2006; Cabrera et al. 2002). We also found several

approaches that focus on the specification of the quality of

software services. As part of the so-called WS-* languages,

for instance, there exist approaches to specify individual

quality attributes such as the security and reliability of

software services (Atkinson et al. 2002; Iwasa 2004). In

addition, we found approaches such as the Web Service

Modeling Ontology and the closely related Description of

Service Capabilities and Properties (DSCP), which support

the detailed annotation of methods of the programming

interface with quality attributes (Roman et al. 2005;

O’Sullivan 2006), for instance to describe their perfor-

mance or reliability. Building upon such a description,

several approaches have been proposed to support an

automated matching of non-functional requirements to

service quality profiles (e.g., Wang et al. 2006). There also

exist approaches for the management of service level

agreements such as the Web Service Level Agreement

framework (Ludwig et al. 2003), which allows providers to

formulate and monitor quality of service levels.

In comparison to the before-mentioned approaches, we

discovered only a few service description approaches that

support a specification of the business logic, though. As

part of an approach to specify the capabilities of software

services, Oaks et al. (2003) propose to annotate each

method and parameter of the programming interface with a

business term (i.e., a verb or a noun) in order to charac-

terize their conceptual semantics. They also suggest the

specification of synonyms and the placement of links to

external definitions of the terms. Taking a similar approach

to describe the business logic of software artifacts, Vitha-

rana et al. (2003) suggest augmenting the description of the

programming interface with business terms to express the

business meaning of each method and parameter. Both

approaches support a rudimentary description of the ser-

vice logic, that is, the provided functionality from a busi-

ness perspective. However, the expressive power is limited

as each method or parameter can only be characterized by a

single business term. It is hence not possible to specify the

business logic in detail, since this would require setting

multiple business terms into relation (e.g., to express that a

‘‘storage strategy’’ parameter is applied to an entire

‘‘warehouse area’’). Such details can only be provided as

part of a definition of the business term in natural language.

Despite this limitation, especially the service capability

description as suggested by Oaks et al. (2003) has been

taken up in other service description approaches. The

DSCP approach (O’Sullivan 2006) uses it as a basis to

specify quality characteristics of software services. The

concepts to describe the business logic, however, remain

unchanged since the approach is ‘‘not attempting to provide

a functional description of a service’’ (O’Sullivan 2006).

The Business Service Description Language (Le et al.

2010) also builds upon the service capability description as

introduced by Oaks et al. (2003) and adds ‘‘concepts that

describe the decomposition of business services and some

non-functional properties’’. As the language rather focuses

on supporting the decomposition of business services, the

expressive power with respect to the business logic again

remains unchanged.

During our literature analysis, we also examined holistic

approaches, which aim at providing a complete service

description and hence should cover all three abstraction

layers. To document the functionality of software services

from a business-oriented perspective, the Universal

Description, Discovery, and Integration standard intro-

duces a faceted classification with facet-value pairs such as

‘‘application domain: inventory management’’ as part of its

yellow pages (UDDI 2002). Besides a simple classification

of the application domain, however, no statements about

the business logic can be expressed. While the program-

ming interface can be formally specified on the green

pages, a detailed description of the business logic could

only be included using free-text fields and natural lan-

guage. More complex statements regarding the business

logic can be expressed with the Unified Service Descrip-

tion Language, which explicitly supports the specification

of capabilities to describe the supported business tasks as

part of its Functional Module (Barros and Oberle 2012). In

the USDL, a capability is defined as a publicly visible

function, which can have parameters and can be decom-

posed into sub-functions. Functions and parameters can

each be annotated with a description, which can refer to a

business term that is defined in an external ontology. The

expressive power is hence similar to the service capability

description as introduced by Oaks et al. (2003). While it is

possible to specify composition relationships between

capabilities (e.g., ‘‘commissioning articles’’ consists of

‘‘executing a picking plan’’ and ‘‘updating stock levels’’) in

the USDL, other forms of complex business logic still

cannot be expressed.

In summary, we hence found the support to describe the

business logic of software services to be limited. This

observation is corroborated by literature studies (Polyviou

et al. 2014; Sun et al. 2014) and surveys of leading SaaS

marketplaces, which confirm that the information provided

with respect to the business logic does not suffice to sup-

port an efficient assessment and selection of software ser-

vices (Hrach and Alt 2018; Schlauderer and Overhage

2011). Although the fulfillment of functional requirements

actually is the most important selection criterion (Rep-

schlaeger et al. 2012; Polyviou et al. 2014), its evaluation

appears to be least supported by today’s service description

approaches. Admittedly, the business logic of software

services might be documented using comprehensive

enterprise modeling frameworks such as ARIS or the

123

396 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

Multi-Perspective Enterprise Modeling framework

(MEMO, Frank 2014). Such frameworks typically make

use of multiple languages and views to document business

landscapes, however. It would hence also be necessary to

use several languages to describe the business logic of

software services (in particular, simply using a business

process modeling notation would not suffice as we will

show in Sect. 4). Such frameworks would furthermore

have to be used in a strongly restricted fashion to achieve

comparable descriptions. As no such approach exists, we

plead for the development of a dedicated, lightweight

service description language, which draws from such

approaches but is tailor-made to specify the business logic

of software services and can be integrated into existing

approaches such as the USDL.

2.2 Problem Statement

To identify an eligible software service out of a set of

candidates, consumers have to assess whether they fulfill

the functional, non-functional, and technical requirements

of the particular application scenario (Kontio 1996). In

general, all three abstraction levels of the service func-

tionality hence need to be analyzed. As service description,

today’s SaaS marketplaces typically provide a general-

purpose description in natural language and optionally

available formal specifications, which specify quality

attributes and/or the programming interface of the service,

for instance using the WSDL (Hrach and Alt 2018).

Without a precise description of the business logic – i.e.,

the functionality from a business-oriented perspective –, it

remains difficult to determine if a software service fulfills

the existing functional requirements, however. We illus-

trate this problem by referring to the case of a large

German supermarket company that wanted to identify

suitable software services to configure a cloud-based

enterprise resource planning system using a leading SaaS

platform. Apart from the SaaS platform, the initial system

was comprised of several different software services that

were chosen from the accompanying marketplace. In the

following, we limit the discussion to the process of iden-

tifying a suitable inventory management service. Table 1

shows an excerpt of the company’s functional require-

ments. The content is denoted in natural language but

comparable to that contained in more formal specifications.

To evaluate if a service candidate fulfills the functional

requirements, its general-purpose description was exam-

ined at first. Table 2 depicts a fragment of a typical gen-

eral-purpose description for a service candidate that was

found on the marketplace. The description contains an

explanation of the functionality in business terms, but is

obviously neither detailed nor precise enough to assess if

the functional requirements depicted in Table 1 are ful-

filled. The company therefore had to try inferring the

required information from the available programming

interface specification. Table 3 shows a simplified excerpt

of the WSDL specification of the same service candidate to

illustrate the process. The complete specification contains

1501 lines of code in Extensible Markup Language. It

encompasses 31 operations and 25 data types, which had to

be analyzed to evaluate whether the service candidate

fulfills the functional requirements.

Most of the business logic nevertheless needed to be

inferred from the specification. For instance, requirement

´ demands support for the management of warehouses, in

which the storage strategy varies from area to area

(Table 1). From line 20 of the specification, consumers can

infer that the strategy can even be configured per storage

Table 1 Exemplary functional requirements document (excerpt)

We want to use a network-available service to manage our warehouses with up to 5000 storage cells ff. Currently, we operate seven warehouses

�, each of which is subdivided into receiving, storage, picking, and dispatching areas `. Depending on the area, either a fixed-bin or chaotic

storage strategy is applied ´. Furthermore, a first-expires-first-out (FEFO) commissioning strategy is applied for goods in the storage area .

Each area consists of a number of storage bins, which may have varying sizes and tonnage capacities ˆ. A storage bin is located by the numbers

of its corridor, rack, and level ˜. Moreover, storage bins are suited to contain a certain number of either identical articles or standardized pallets

¯. Standardized pallets, especially those to be shipped to the various stores, can contain up to 20 different articles ˘. The warehouse

management service has to be able to create, read, update, and delete warehouse structures ˙. It is required to automatically calculate plans for

picking articles from the warehouse on the basis of customer orders and for distributing articles to storage bins on the basis of delivery notes ¨.

The stock level of articles has to be managed by accounting services �

Table 2 General-purpose description of a service candidate (excerpt)

This package provides inventory management with multi-warehouse inventory capabilities, inventory batching from fixed-bin and chaotic

storage, thresholds for alerts when inventory is low, and advanced inventory status management options. The tool allows you to configure when

you want to reserve and commit from inventory and at what level you would like an alert to low quantities of your products. It also supports

inventory tracking in multiple warehouse locations as well as inventory adjustment and transfer. For more information check out our free trial

version and the video documentation here

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 397

bin, thus fulfilling the requirement. In contradiction to

requirement ˘, however, line 19 suggests that storage bins

support a maximum of 10 different articles only. The ser-

vice also does not seem to allow the modeling of separate

areas for receiving and dispatching, thus breaching

requirement `. Instead, it supports a more general concept

of shipping areas according to line 13. In violation of

requirement �, line 29 implies that a maximum of five

warehouses is supported as the operation ‘‘getStorageIds’’

returns an array with a capacity of five. The commissioning

strategy obviously cannot be customized using the inter-

face and is not mentioned at all. It hence remains unclear if

the service supports a FEFO strategy as demanded by

requirement .

