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Abstract Simulations provide a useful methodological

approach for studying the behavior of complex socio-

technical information systems (IS), in which humans and

IT artifacts interact to process information. However, the

use of simulations is relatively new in IS research and the

current presence and impact of simulation-based studies is

still limited. Furthermore, simulation-based research is

quite different from other approaches, making it difficult to

position and evaluate it adequately. Therefore, this paper

first analyses the epistemic particularities of simulation-

based IS research. Based on this analysis, a structured lit-

erature review of the status quo of simulation-based IS

research was conducted, to understand how IS scholars

currently employ simulation. A comparison of the epis-

temic particularities of simulation-based research with its

status quo in IS literature allows to critically examine

epistemic inferences in the respective research process. The

results provide guidance for prospective simulation-based

IS research through discussing the theory-based derivation

of simulation models, as well as different simulation

techniques, validation techniques, and simulation uses.

Keywords Simulation � Epistemology � Socio-technical
system � Literature review

1 Introduction

Simulation, defined as ‘‘a method for using computer

software to model the operation of real-world processes,

systems, or events’’ (Davis et al. 2007, p. 481), provides a

distinctive methodological approach for studying various

phenomena in many disciplines. The use of simulation

allows researchers to isolate and vary the potentially large

number of parameters of the respective system in a con-

trolled environment, while producing massive amounts of

data that, for instance, enable researchers to capture non-

linear relations with statistical techniques. Thus, scholars

have recently reiterated the potential of simulations to

advance the information systems (IS) discipline by pro-

viding a novel way to investigate IS phenomena (Burton

and Obel 2011; Loos et al. 2013; Spagnoletti et al. 2013;

Zhang and Gable 2014).

While simulation-based research has substantially con-

tributed to other disciplines, for instance to the natural

sciences or computer science, its current presence and

impact in IS research is comparatively low (Zhang and

Gable 2014). This can be due to (i) the nature and peculiar

character of IS phenomena as well as to (ii) particularities

of simulation-based research approaches, both subject to

closer investigation. First, the social and the technical

aspects of IS phenomena are inextricably intertwined so

that boundaries between these two aspects are not clear-cut

(Bostrom and Heinen 1977; Lyytinen and Newman 2008).
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This entails a need to conceptualize IS phenomena as

complex socio-technical ensembles (Luna-Reyes et al.

2005; McLeod and Doolin 2012), for which both the social

and the technical aspects and their relationships should be

considered. Second, compared to theoretical analysis or

deduction as well as empirical analysis or induction, sim-

ulation is recognized as a distinct third way of doing sci-

ence (Harrison et al. 2007). Using simulation techniques,

analytical reflections can be captured through mathematical

models, which provide their own virtual data to overcome

the problem of data availability in empirical investigations

(Harrison et al. 2007). In such research endeavors, scholars

model and translate real-world problems into a virtual (i.e.,

simulation) world with the aim to derive meaningful

insights about the real-world problems. Therefore, the

creation of scientific knowledge through simulation-based

research requires several epistemic (how knowledge can be

justified through simulation results) and methodological

(regarding the activity of simulating and its relation to

theorizing and experimenting) considerations (Rohrlich

1990; Dowling 1999; Grüne-Yanoff and Weirich 2010).

These considerations are decisive in IS research due to the

complexity of the underlying social systems as well as

uncertainties inherent in incompletely described technical

artifacts (Curşeu 2006).

This study first aims to understand how simulation-

based research approaches can be applied to complex

socio-technical IS phenomena. We adopt a socio-technical

perspective to explain IS phenomena and discuss the

epistemic inferences that are made in the simulation-based

research process (Sargent 2005) of examining IS phe-

nomena. Subsequently, we use the discussed epistemic

inferences as a foundation to conduct a systematic litera-

ture review on simulation-based research in IS1 in order to

understand how simulation-based approaches are currently

employed in IS research. Finally, the results of both the

epistemological implications of simulation-based research

and the literature review are discussed and contrasted,

allowing us to provide guidance for prospective simula-

tion-based research in IS.

2 Studying IS Phenomena Through Simulation

To understand the challenges of studying IS through sim-

ulation-based approaches, it is necessary to discuss the

particularities of IS phenomena. In their investigation of

the ‘‘intellectual core’’ of the IS discipline, Sidorova et al.