Since inferences from the programming interface

description involve a significant amount of interpretation

and do not allow the evaluation of all functional require-

ments, consumers cannot be sure about the implemented

business logic without obtaining additional information.

We hence posit that a service description should contain an

explicit documentation of the provided functionality from a

business-oriented perspective to better support an assess-

ment against functional requirements. To achieve this goal,

a service description language needs to document the

business logic of all operations accessible on the interface

(design objective).

2.3 Solution Requirements and Expected Benefits

Besides the design objective, we identified six additional

requirements that the design of the service description

language ought to fulfill in two steps. In a first step, we

surveyed extant conceptual modeling and knowledge rep-

resentation literature for general, methodological language

requirements. In a second step, we identified application-

specific requirements that were found to be relevant par-

ticularly in the intended usage context of the service

description language. To identify such requirements, we

examined a real-world development project, in which

software services were assessed and selected based on

functional requirements (Sect. 2.2). We applied two

established elicitation methods (Pohl 2010; Zowghi and

Coulin 2005): first, we observed the project to study

applied practices and techniques. Afterwards, we inter-

viewed involved system designers and domain experts to

gather their critique and expectations of the supporting

service description language. To get an overview of the key

points, we applied open coding techniques to the interview

transcripts. We then grouped statements of similar topic to

identify consistently articulated requirements. Finally, we

cross-verified our results and impressions with reports from

literature.

Table 3 Simplified WSDL excerpt of a service candidate

01 <wsdl:definitions>
02 <wsdl:types>
03 <s:schema targetNamespace=”http://www.sample.storage-management.org/”>
04 <s:element name=”StructureStorage”><s:complexType><s:sequence>
05 <s:element minOccurs=”1” maxOccurs=”1” name=”name” type=”s:string”/>
06 <s:element minOccurs=”1” maxOccurs=”unbounded” name=”storageareas” type=”StructureStorageArea”/>
07 </s:sequence></s:complexType></s:element>
08 <s:element name=”StructureStorageArea”><s:complexType><s:sequence>
09 <s:element minOccurs=”1” maxOccurs=”1” name=”type” type=”tns:AreaType”/>
10 <s:element minOccurs=”1” maxOccurs=”750000” name=”bins” type=”Bin”/>
11 </s:sequence></s:complexType></s:element>
12 <s:simpleType name=”AreaType”><s:restriction base=”s:string”>
13 <s:enumeration value=”storing”/><s:enumeration value=”picking”/><s:enumeration value=”shipping”/>
14 </s:restriction></s:simpleType>
15 <s:element name=”Bin”><s:complexType><s:sequence >
16 <s:element minOccurs=”0” maxOccurs=”1” name=”typeId” type=”s:string”/>
17 <s:element minOccurs=”1” maxOccurs=”1” name=”slot” type=”s:int”/>
18 <s:element minOccurs=”1” maxOccurs=”1” name=”level” type=”s:int”/>
19 <s:element minOccurs=”0” maxOccurs=”10” name=”articleCounts” type=”ArticleCount”/>
20 <s:element minOccurs=”1” maxOccurs=”1” name=”strategy” type=”tns:Strategy”/>
21 </s:sequence></s:complexType></s:element>
22 <s:element name=”ArticleCount”><s:complexType><s:sequence>
23 <s:element minOccurs=”1” maxOccurs=”1” name=”id” type=”s:string”/>
24 <s:element minOccurs=”1” maxOccurs=”1” name=”count” type=”s:int”/>
25 </s:sequence></s:complexType></s:element>
26 <s:simpleType name=”Strategy”><s:restriction base=”s:string”><s:enumeration value=”static”/><s:enumeration value=”chaotic”/>
27 </s:restriction></s:simpleType>
28 <s:element name=”getStorageIds”><s:complexType><s:sequence>
29 <s:element minOccurs=”0” maxOccurs=”5” name=”getStorageIds” type=”s:string”/>
30 </s:sequence></s:complexType></s:element>
31 </s:schema>
32 </wsdl:types>
33 <wsdl:message name=”createStorageSoapIn”><wsdl:part name=”parameters” element=”tns:StructureStorage”/></wsdl:message >
34 <wsdl:message name=”createStorageSoapOut”><wsdl:part name=”parameters” element=”tns:createStorageResponse”/></wsdl:message>
35 <wsdl:message name=”getStorageIdsSoapIn”><wsdl:part name=”parameters” element=”tns:getStorageIdsInput”/></wsdl:message>
36 <wsdl:message name=”getStorageIdsSoapOut”><wsdl:part name=”parameters” element=”tns:getStorageIds”/></wsdl:message>
37 <wsdl:portType name=”Storage Management Services”>
38 <wsdl:operation name=”createStorage”><wsdl:documentation>Role: Storage Management. Description: Uses a storage structure
39 to create a new storage. Inputs: datatype StructureStorage. Output: new storage ID.</wsdl:documentation>
40 <wsdl:input message=”tns:createStorageSoapIn”/><wsdl:output message=”tns:createStorageSoapOut”/>
41 </wsdl:operation>
42 <wsdl:operation name=”getStorageIds”><wsdl:documentation>Role: Storage Management. Description: Gets IDs of existing storages.
43 Output: storage IDs (arraySize <= 5).</wsdl:documentation>
44 <wsdl:input message=”tns:getStorageIdsSoapIn”/><wsdl:output message=”tns:getStorageIdsSoapOut”/>
45 </wsdl:operation>
46 </wsdl:portType>
47 </wsdl:definitions>

123

398 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

Surveying literature led to three methodological

requirements (R1–R3): Generally, a language should be

able to represent all relevant concepts of the universe of

discourse in order to work as an effective means of com-

munication (Wand and Weber 1993; Davis et al. 1993;

Shanks et al. 2003). Although it is difficult to formally

prove, we accordingly formulate requirement R1 (com-

pleteness): the service description language has to cover all

concepts necessary to specify the business logic of the

operations available on the interface. In particular, its

expressive power needs to be adequate to describe the

business logic of software services across many domains.

At the same time, a language needs to avoid any over-

load, redundancy, or excess of its constructs (Goodman

1976; Wand and Weber 1993; Moody 2009). A language

construct is overloaded if it maps to more than one concept

in the universe of discourse. It is redundant, if there is

another construct mapping to the same concept, and

excessive, if it maps to no concept at all. As the presence of

such defects makes the usage of a language difficult, we

formulate R2 (clarity): the service description language

needs to provide non-redundant and unambiguous

constructs.

In principle, a specification language also should

establish strict guidelines on how to use its constructs

(Davis et al. 1993; Ortner and Schienmann 1996; Moody

2009). Such guidelines do not only facilitate its use. They

also help reducing variations among service descriptions,

making them more comparable. We therefore posit R3

(strictness): the service description language needs to

establish normative rules to describe the business logic.

As an effective measure to fulfill R2 and R3, literature

on the design of notations recommends introducing a for-

mal language basis (Davis et al. 1993). It hence appears

appropriate to call for a formal basis of the aspired service

description language. Such a formal language would

moreover provide better support for automated processing,

validation, and reasoning (Davis et al. 1993).

Analyzing the gathered project data led to three appli-

cation-specific requirements (R4–R6): Both our observa-

tions and recent literature suggest that the assessment and

selection of software services in practice still is a consid-

erably manual process (Eisa et al. 2016). The interviewed

domain experts and system designers consistently man-

dated that the service description language needs to be

straightforwardly understandable by all stakeholders.

Therefore, we formulate R4 (understandability): the ser-

vice description language needs to introduce an under-

standable presentation format with constructs that

prospective users are familiar with.

The majority of the interviewed stakeholders addition-

ally uttered a demand for a lightweight, economical lan-

guage that can be used efficiently during the evaluation

stage. In particular, they emphasized that service descrip-

tions have to be easier to evaluate than test versions of

software services. As literature also provides indications

that a parsimonious language design might facilitate its

acceptance in practice (Moody 2009), we posit R5 (sim-

plicity): the service description language should introduce a

compact set of constructs.

Several interviewees also mandated that the business

logic should be described independently of implementation

concerns. They found a description, which is rooted in

implementation details, to unnecessarily intermix aspects

of the conceptual business logic with aspects of its tech-

nological realization. For instance, line 29 of the WSDL

file shown in Table 3 states \s : element minOccurs ¼
00000 maxOccurs ¼ 00500 name ¼ 00getStorageIds00 type ¼
00s : string00=[. Without reference to its technological

realization, the business logic could be formulated in a

more accentuated way: ‘‘the number of manageable ware-

houses is limited to a maximum of 5’’. As technological

platforms furthermore differ between SaaS ecosystems and

technology-dependent descriptions of the business logic

were hence found difficult to compare, we formulate R6

(technology independence): the service description lan-

guage should express the business logic independently of

its technological realization. Note that a mapping between

both aspects was still considered helpful to understand,

which parts of the programming interface implement a

particular part of the business logic.

All in all, we identified six design requirements for the

aspired service description language. Interestingly, other

service description approaches seem to be based on com-

parable requirements, thus lending additional support to

their importance (O’Sullivan 2006). Referring back to its

intended usage context, we expect a language that fulfills

the above-mentioned design objective and requirements to

enhance the usability of service descriptions for service

consumers during the assessment stage. Generally, the

usability of an artifact is determined by three aspects

(Frøkjær et al. 2000): the effectiveness (i.e., accuracy),

efficiency (i.e., effectiveness in relation to effort), and

satisfaction (i.e., users comfort). We consequently formu-

late the following expectations when introducing a lan-

guage to specify the business logic of software services as

propositions:

• P1 (Higher effectiveness) We expect the ability of

consumers to identify eligible services to increase.

• P2 (Higher efficiency) We expect the time needed by

consumers to identify eligible services to drop.

• P3 (Higher satisfaction) We expect the satisfaction of

consumers with the service description to increase.

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 399

3 Research Method

To fill the identified literature gap and reach the design

objective, we propose the BoSDL as a new approach to

specify the business logic of software services. Its con-

struction is based on the DSR approach that provides

principles and guidelines to ensure the rigorous, scientific

development of innovative artifacts to solve relevant

problems (Iivari 2007; Hevner et al. 2004; Gregor and

Hevner 2013). Generally, such artifacts may be constructs,

methods, models, or instantiations (Hevner et al. 2004). In

our case, the developed artifact is a method to describe the

business logic of software services. The method engineer-

ing discipline provides different conceptualizations of the

term. In our DSR study, we adopted the following con-

ceptualization (Goldkuhl et al. 1998): a method consists of

a concept, which defines what aspects of the reality are

relevant and should be captured, a procedure, which

describes how to capture these aspects, and a presentation

format to document the results. We hence centered our

DSR study around these method elements.

The design of the BoSDL is informed by theories of the

conceptual modeling discipline, which is concerned with

‘‘the activity of formally describing some aspects of the

physical and social world around us for the purposes of

understanding and communication’’ (Mylopoulos 1992).

From a method engineering perspective, the BoSDL was

designed as a special-purpose (or domain-specific) con-

ceptual modeling language (Frank 2013), which is spe-

cialized on describing the business logic of software

services. With respect to the DSR knowledge contribution

framework (Gregor and Hevner 2013), our research goal

thereby was to create a new solution to a known problem in

form of a more effective and efficient technique to describe

the business logic.

To ensure a rigorous and traceable design procedure, we

adopted the DSR process suggested by Peffers et al. (2007)

as macro-process for our study. Its iterative nature allowed

us to incorporate experiences gathered during earlier

demonstration and evaluation stages (see Fig. 1). It hence

gave us the opportunity to constantly refine the BoSDL.

Following our research goal, we furthermore decided to

follow extant guidelines for the design of special-purpose

conceptual modeling languages during the solution design

and development. We therefore incorporated two pro-

cesses, which were proposed by Frank (2013) to specify the

language concept and to design the presentation format, as

micro-processes into our procedure. All in all, we pro-

ceeded as follows: During the first stage of the DSR pro-

cess, we defined the research problem and the purpose of

the BoSDL. Following recommendations of Peffers et al.

(2007) and Sonnenberg and vom Brocke (2012), we con-

ducted reviews of the literature and practitioner activities

as ex-ante evaluations to confirm the relevance of the

problem statement and the novelty of the approach

(Sect. 2). Based on the gathered findings, we defined the

design objective and derived design requirements in the

second stage. In the third stage, we designed the solution

concept. Following our micro-process, we developed and

theoretically justified a meta-model as the language con-

cept. It determines how the business logic of software

services should be expressed. We then implemented the

solution by developing presentation formats on the basis of

the meta-model. In the last two stages, we focused on

conducting ex-post evaluations of the BoSDL (Sonnenberg

and vom Brocke 2012). In the fourth stage, we examined

the applicability of the BoSDL to specify the business logic

of various software services. In the fifth stage, we con-

ducted laboratory experiments to examine the usefulness of

the BoSDL in its intended usage context, that is, during the

assessment and selection of software services.

Overall, we conducted four iterations of the DSR pro-

cess. The first two iterations ended after the fourth stage,

because our attempts to specify complex software services

indicated that we were not yet able to express all relevant

content. We hence decided to refine the language concept

(i.e., the meta-model). During the third iteration, we

Fig. 1 Design cycle, based on Peffers et al. (2007)

123

400 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

arrived at a state in which all relevant content could be

described. We demonstrated the technical feasibility of the

BoSDL by creating a modeling tool as a proof of concept.

Thereafter, we conducted a laboratory experiment to

evaluate its usefulness. During the course of the evaluation,

we observed that the generic association relationship,

which was part of the language to interrelate information

objects, was defined too broadly and often used instead of

specialization and aggregation relationships. After con-

sulting extant conceptual modeling literature (e.g., Ortner

and Schienmann 1996), we decided to drop this relation-

ship type and introduced an object connection relationship

to fill the gap. Since participants of the laboratory experi-

ment moreover indicated to prefer a graphical presentation

format, we decided to develop such an additional format.

During the fourth iteration, we furthermore implemented a

tool that is able to convert between the two language for-

mats and conducted a laboratory experiment with a larger

number of participants (Sect. 5.2).

4 Business-Oriented Service Description Language

The BoSDL documents the business logic of software

services as a lightweight conceptual model. Using a con-

ceptual model as means for documentation was deemed

appropriate since a conceptual model is a proven instru-

ment to provide ‘‘an accurate, complete representation of

someone’s or some group’s perceptions of the semantics

underlying a domain or some part of a domain’’ (Bodart

et al. 2001). The contents of a conceptual model are

described independently of programming technologies and

implementation concerns (Hadar and Soffer 2006; Topi

and Ramesh 2002), thus allowing the BoSDL to focus on

describing the functionality of software services from a

business-oriented perspective.

4.1 Concept

Following recommendations to design special-purpose

modeling languages (Frank 2013), we formally specified

the language concept as a meta-model using the Unified

Modeling Language (UML) as notation. The core concept

of the BoSDL is based upon the insight that the semantics

of a domain is expressed by its particular system of tech-

nical terms (Bunge 1977), in our case business terms. The

intent of the BoSDL accordingly is to specify a system of

concepts to express the business logic of software services.

Such a system of concepts can be documented by two

measures (Ortner and Schienmann 1996; Gómez-Pérez

et al. 2004): the building of (1) a vocabulary, which con-

tains the domain-specific business terms, and (2) a set of

statements, which interrelate business terms to express

complex semantics. In the inventory management domain,

characteristic terms would be ‘‘storage bin’’, ‘‘storage

strategy’’ etc. Statements to express complex semantics

would be ‘‘a warehouse consists of multiple storage bins’’

or ‘‘a warehouse area is operated according to a storage

strategy’’.

To specify the language concept, we have to identify

and reconstruct the types of concepts and relationships,

which are required to describe the business logic of soft-

ware services (Frank 2013). Following our design objec-

tive, we aim at documenting the business semantics of all

methods accessible on the programming interface of a

software service. The programming interface of a software

service basically consists of ports, methods, and data types

(Chinnici et al. 2007). From a conceptual, business-ori-

ented perspective, a data type is a technical representation

of a piece of information, which we refer to as information

object. An interface method is the result of a (partial)

automation of a business task, which we refer to as func-

tion. A port groups thematically related interface methods.

Conceptually, such a grouping of methods corresponds to

the (partial) automation of a composite business task that

can again be expressed as function. However, a composite

task usually also imposes some meaningful course of

action, in which its constituent tasks are meant to be exe-

cuted. We therefore decided to objectify the course of

action and refer to it as process. A software service sup-

porting the inventory management may, among others,

process information objects like purchase orders, provide

functions to generate and execute picking plans, and

implement complex processes such as stock placement and

removal.

During a thorough analysis of the universe of discourse,

all three concept types were found to be relevant to express

the business logic of software services. We hence included

them into the meta-model where they determine the content

of the vocabulary (see Fig. 2). Information objects can be

mapped onto data type definitions or parameters of the

programming interface, functions can be mapped onto

interface methods, and processes can be mapped to ports.

However, the vocabulary will likely also contain business

terms not directly related to the programming interface.

Such terms are used to describe the business logic of

software services in context. For each business term, the

name and an ID has to be specified. Short and long defi-

nitions to specify its meaning can be added. Note that

concept types such as the organizational unit were not

reconstructed as language elements as such contexts can

vary considerably when reusing a software service and

should hence not be predetermined.

To express complex aspects of the business logic,

statements can be formulated based on the vocabulary.

When analyzing the universe of discourse, we identified

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 401

several different formulations to express conceptual rela-

tionships. As we found it difficult to identify patterns for

different kinds of relationships, we decided to introduce

relationship types based on findings published in the con-

ceptual modeling literature. Ortner and Schienmann (1996)

show that four basic types of relationships exist to

Fig. 2 BoSDL meta-model with language constructs (depicted in UML)

123

402 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

interrelate information objects: specializations, property

declarations, aggregations, and connections. Our analysis

showed that the suggested relationship types were able to

subsume the various instances of relationships that we had

encountered. We hence decided to include the relationship

types into the meta-model (see Fig. 2).

An object specialization expresses a conceptual sub-

sidiarity between information objects, which means that

one is more specific than the other (Ortner and Schienmann

1996). Used repeatedly, they constitute abstraction hierar-

chies of information objects. To describe inventory man-

agement functionality, we can for instance specify: ‘‘a

picking area is a special warehouse area’’.