(2008) find that contemporary IS research generally

includes the social context in which technical artifacts are

designed and used. That is, while IS research essentially

studies human-made technology-based systems, this anal-

ysis requires an understanding of corresponding social

systems as well as the interaction between the social and

technical systems (Lee 2010; Becker et al. 2015). This is

what Orlikowski (1992) calls ‘‘duality of technology’’ – the

dialectical interaction between technical artifacts and their

social context (Orlikowski and Iacono 2001).

Consequently, our conceptualization of IS phenomena

adopts a socio-technical systems perspective to identify

and organize the constituent parts of IS (Bostrom and

Heinen 1977; Lyytinen and Newman 2008; Wu et al.

2015). This perspective conceptualizes IS as two interre-

lated subsystems, the technical system and the social sys-

tem. The technical system is concerned with the processes,

tasks, and technologies that are needed to acquire, store,

and transform information to outputs, such as products or

services. The social system is concerned with the rela-

tionships among people and the attributes of these people,

such as attitudes, skills, and values. Recent contributions to

the socio-technical perspective conceptualize IS as a

mutually interactive socio-technical ensemble comprising

actors, tasks, technology, and structure, reflecting both

technical and social aspects and the relations among them,

which are embedded in and influenced by an external en-

vironment (Lyytinen and Newman 2008; Gregoriades and

Sutcliffe 2008; Wu et al. 2015). Table 1 gives an overview

of the constituent components of IS as socio-technical

systems.

What makes socio-technical systems distinct and subject

to closer investigation is the overall behavior of such sys-

tems, which is dependent on a diverse set of often non-

linear and dynamic mechanisms that relate to both the

social and technical subsystems (Luna-Reyes et al. 2005;

McLeod and Doolin 2012). Lyytinen and Newman (2008)

argue that changes in IS, as socio-technical systems, occur

due to misalignments among the systems’ constituent

socio-technical components (as shown in Table 1). They

posit that change is not solely or even mainly incremental

and cumulative, but rather is episodic and punctuated. As

such, along with evolutionary (first-order) changes to fix

the misalignment among components, a socio-technical

system experiences revolutionary (second-order) changes

(i.e., punctuations) over time by which components of the

system are re-configured, and the given system eventually

exhibits new, emergent properties. Due to the complexity

of socio-technical systems and their non-deterministic

behavior, studying such systems through conventional

research methods (e.g., case study, survey) is challenging.

McKelvey (2002) argues that for such complex systems,

1 An earlier version of this literature review was previously presented

at the 36th International Conference on Information Systems (Beese

et al. 2015). In the paper at hand we not only significantly extend the

literature review and use a completely different coding approach, but

also focus on the additional insights that follow from the discussion of

the epistemic particularities of simulation-based IS research.
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‘‘no empirical study or experiment could successfully and

completely control all the complexities that might affect

the designated parameters’’ (McKelvey 2002, p. 758).

Simulations, however, allow to study complex phenomena

in a controlled setting and study the controlled interaction

of many parameters in idealized socio-technical models

(Curşeu 2006). Consequently, simulation-based research

approaches hold a tremendous potential to advance scien-

tific knowledge on complex, longitudinal, and nonlinear IS

phenomena (Davis et al. 2007).

2.1 Epistemic Particularities of Simulating Socio-

Technical Systems

Realizing the potential of simulation-based research

approaches in the IS discipline requires to understand how

a simulation relates to real-world IS phenomena (Frank and

Troitzsch 2005). Much has been written on the epistemic

particularities of simulation (Humphreys 1990; Winsberg

1999; Davis et al. 2007; Grüne-Yanoff and Weirich 2010),

and prominent authors have even challenged the need for a

distinct simulation epistemology in the philosophy of sci-

ence (Frigg and Reiss 2008). Due to the breadth of this

ongoing debate, we focus our discussion on the aspects that

are both fundamental for an analysis of epistemic infer-

ences in simulation-based research and particularly rele-

vant for IS as socio-technical systems. For instance, many

studies are concerned with IS artifacts that ‘‘do not yet exist

but which are not only imaginable but also useful from

today’s perspective’’ (Frank et al. 2014, p. 40). Considering

these particularities, it is worthwhile to reflect some of the

more general discourses on the epistemic status of simu-

lation in the specific context of socio-technical IS.