An object property declaration assigns one information

object as dependent part to another (Ortner and Schien-

mann 1996). An exemplary statement to describe the

business logic of an inventory management service would

be: ‘‘a storage bin has a loading capacity’’. Properties have

simple values, which are specified as enumerations or by

appointing a domain and an optional measurement unit: ‘‘a

storage strategy is either fixed-bin or chaotic’’, ‘‘a loading

capacity is a real number measured in pounds’’. Therefore,

the meta-model contains a set of domains and measuring

units (see Fig. 2).

An object aggregation combines information objects to

form composite objects with emergent properties (Ortner

and Schienmann 1996). It combines information objects

that stand for themselves. Characterizing an inventory

management service, we could specify: ‘‘a warehouse

consists of one or more warehouse areas’’.

An object connection objectifies the relationship

between its constituent objects and allows to view it as an

information object in its own sense (Ortner and Schien-

mann 1996). To describe an inventory management ser-

vice, we could specify: ‘‘a picking plan position connects

articles and their storage locations’’.

Conceptual modeling literature shows that functions can

be connected to each other and to information objects by

three kinds of relationships (Ortner and Schienmann 1996;

Scheer 2000): specializations, property declarations, and

aggregations. As we found all relationship types to be

relevant in our universe of discourse, we included them

into the meta-model (see Fig. 2).

Function specializations and aggregations have a

meaning comparable to that of their counterparts for

information objects. Specializations express a conceptual

subsidiarity between functions, meaning that a function is

more specific than the other (Ortner and Schienmann

1996). For an inventory management service, we could

specify: ‘‘batch picking is a special form of commissioning

articles’’. Aggregations combine functions to form a

composite (Ortner and Schienmann 1996). Similar to the

USDL, they can be used to refine complex business

functions into constituents, which are implemented on the

interface (Barros and Oberle 2012). To describe the busi-

ness logic of an inventory management service, we could

specify: ‘‘article commissioning consists of executing a

picking plan and updating a stock level’’.

Function property declarations assign information

objects to functions as inputs or outputs (Ortner and

Schienmann 1996). To characterize the business logic of an

inventory management service, we could specify: ‘‘a user

commissions’’ (function) ‘‘one or more articles’’ (charac-

teristic object/input) ‘‘with a picking plan’’ (input) ‘‘to a

shipment’’ (output). Naturally, functions operate on a

characteristic object, which is already part of the function

term (i.e., ‘‘commission article’’ instead of ‘‘commission’’).

With a property declaration, however, details such as a

cardinality can be added.

Aggregations between functions express a static part-

whole relationship. As the temporal order, in which func-

tions should be carried out, also played an important role

during our analysis of the universe of discourse, we deci-

ded to provide support for its specification. We therefore

included a flow relationship type into the meta-model (see

Fig. 2). Note that this relationship is not intended to

describe a business process, in which the service can par-

ticipate. As software services ought to be reusable in dif-

ferent contexts (and hence business processes), such an

intent would be counterproductive. Instead, the flow rela-

tionship is meant to express temporal constraints that exist

between supported business functions. They can be

expressed using simple workflow patterns such as

sequences, parallel flows, and branches (Aalst et al. 2003).

To characterize an inventory management service, we

could specify: ‘‘executing a commissioning plan precedes

updating the stock level’’.

Figure 2 depicts the resulting meta-model. It contains an

abstract syntax consisting of three types of business terms

and eight relationship types to specify the business logic of

software services from a conceptual perspective. Note that

several constraints required to ensure language consistency

are not depicted.

4.2 Presentation Formats

The BoSDL proposes a textual and a graphical presentation

format to specify the business logic of software services.

Initially, we decided to propose a textual format based on

the English natural language, because we wanted designers

and business users to be able to straightforwardly read and

understand the specified business logic. Human under-

standability was deemed to be particularly important, since

the assessment of software services still is a considerably

manual process.

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 403

The textual format is based on the English natural lan-

guage, but introduces standardized sentence patterns. They

conform to the contents of the meta-model and allow

describing the business logic of software services as

human-readable statements (see Fig. 3, left). Compared to

natural language, the proposed format is highly restrictive

as it only allows statements conforming to the sentence

patterns. Using such a normative language approach leads

to more precise and homogeneous specifications as the

semantics of all statements is clearly defined (Ortner and

Schienmann 1996). We therefore expect it to facilitate a

correct understanding of the specified business logic. Fur-

thermore, we are able to use standardized specifications for

automated processing and compilation (see online appen-

dix, available online via http://link.springer.com).

During the course of our study, we received feedback

that some stakeholder groups might prefer a graphical

presentation format, however. We therefore decided to

develop such a format based on the UML, which we

adapted by creating a profile. It provides symbols and rules

for composition to depict the business logic of software

services graphically (see Fig. 3, right).

Note that both formats concentrate on standardizing the

representation of relationships between business terms.

Ideally, the standardization should also encompass the

vocabulary (i.e., the terms themselves). For this purpose,

we recommend the introduction and usage of controlled

vocabularies. We did not make such vocabularies a part of

the BoSDL since this would only limit its applicability,

though. Instead, we present empirical indications in Sect. 5

that the BoSDL is able to improve the comparison of ser-

vices even if the vocabulary slightly differs, for instance

due to the use of synonyms.

4.3 Procedure

With the BoSDL, the business logic of software services

can be described in three steps, which can be iterated as

needed: (1) specification of the vocabulary, (2) specifica-

tion of relationships, (3) creation of a mapping to pro-

gramming interface elements. We illustrate the application

of the BoSDL by specifying the business logic of a soft-

ware service that fulfills all requirements given in Table 1.

For reasons of compactness, we make use of the textual

presentation format (see Table 4).

In the first step, service providers have to specify a

vocabulary of business terms. To achieve this goal,

relevant business terms have to be identified. The

starting point for the identification of relevant business

terms are the operations, which are accessible on the

service interface (cf. line 38–45 of the interface spec-

ification depicted in Table 3). For each operation on the

service interface that has a business-relevant meaning

(note that this does not necessarily apply for auxiliary

functions), business terms characterizing the functional-

ity and the characteristic object of the operation have to

be defined. Accordingly, the service provider specifies

the term ‘‘define warehouse’’ to characterize the business

logic of the operation createStorage on the service

interface in our example scenario. To describe the

characteristic object, the service provider specifies the

term ‘‘warehouse’’, which has to be included into the

vocabulary as well. Next to interface operations and

characteristic objects, business terms also have to be

defined to characterize parameters of operations and/or

data types that possess a business-relevant meaning.

Note that the provider can also define business terms to

characterize additional functions and information

objects, which have no representation at the service

interface. Such a strategy is recommended to express

further relevant aspects of the business logic. For

instance, business terms for composite functions that

aggregate interface operations can be defined. Additional

business terms can also be defined to express aggregate

information objects and/or attributes that are not visible

on the programming interface. In our example scenario,

the service provider for instance decides to also define

the ‘‘commissioning strategy’’ as a relevant business

term.

During the second step, statements are specified based

on the vocabulary in order to express complex aspects of

the implemented business logic. To achieve this task, the

grammar of the presentation format has to be used. It

allows specifying relationships between information

objects, between information objects and functions,

and between functions. In addition, the provider can

define temporal courses of action between functions as

processes. Using the sentence pattern for property

declarations, the provider for instance states: ‘‘A ware-

house has a commissioningStrategy’’. The form of the

supported commissioning strategy could be specified by

stating: ‘‘A commissioningStrategy is first-expires-first-

out’’. This describes that only one commissioning

strategy is supported and used throughout the

warehouse.

In the third step, service providers ought to map business

terms from the vocabulary to elements of the program-

ming interface in order to depict, which elements of a

software service realize certain parts of the specified

business logic. In our example scenario, the term

‘‘warehouse’’ is mapped to the data type Struc-

123

404 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

http://springerlink.bibliotecabuap.elogim.com

tureStorage to describe that it is realized by this

interface element. For reasons of brevity, we shortened

the description in Table 4. A more complete example

specification is provided in the online appendix. The

compilation of statements (step 2), however, is depicted

in a sufficiently complete manner that allows verifying

all functional requirements depicted in Table 1 as

indicated by the numbering. As the content shows, the

description nevertheless remains quite compact, aiming

to keep the specification effort for service providers

within acceptable limits. To verify, if a software service

fulfills existing functional requirements, a service con-

sumer has to assess if the tasks that are to be performed

are supported adequately (i.e., with the required business

logic). A manual assessment basically can be conducted

in three steps: First, the service consumer has to verify

that all tasks are actually implemented by operations on

the service interface. Therefore, (s)he has to match the

Fig. 3 Grammars to describe the business logic in textual (left) and graphical notation (right)

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 405

tasks contained in the requirements description against

the functions described in the BoSDL document. In our

example scenario, a service consumer for instance has to

evaluate if the service provides a function to create, read,

update, and delete warehouse structures ˙. The assess-

ment is successful if all tasks can be mapped onto

functions with appropriate business logic. In a second

step, the service consumer has to verify, if the entities,

which are to be processed, are supported adequately.

Therefore, (s)he has to match the entities contained in

the requirements description against the information

objects described in the BoSDL document. In the

example scenario, the service consumer for instance

has to evaluate if the service is able to manage

warehouses with up to 5000 storage cells ff. The

assessment is successful, if all entities can be mapped

onto information objects with appropriate business logic.

In a third step, the service consumer ought to verify that

the tasks can be executed in the intended temporal order

using the service. Therefore, (s)he has to inspect if

possible temporal courses of action, which are specified

as processes in the BoSDL document, conform to the

manner in which the tasks shall be executed. Note that

we are unable to depict a detailed requirements matching

process due to space limitations. Instead, we refer to the

literature (e.g., Kluge et al. 2008; Platenius et al. 2017).

5 Evaluation

During our DSR endeavor, we conducted various ex-post

evaluations of the BoSDL as recommended by Sonnenberg

and vom Brocke (2012) and Venable et al. (2016). To

proof the applicability of the BoSDL, we used it to describe

the business logic of a complex software service supporting

the booking of tickets in the aviation domain and that of

several services supporting the inventory management. In

both cases, we were able to express all relevant content

with the final language version. To proof the technical

feasibility, we developed a modeling tool that is able to

convert specifications between the two language formats.

In addition, we implemented compilers that verify speci-

fications against the language grammars (see online

appendix) and integrated support for the BoSDL into a

prototypical service marketplace.

5.1 Proof of Requirements

Before subjecting the BoSDL to detailed evaluations, we

examined if its design fulfills requirements R1–R6

(Sect. 2.3). Ideally, a solution should cover all concepts

necessary to specify the business logic of the operations

available on the service interface (R1). While we are

unable to prove completeness, we verified that the designed

approach is able to specify the business logic of software

services across various domains by applying it to complex

use cases as described above. During the iterations of our

Table 4 Exemplary statements to describe the business logic of a service fulfilling the requirements given in Table 1

I. Vocabulary

Warehouse A warehouse is a facility to stock articles

WarehouseArea A warehouse area is a sector that is dedicated to carry out a specific warehousing task

CommissioningStrategy A commissioningStrategy describes a method to retrieve goods from storage

Define warehouse As an initial step, a warehouse administrator has to define the structure of the warehouse

Stockkeeper A stockkeeper is tasked with maintaining warehouses

...

II. Compilation of statements

A warehouse is composed of 1 to many warehouseArea. A warehouse has a name and a commissioningStrategy. A commissioningStrategy is
first-expires-first-out . A warehouseArea is composed of 1 to 750,000 storageBin ff. A warehouseArea has an areaType. An areaType is
storing or picking or shipping `. A storageBin has a binType and a slot and a level ˜ and 1 to 10 articleCounts ˘ and a storageStrategy. A

storageStrategy is static or chaotic ´. A binType has a height and a width and a depth and a tonnageCapacity ˆ and a storageUnit. A

storageUnit is standardPallet or singleArticle ¯. An articleCount has an articleID and a count. A count is an Integer. A height is a RealNumber.

A slot is a CharacterSequence.

A stockkeeper does manage 0 to 5 warehouse �. A stockkeeper does create a commissioningPlan with a customerOrder. A stockkeeper does
create a storagePlan with a deliveryReceipt ¨. A stockkeeper does book an inventoryChange with a reservation�. An administrator does define
a warehouse ˙.

III. Interface mapping

Warehouse StructureStorage

WarehouseArea StructureStorageArea

Define warehouse CreateStorage

...

123

406 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

study, we furthermore observed a stabilization effect:

While we were not able to express all relevant content

adequately and had to refine the language concept during

the first three iterations, we did not observe such problems

later on (Sect. 3). Although we cannot guarantee com-

pleteness, we would hence argue that the BoSDL suffi-

ciently meets R1.

An ideal solution furthermore needs to provide non-re-

dundant, unambiguous constructs (R2). During the design

of the BoSDL, we only added language concepts as long as

they expressed semantically different parts of the business

logic. To also ensure that each part of the business logic

can only be expressed by one language construct, we

carefully analyzed service descriptions that we created as

described above. As we could identify no ambiguities, we

conclude that the BoSDL fulfills R2.

By means of its meta-model, the BoSDL prescribes both

the types of concepts and the types of relationships that can

be used to describe the business logic of software services.

The grammars of the presentation formats moreover pre-

scribe the format of service descriptions. The BoSDL

hence establishes normative rules for the description of the

business logic as demanded by R3.

As a core element of the BoSDL, we have deliberately

designed a presentation format that expresses the business

logic using (a standardized form of) natural language. We

deem this format to be straightforwardly understandable

both for business experts and software designers, which

might be involved in the assessment and selection of

software services. For designers, we also provide a

graphical format that is based on the UML as a de-facto

standard. The BoSDL thus provides an understandable

presentation format as required by R4.

To be efficiently applicable, an ideal language further-

more needs to introduce a compact set of constructs (R5).

During the design of the BoSDL, we only introduced

concepts that were found necessary to describe the business

logic of the operations available of a service. The BoSDL

distinguishes three concept types and eight relationship

types. In contrast to general-purpose modeling languages

such as ARIS or MEMO, it moreover depicts the content

using a single presentation format. Compared to such

approaches, we would therefore argue that the BoSDL

satisfies R5. To confirm that the language is indeed per-

ceived as lightweight, it would be necessary to evaluate the

language in use, however.

In comparison, the fulfillment of R6 is obvious. The

BoSDL is able to express the business logic of software

services independently of their technological realization,

because it is described in form of a conceptual model,

which is technology-agnostic by definition.

5.2 Proof of Usefulness

To proof the usefulness, we decided to examine if the

BoSDL expedites the assessment and selection of software

services as its intended usage context. In particular, we

wanted to know if it enhances the ability of consumers to

assess the business logic of software services and to

identify the ones best fulfilling their functional require-

ments. As we wanted to make a causal inference, namely

that the description language is responsible for the

observed effects, with a high degree of internal validity, we

decided to control potentially confounding influences to the

best possible extent. In so doing, we followed recommen-

dations to maximize internal validity in order to achieve a

rigorous testing of the artifact (Calder et al. 1982). We

therefore conducted a laboratory experiment, in which

software services had to be assessed by participants based

on varying service descriptions. In the following, we adopt

the structure for the presentation of experimental research

proposed by Wohlin et al. (2012) to describe the design of

our laboratory experiment.

5.2.1 Experiment Design

5.2.1.1 Goals, Hypotheses and Variables The purpose of

the evaluation was to statistically test propositions P1–P3

(Sect. 2.3), that is, to investigate if the BoSDL allows

consumers to identify eligible software services with a

higher degree of effectiveness, efficiency, and satisfaction.

The main observed factor was the service description

approach. To vary the description approach, we randomly

assigned participants to three groups. The control group

received a general-purpose description of the services and a

specification of the interface. The provided information

corresponds to what is typically made available to con-

sumers on today’s SaaS marketplaces. The interface was

described using WSDL and annotated with business terms

using the WSDL documentation feature (see Table 3).

Following Vitharana et al. (2003), we annotated each

function and parameter with a business term. In so doing,

we were able to evaluate the BoSDL against the current

state of the art in research and practice (Sect. 2.1). The

treatment groups additionally received a description of the

business logic, denoted either in the textual or graphical

BoSDL format. To account for individual characteristics,

we included control variables such as age, gender, or prior

experience.

5.2.1.2 Procedure To test the propositions, we investi-

gated a realistic service selection scenario based on the

case discussed in Sect. 2.2. The required service descrip-

tions were derived from our endeavor to describe inventory

management services (Sect. 5). The experiment focuses on

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 407

the assessment of software services against functional

requirements, which is one task in such a scenario (Kontio

1996). To fulfill this task, consumers typically engage in

two activities that we incorporated into the experiment (see

Fig. 4): First, the participants had to match service

descriptions against a set of functional requirements and to

assess if the services fulfill all of them. Second, they had to

compare the business logic of two services and to name any

differences.

The experiment began with an assessment of prior

knowledge and experience. Next, the participants received

the requirements document and were given time to study it.

The requirements document had a length of 322 words and

a content comparable to the one depicted in Table 1.

Thereafter, the participants were given access to the service

descriptions depending on the group they were assigned to.

During the first task, the participants had to compare six

service candidates and to identify those fulfilling all func-

tional requirements. The service candidates all had a

comparable complexity (e.g., the WSDL files varied

between 1342 and 1501 lines of code) but varied in their

support of the requirements and in the used vocabulary

(e.g., ‘‘storage’’ or ‘‘depot’’ instead of ‘‘warehouse’’).

Varying the business terms allowed us to examine if the

BoSDL supports selecting software services even in the

likely scenario that providers use different business terms

for the same concepts. Moreover, we varied the business

terms so that none of them would exactly match the ones

used in the requirements specification. Of the six service

candidates, only one fulfilled all requirements. The others

varied in their support of requirements �–˘ or did not

provide all required operations (¨ and �, see Table 1).

During the second task, the participants had to compare the

descriptions of two service candidates, whose business

logic varied in four aspects: the maximum of manageable

warehouses, a customizable storage strategy for warehouse

areas, the limit of articles per storage cell, and the support

of a static storage strategy. After each task, the participants

had to specify their results on a standardized form sheet. In

addition, they had to indicate if the provided service

description was sufficient to come to a conclusion. The

experiment ended with a short survey, in which we eval-

uated the satisfaction of the participants with their service

description language. The survey consisted of six questions

(Table 5). There was no time restriction for completing the

tasks. To measure efficiency, we recorded the task com-

pletion time of each participant, though.

5.2.1.3 Subjects Following our intent to measure the

effect of the developed description approach on the ability

to select software services and to control confounding

effects to the best possible extent, we decided to chose

students instead of practitioners as surrogates of con-

sumers. In a setting such as ours, students are often rec-

ommended as participants for several reasons (Anderson

1982; Vessey and Conger 1994; Gemino and Wand 2004):

First, experienced practitioners typically build upon their

prior knowledge of previously applied service selection

procedures, which can superimpose the effects of the

approach that is to be examined. In contrast, students do

not possess a comparably large and potentially varying

store of alternative methods. Moreover, practitioners have

usually automated their problem-solving processes to a

certain extent already. They might hence be less willing or

able to adapt to new processes than students and novice

users. For this reason, it might also be easier to teach

novice users to apply a specific approach than it is to teach

people who may already be experts with other

methodologies.

While the chosen setting allowed us to examine if the

designed approach basically is useful, we will also have to

test its effect in a real-world scenario with practitioners in

order to strengthen the external validity of our findings.

Literature furthermore provides indications that expert

users with profound knowledge might even gain in effi-

ciency when using language dialects that, for instance,

implement more complex constructs and/or a reduced

symbol set (i.e., a ‘‘pro version’’ of the language, Kalyuga

et al. (2003). As we could not study such effects with the

chosen evaluation strategy, the obtained results remain

limited in this respect as well.

To approximate a natural setting, we invited senior

students from a relevant field of study. In total, 126 stu-

dents from computer science (30), information systems

(74), and business administration (22) degree programs

voluntarily participated in the experiment. 103 were male

and 23 female. On average, they were in their fifth seme-

ster. Each participant had computer science as major and

attended a lecture course in component & service engi-

neering, in which service selection procedures were taught.

Apart from the contents taught in class, four participants

Fig. 4 Experiment procedure

123

408 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

stated to have prior knowledge about service selection

procedures.

5.2.1.4 Data Collection and Analysis Procedure To

measure effectiveness, we determined the accuracy with

which the participants reached their goals (Frøkjær et al.

2000). For task one, we granted a score of 1.0 for the

correct answer and discounted 0.5 for incorrect answers.

Doing so allowed us to only count assessment results that

had more appropriate than unsuitable answers. Efficiency

generally is defined as relation between accuracy and

invested effort (Frøkjær et al. 2000). Accordingly, it was

measured as ratio between the effectiveness score and the

task completion time. It can be interpreted as points per

minute score. Satisfaction was measured using the scales

depicted in Table 5. We applied ordinal logistic regressions

to analyze the scores, since the dependent variables mostly

have an ordinal scale and the independent variables have

discrete values. Ordinal logistic regression is regarded as

standard method for such scenarios (Kutner et al. 2005).

Although our propositions suggested one-tailed testing, we

conducted two-tailed tests since they provide stricter

results.

5.2.2 Experiment Results

As shown in Table 6, the treatment groups achieved sig-

nificantly higher effectiveness scores than the control

group in both tasks. The results hence support P1. In par-

ticular, they confirm that the BoSDL increases the ability

of consumers to identify software services, which match

functional requirements (task 1). In this respect, the results

between the textual and the graphical BoSDL format

groups were almost identical. The results furthermore show

that the BoSDL increases the ability of consumers to

identify differences in the business logic of software ser-

vices (task 2). In task 2, the group working with the textual

BoSDL format even achieved slightly better results than

users of the graphical BoSDL format. Table 6 also shows

that the treatment groups achieved significantly higher

efficiency scores than the control group in both tasks. The

results hence also support P2. Among the BoSDL formats,

the results again are almost identical with respect to task 1.

In task 2, users of the textual format were slightly more

efficient.

With respect to the satisfaction (P3), we obtained mixed

results. The question, if the description contains all nec-

essary information (Q1), returned no significant differences

between the groups. The results for Q2–Q4 were in line

with our assumption: Both BoSDL groups perceived their

formats to be more clearly structured, more concise, and

easier to use than the control group. Regarding Q5 and Q6,

the results vary largely. While significantly more users of

the graphical BoSDL format would reuse and recommend

their language compared to the control group, users of the

textual BoSDL format showed no such intents although

they achieved better results. Accordingly, P3 has not been

fully confirmed.

To ensure the robustness of our tests and examine if the

variations are indeed explained by the treatment, we

included the above-mentioned control variables into our

regression models. We found gender to have a significant

influence on the accuracy in task 1. Since our treatment

variable nevertheless showed significant results, however,

this was not deemed to be a problem. As for the other

models, the control variables had no significant effects.

Moreover, the likelihood ratio chi-square values (all[25)

demonstrate that all our models are statistically significant

compared to the models without predictors.

5.2.3 Interpretation

The results indicate that the BoSDL helps consumers to

more effectively select service candidates, which fulfill

functional requirements, and assess differences in the

business logic between services. It also allows them to

more efficiently accomplish such tasks. The observed

effect varies only little between the two representation

formats of the BoSDL. It seems hence largely to be caused

by the language concept, that is, the provided content. In

contrast, general-purpose descriptions and specifications of

the programming interface clearly did not support partici-

pants equally well during the assessment, although they

were even annotated with business terms as suggested by

Table 5 Post-test questions

Question Scale

Q1 Do you think the service description contains all necessary information? (Not at all) 1 2 3 4 5 6 (completely)

Q2 Do you think the service description was concise? (Not at all) 1 2 3 4 5 6 (completely)

Q3 Do you think the service description was clearly structured? (Not at all) 1 2 3 4 5 6 (completely)

Q4 Do you think the service description was easy to use? (Not at all) 1 2 3 4 5 6 (completely)

Q5 Would you use the service description language again? (No) 0 1 (yes)

Q6 Would you recommend the service description language? (No) 0 1 (yes)

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 409

Vitharana et al. (2003). We can hence conclude that the

BoSDL advances the current state of the art in functional

service description.

Regarding the perceived clarity, conciseness, and ease

of use, the observed results lend additional support to our

claims that the BoSDL fulfills R2 (clarity), R3 (strictness),

and R5 (simplicity). During the experiment, we could

furthermore observe that most participants of the treatment

groups did not look at the provided WSDL files at all. This

observation lends support to the assumption that the

BoSDL provides a sufficiently complete solution (R1).

Interestingly, however, the participants of all groups

ranked the provided information equally to be complete.

The reasons for this result seem to be two-fold: On the one

hand, we decided to only formulate requirements that could

be evaluated using the WSDL specification. The control

group hence also found the provided information to be

generally complete. On the other hand, this perception

apparently also was provoked by the sheer size of the

WSDL files.

Table 6 Test results and summary statistics

Ordinal logistic regression results Treatment[
control?

Summary statistics

Coefficient p value Min Max Mean Median Std. dev.

Effectiveness

Tl: Accuracy BoSDL textual: b = 1.330 0.003** U Control 0.00 1.00 0.23 0.00 0.39

BoSDL graphical: b = 1.332 0.003** U BoSDL-T 0.00 1.00 0.51 0.50 0.45

BoSDL-G 0.00 1.00 0.51 0.50 0.46

T2: Accuracy BoSDL textual: b = 3.203 0.000*** U Control 0.00 3.00 1.11 1.00 0.87

BoSDL graphical: b = 2.195 0.000*** U BoSDL-T 1.00 4.00 3.02 3.00 0.96

BoSDL-G 0.00 4.00 2.42 2.50 1.15

Efficiency

Tl: Accuracy/time BoSDL textual: b = 1.350 0.002** U Control 0.00 0.04 0.01 0.00 0.01

BoSDL graphical: b = 1.350 0.002** U BoSDL-T 0.00 0.05 0.02 0.01 0.02

BoSDL-G 0.00 0.05 0.02 0.01 0.01

T2: Accuracy/time BoSDL textual: b = 2.965 0.000*** U Control 0.00 0.22 0.07 0.07 0.06

BoSDL graphical: b = 2.238 0.000*** U BoSDL-T 0.07 0.60 0.23 0.20 0.11

BoSDL-G 0.00 0.58 0.18 0.18 0.11

Satisfaction

Ql: Information BoSDL textual: b = 0.375 0.348 U Control 0.00 6.00 4.07 5.00 1.52

BoSDL graphical: b = 0.640 0.108 U BoSDL-T 2.00 6.00 4.43 5.00 1.27

BoSDL-G 0.00 6.00 4.55 5.00 1.37

Q2: Conciseness BoSDL textual: b = 0.871 0.029* U Control 0.00 6.00 3.38 3.50 1.56

BoSDL graphical: b = 0.787 0.043* U BoSDL-T 1.00 6.00 4.12 4.00 1.43

BoSDL-G 0.00 6.00 4.02 4.00 1.42

Q3: Clarity BoSDL textual: b = 1.094 0.007** U Control 1.00 6.00 2.52 2.00 1.63

BoSDL graphical: b = 1.384 0.001*** U BoSDL-T 1.00 6.00 3.43 4.00 1.55

BoSDL-G 0.00 6.00 3.69 4.00 1.49

Q4: Easy to use BoSDL textual: b = 1.932 0.000*** U Control 1.00 6.00 3.10 3.00 1.34

BoSDL graphical: b = 1.525 0.000*** U BoSDL-T 1.00 6.00 4.48 4.50 1.33

BoSDL-G 0.00 6.00 4.14 4.00 1.30

Q5: Reuse BoSDL textual: b = 0.479 0.276 U Control 0.00 1.00 0.45 0.00 0.50

BoSDL graphical: b = 2.193 0.000*** U BoSDL-T 0.00 1.00 0.57 1.00 0.50

BoSDL-G 0.00 1.00 0.88 1.00 0.33

Q6: Recommend BoSDL textual: b = 0.397 0.375 U Control 0.00 1.00 0.36 0.00 0.48

BoSDL graphical: b = 1.751 0.000*** U BoSDL-T 0.00 1.00 0.45 0.00 0.50

BoSDL-G 0.00 1.00 0.76 1.00 0.43

T task, Q question

***0.1% (2-tailed) significance, **1% (2-tailed) significance, *5% (2-tailed) significance

123

410 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

With almost 90% of the participants stating that they

would reuse the graphical format and 75% noting that they

would recommend it to others, we can furthermore assume

that there also exists a potential for acceptance of the

BoSDL in practice. Clearly, however, we will have to

examine further why these results could not be observed

for the textual format as well.

6 Implications and Conclusions

The fulfillment of existing functional requirements typi-

cally is the most important criterion when assessing and

selecting software services from the cloud (Repschlaeger

et al. 2012; Polyviou et al. 2014). Yet, approaches to

document and evaluate the business logic of software ser-

vices – i.e., the provided functionality from a business-

oriented perspective – are still rare (Sun et al. 2014). To

contribute to the closure of this literature gap, we proposed

the BoSDL as an approach to specify the business logic of

software services by means of a conceptual model. In

contrast to general-purpose conceptual modeling approa-

ches such as ARIS or MEMO, the BoSDL aims at creating

smaller models that are tailor-made to document the

operations available on the service interface. Furthermore,

it uses only a single notation to depict the conceptual

model. We consider such a lightweight approach to service

description to be essential to keep the effort, which is

required to use the language, within reasonable limits and

facilitate its acceptance in practice (O’Sullivan 2006).

Other than current functional service description approa-

ches, the BoSDL particularly supports specifying complex

aspects of the business logic by interrelating the elements

of the conceptual model. The results of our evaluation

indicate that this approach can significantly enhance the

ability of consumers to assess software services against

their functional requirements.

The results of our DSR study have implications for

academia and practice alike. As regards practice, we deli-

ver a lightweight approach that allows providers to make

the business logic of their software services explicit. Seen

from a consumer’s perspective, the information provided

with such an approach has a significant potential to expe-

dite the assessment and selection of software services.

While this potential particularly becomes relevant when

composing modular SaaS solutions from multiple services,

a description of the business logic can also facilitate the

selection of singular COTS software packages (or software

services). Especially if their business logic is complex and

has to be evaluated on the basis of test versions, a lack of

attention to functional requirements is known to be a

practical problem in selecting COTS software packages,

too (Kontio 1996). For providers, specifying the business

logic of their services can create a competitive advantage,

since it becomes easier and more promising for consumers

to take such services into consideration. As the BoSDL

builds upon conceptual models, providers will probably be

able to reuse results from the conceptual design phase, thus

minimizing the required effort. We agree, however, that we

will have to examine the incentives and efforts for provi-

ders more closely in future research iterations. Based on

the results of further evaluations and applications of the

BoSDL, we also plan to formulate best practices that show

how the language can be most efficiently used to describe

the business logic of services and map it to functional

requirements.

As regards academia, the results of our study contribute

to the emerging SSE discipline, which ‘‘seeks to advance

knowledge on models, methods, and artifacts that enable or

support the engineering of service systems’’ (Böhmann

et al. 2014). In particular, we provide evidence-based

knowledge that advances the design of service description

methods. In the SSE discipline, service descriptions have

repeatedly been emphasized as an important measure to

help matching the provider’s offering to the consumer’s

needs (Maglio et al. 2009; Ferrario et al. 2012), thereby

particularly supporting the design and configuration of

modular SaaS systems (Turner et al. 2003; Repschlaeger

et al. 2012; Ferrario et al. 2012). By showing how con-

ceptual modeling theory can be used to describe the busi-

ness logic of software services in detail, we complement

existing service description approaches in the SaaS

domain, which so far rather focus on describing the quality,

the programming interface, and/or contractual properties of

software services (Polyviou et al. 2014; Sun et al. 2014).

While such approaches assume ‘‘that the functions of the

evaluated services are by default matched to users’

requirements’’ (Sun et al. 2014), the presented BoSDL

specifically focuses on supporting this task. Following our

research goal (Sect. 3), the central knowledge contribution

of our DSR study is a nascent design theory with opera-

tional principles (Gregor and Hevner 2013) regarding the

description of the business logic. While we designed the

BoSDL with software services in mind, the language

concept is independent of the technical realization.

Although we have not examined the generalizability of the

BoSDL yet, it hence might also be usable to describe the

business logic of other kinds of services.

There also exist limitations in the light of which the

study results have to be interpreted. Most prominently, the

external validity of our findings is still limited because we

have mainly applied the BoSDL in selected use cases and

controlled experiments until now. Although the use cases

were taken from different application domains and com-

plex in nature, we need to further examine the suitability of

the BoSDL in practical scenarios, for instance by

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 411

conducting field studies. So far, we furthermore used stu-

dents as surrogates of service consumers in our experi-

ments (Sect. 5.2.1). While the results indicate that the

BoSDL can even support novice users during the assess-

ment and selection of software services, we will have to

confirm our observations in naturalistic settings with

experienced practitioners. Generally, a notation that is

efficient for novice users does not necessarily have to be

ideal for experienced experts, since they might be able to

use a denser language with more complex constructs or

fewer symbols even more efficiently (Kalyuga et al. 2003).

Besides efforts to further strengthen the validity of our

findings, the outcomes of our DSR endeavor provide sev-

eral additional avenues for future research. A promising

measure to further facilitate the selection of services would

be to (partially) automate the assessment against existing

functional requirements. However, in the absence of

domain standards – which would provide ideal support for

such endeavors – it would be necessary to deal with

heterogeneous business terms and domain conceptions. To

provide better support for automated use in heterogeneous

scenarios, the meta-model of the BoSDL would have to be

extended with features to support ontology management

(e.g., a thesaurus) and automated reasoning with inconsis-

tent ontologies. Future research should also investigate the

potential of new presentation formats. While the objective

performance of the users did not depend on the presenta-

tion format during our laboratory experiment, the subjec-

tive perception of the two formats varied considerably. It is

hence conceivable that there might exist more intuitive

formats to depict the business logic of services, especially

for different types of users. With the results presented in

this paper, we hope to provide a starting point for such

endeavors.

References

Akkiraju R, Farrell J, Miller J, Nagarajan M, Schmidt M-T, Sheth A,

Verma K (2005) Web service semantics – WSDL-S, version 1.0.

Technical report, World Wide Web Consortium

Anderson JR (1982) Acquisition of cognitive skill. Psychol Rev

89(4):369–406

Atkinson B, Della-Libera G, Hada S, Hondo M, Hallam-Baker P,

Klein J, LaMacchia B, Leach P, Manferdelli J, Maruyama H,

Nadalin A, Nagaratnam N, Prafullchandra H, Shewchuk J,

Simon D (2002) Web services security (WS-Security) version

1.0. Technical report, World Wide Web Consortium

Barros A, Oberle D (eds) (2012) Handbook on service description –

USDL and its methods. Springer, Heidelberg

Bodart F, Patel A, Sim M, Weber R (2001) Should optional properties

be used in conceptual modelling: a theory and three empirical

tests. Inf Syst Res 12(4):384–405

Böhmann T, Leimeister JM, Möslein K (2014) Service systems

engineering: a field for future information systems research. Bus

Inf Syst Eng 6(2):73–79

Bunge M (1977) Treatise on basic philosophy: ontology I. The

furniture of the world, vol 3. Reidel, Boston

Cabrera F, Copeland G, Cox B, Freund T, Klein J, Storey T, Thatte S

(2002) Web services transaction (WS-Transaction) version 1.0.

Technical report, World Wide Web Consortium

Calder BJ, Phillips LW, Tybout AM (1982) The concept of external

validity. J Consum Res 9(3):240–244

Chinnici R, Moreau J-J, Ryman A, Weerawarana S (2007) Web

services description language (WSDL) version 2.0 part 1: core

language. Technical report, World Wide Web Consortium

Davis R, Shrobe HE, Szolovits P (1993) What is a knowledge

representation? AI Mag 14(1):17–33

Eisa M, Younas M, Basu K, Zhu H (2016) Trends and directions in

cloud service selection. In: IEEE symposium on service-oriented

system engineering, IEEE, pp 423–432

Ferrario R, Guarino N, Trampus R, Laskey K, Hartman A,

Gangadharan GR (2012) Service system approaches – concep-

tual modeling approaches for services science. In: Barros A,

Oberle D (eds) Handbook of service description: USDL and its

methods. Springer, Heidelberg, pp 75–109

Frank U (2013) Domain-specific modeling languages: requirements

analysis and design guidelines. In: Reinhartz-Berger I, Sturm A,

Clark T, Cohen S, Bettin J (eds) Domain engineering: product

lines, languages, and conceptual models. Springer, Heidelberg,

pp 133–157

Frank U (2014) Multi-perspective enterprise modeling: foundational

concepts, prospects and future research challenges. Softw Syst

Model 13(3):941–962

Frøkjær E, Hertzum M, Hornbæk K (2000) Measuring usability: Are

effectiveness, efficiency, and satisfaction really correlated. In:

SIGCHI conference on human factors in computing systems.

ACM, New York, NY, USA, pp 345–352

Gehani N, McGettrick AT (1986) Software specification techniques.

Addison-Wesley, Wokingham

Gemino A, Wand Y (2004) A framework for empirical evaluation of

conceptual modeling techniques. Requir Eng 9(3):248–260

Goldkuhl G, Lind M, Seigerroth U (1998) Method integration: the

need for a learning perspective. IEE Proc Softw 145(4):113–118

Gómez-Pérez A, Fernández-López M, Corcho O (2004) Ontological

engineering. Springer, Heidelberg

Goodman N (1976) Languages of art: an approach to a theory of

symbols. Hackett, London

Graham S, Hull D, Murray B (2006) Web services base notification

1.3. Technical report, OASIS Standard

Gregor S, Hevner AR (2013) Positioning and presenting design

science research for maximum impact. MIS Q 37(2):337–355

Hadar I, Soffer P (2006) Variations in conceptual modeling:

classification and ontological analysis. J Assoc Inf Syst

7(8):569–593

Herbert L, Parks S, O’Donnell G, Erickson J, Caputo M, Nagel B

(2016) The ROI of software as a service. Technical report,

Forrester

Hevner AR, March ST, Park J, Ram S (2004) Design science in

information systems research. MIS Q 28(1):75–105

Hrach C, Alt R (2018) Functional service description on service

marketplaces. In: Multikonferenz Wirtschaftsinformatik

IBM (2014) Champions of software as a service: How SaaS is fueling

powerful competitive advantage. Technical report, IBM

Corporation

Iivari J (2007) A paradigmatic analysis of information systems as a

design science. Scand J Inf Syst 19(2):39–63

Iwasa K (2004) Web services reliable messaging. Technical report,

OASIS Standard

Kalyuga S, Ayres P, Chang SK, Sweller J (2003) The expertise

reversal effect. Educ Psychol 38(1):23–31

123

412 S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018)

Kluge R, Hering T, Belter R, Franczyk B (2008) An approach for

matching functional business requirements to standard applica-

tion software packages via ontology. In: 32nd annual IEEE

international computer software and applications conference,

pp 1017–1022

Kontio J (1996) A case study in applying a systematic method for

COTS selection. In: 18th international conference on software

engineering, pp 201–209

Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear

statistical models, 5th edn. The McGraw-Hill/Irwin series:

operations and decision sciences. McGraw-Hill, Boston

Land R, Blankers L, Chaudron MRV, Crnkovic I (2008) COTS

selection best practices in literature and in industry. In: 10th

international conference on software reuse, pp 100–111

Le L-S, Ghose A, Morrison E (2010) Definition of a description

language for business service decomposition. In: 1st interna-

tional conference on exploring services sciences

Ludwig H, Keller A, Dan A, King RP, Franck R (2003) Web service

level agreement (WSLA) language specification. Technical

report, IBM Corporation

Maglio PP, Vargo SL, Caswell N, Spohrer J (2009) The service

system is the basic abstraction of service science. Inf Syst e-Bus

Manag 7(4):395–406

Martin D, Paolucci M, McIlraith S, Burstein M, McDermott D,

McGuinness D, Parsia B, Payne T, Sabou M, Solanki M,

Srinivasan N, Sycara K (2005) Bringing semantics to web

services: the OWL-S approach. In: Cardoso J, Sheth AP (eds)

Semantic web services and web process composition, vol 3387,

San Diego, CA, USA. Springer, Heidelberg, pp 26–42

Moody DL (2009) The ‘‘physics’’ of notations: toward a scientific

basis for constructing visual notations in software engineering.

IEEE Trans Softw Eng 35(6):756–779

Mylopoulos J (1992) Conceptual modeling and telos. In: Loucopulos

P, Zicari R (eds) Conceptual modeling, databases, and CASE: an

integrated view of information systems development. Wiley,

Cambridge, pp 49–68

Oaks P, ter Hofstede AHM, Edmond D (2003) Capabilities:

describing what services can do. In: First international confer-

ence on service-oriented computing, pp 1–16

Ortner E, Schienmann B (1996) Normative language approach – a

framework for understanding. In: 15th international conference

on conceptual modeling, pp 261–276

O’Sullivan J (2006) Towards a precise understanding of service

properties. PhD thesis, Queensland University of Technology

Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis NM

(2017) Microservices in practice, part 1: reality check and

service design. IEEE Softw 34(1):91–98

Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A

design science research methodology for information systems

research. J Manag Inf Syst 24(3):45–77

Platenius MC, Shaker A, Becker M, Huellermeier E, Schaefer W (2017)

Imprecise matching of requirements specifications for software

services using fuzzy logic. IEEE Trans Softw Eng 43(8):739–759

Pohl K (2010) Requirements engineering: fundamentals, principles,

and techniques. Springer, Heidelberg

Polyviou A, Pouloudi N, Rizou S (2014) Which factors affect

software-as-a-service selection the most? A study from the

customers and the vendors perspective. In: 47th Hawaii inter-

national conference on system sciences, pp 5059–5068

Repschlaeger J, Wind S, Zarnekow R, Turowski K (2012) Selection

criteria for software as a service: an explorative analysis of

provider requirements. In: Americas conference on information

systems, Seattle

Roman D, Keller U, Lausen H, de Bruijn J, Lara R, Stollberg M,

Polleres A, Feier C, Bussler C, Fensel D (2005) Web service

modeling ontology. Appl Ontol 1(1):77–106

Rowsell-Jones A, Lowendahl J-M, Howard C, Nielsen T (2016) The

2017 CIO agenda: seize the digital ecosystem opportunity.

Technical report, Gartner Inc

Scheer AW (2000) ARIS – business process frameworks, 3rd edn.

Springer, Heidelberg

Schlauderer S, Overhage S (2011) How perfect are markets for

software services? An economic perspective on market defi-

ciencies and desirable market features. In: European conference

on information systems

Shanks G, Tansley E, Weber R (2003) Using ontology to validate

conceptual models. Commun ACM 46(10):85–89

Sonnenberg C, vom Brocke J (2012) Evaluations in the science of the

artificial-reconsidering the build-evaluate pattern in design

science research. In: Information systems, advances in theory

and practice

Sun L, Dong H, Hussain OK, Hussain FK, Chang E (2014) Cloud

service selection: state-of-the-art and future research directions.

J Netw Comput Appl 45:134–150

Terzidis O, Oberle D, Friesen A, Janiesch C, Barros A (2012) The

internet of services and usdl. In: Barros A, Oberle D (eds)

Handbook of service description: USDL and its methods.

Springer, Heidelberg, pp 1–16

Topi H, Ramesh V (2002) Human factors research on data modeling:

a review of prior research, an extended framework and future

research directions. J Database Manag 13(2):3–15

Turner M, Budgen D, Brereton P (2003) Turning software into a

service. IEEE Comput 36(10):38–44

UDDI Organization (2002) UDDI open draft specification. Technical

report, UDDI Organization

Van der Aalst WMP, ter Hofstede AHM, Kiepuszewski B, Barros AP

(2003) Workflow patterns. Distrib Parallel Databases 14(1):5–51

Vargo SL, Lusch RF (2004) Evolving to a new dominant logic for

marketing. J Mark 68(1):1–17

Venable J, Pries-Heje J, Baskerville R (2016) Feds: a framework for

evaluation in design science research. Eur J Inf Syst 25(1):77–89

Vessey I, Conger SA (1994) Requirements specification: learning

object, process, and data methodologies. Commun ACM

37(5):102–113

Vitharana P, Zahedi F, Jain H (2003) Knowledge-based repository

scheme for storing and retrieving business components: a

theoretical design and an empirical analysis. IEEE Trans Softw

Eng 29(7):649–664

Vukovic M, Laredo J, Muthusamy V, Slominski A, Vaculin R, Tan

W, Naik V, Silva-Lepe I, Kumar A, Srivastava B, Branch JW

(2016) Riding and thriving on the API hype cycle. Commun

ACM 59(3):35–37

Wand Y, Weber R (1993) On the ontological expressiveness of

information systems analysis and design grammars. J Inf Syst

3(4):217–237

Wang X, Vitvar T, Kerrigan M, Toma I (2006) A QoS-aware

selection model for semantic web services. In: Service-oriented

computing ICSOC 2006, pp 390–401

Webster J, Watson RT (2002) Analyzing the past to prepare for the

future: writing a literature review. MIS Q 26(2):xiii–xxiii

Weyuker EJ (2001) The trouble with testing components. In: Councill

WT, Heineman GT (eds) Component-based software engineer-

ing: putting the pieces together. Addison-Wesley, Upper Saddle

River, NJ, pp 499–512

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A

(2012) Experimentation in software engineering. Springer,

Heidelberg

Zowghi D, Coulin C (2005) Requirements elicitation: a survey of

techniques, approaches, and tools. In: Engineering and managing

software requirements, Springer, Heidelberg, pp 19–46

123

S. Schlauderer, S. Overhage: BoSDL: An Approach to Describe the Business Logic of Software Services, Bus Inf Syst Eng 60(5):393–413 (2018) 413

	BoSDL: An Approach to Describe the Business Logic of Software Services in Domain-Specific Terms
	Abstract
	Introduction
	Background and Related Work
	Related Work
	Problem Statement
	Solution Requirements and Expected Benefits

	Research Method
	Business-Oriented Service Description Language
	Concept
	Presentation Formats
	Procedure

	Evaluation
	Proof of Requirements
	Proof of Usefulness
	Experiment Design
	Goals, Hypotheses and Variables
	Procedure
	Subjects
	Data Collection and Analysis Procedure

	Experiment Results
	Interpretation

	Implications and Conclusions
	References