A key aspect of simulation-based research is that many

simulation techniques require a mechanism-based expla-

nation of the investigated phenomena (Hedström and Yli-

koski 2010). At its core, the concept of mechanism-based

explanations implies that ‘‘proper explanations should

detail the cogs and wheels of the causal process through

which the outcome to be explained was brought about’’

(Hedström and Ylikoski 2010, p. 50). Simulations

fundamentally rely on such mechanism-based explanations

in the form of models – purposefully constructed abstrac-

tions that describe the simulation behavior and that, at least

partially, aim at representing a real-world system or phe-

nomenon (Becker et al. 2005; Frank et al. 2014). It is

important to note that such abstractions are not always

simplifications, as researchers are often required to

hypothesize and detail hidden, but nevertheless relevant,

causal mechanisms in the development of simulation

models (Frank 2014).

In the context of simulation-based research, models

broadly aim at two kinds of explananda (Hedström and

Ylikoski 2010). First, they may focus on empirical facts,

for example, by building simulations as targeted IS artifacts

that accurately predict or classify real-world phenomena

such as web-browsing paths of customers (Kuo et al. 2005)

or purchase decisions (Chang et al. 2006; Sun et al. 2008).

In this case, the epistemic credibility of the simulation

model fundamentally depends on a match between simu-

lation output with observable empirical data, and thus

general discussions on epistemology in IS apply (e.g.,

Frank 2011). Simulation models, however, might also

focus on highly stylized theoretical explananda (Hedström

and Ylikoski 2010), aimed at a mechanism-based theory

development. In this case, simulation models gain epis-

temic credit from existing theoretical models, and thus do

not necessarily closely resemble any particular real-world

phenomena (Bichler et al. 2016).

These approaches to establish the epistemic credit of

simulations are related to fundamental issues in the phi-

losophy of science. Regarding empirical grounding, the

key issue is that of faulty inductive generalization, or

inductive fallacy (Johnson 1996): how can one conclude

the truth of a general statement, for example in the form of

scientific theory, based on a limited set of specific obser-

vations (inductive reasoning)? Instead, using a theoretical

grounding, one might argue that by detailing the causal

processes in the simulation model, the general statement is

necessarily true as a logical consequence of a priori true

assumptions (deductive reasoning). This, however, raises a

new issue: how does a simulation-based result then differ

Table 1 Constituent components of IS as socio-technical systems (Lyytinen and Newman 2008)

Component Exemplary elements and properties

Tasks Goals; project deliverables and time requirements; business requirements and supported processes; stakeholder expectations

Actors All relevant stakeholders, e.g., developers, workers, administrators, and their personal properties; values and beliefs

Structure Communication systems both formal, e.g., project meetings, and informal, e.g., break discussions; organizational hierarchies;

workflows

Technology Tools; work systems; technical infrastructure; software and hardware technology

Environment External influences on the system, such as regulatory requirements and market-driven changes
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from a logical tautology? How can one create new insights

beyond what is already assumed in the definition of the

simulation model?

The practical answer to this dilemma is that most sim-

ulation-based research employs both inductive and deduc-

tive reasoning. In general, simulations are not just logical

deductions based on true mathematical principles (Wins-

berg 2003). Instead, several, often highly-specific, mod-

elling decisions are rather assumptions than scientific truth

and some calculations and transformations, for example in

artificial neural networks, cannot reasonably be traced by

humans (Humphreys 2008; Winsberg 2009; Grüne-Yanoff

and Weirich 2010). To counteract the loss of epistemic

credit due to such inferences, researchers again compare

their simulation results to empirical data.

Philosophically, simulations therefore do not resolve the

centuries-old epistemic issues involved with inductive (and

potentially fallacious) and deductive (and potentially tau-

tologic or infinitely regressing) reasoning (Johnson 1996;

Frigg and Reiss 2008; Gregor and Hovorka 2011). In

practice, however, simulations can draw upon, and to a

certain extent require, both approaches. Regarding induc-

tion, Davis et al. (2007) argue that developing scientific

theory through simulation-based approaches requires a

suitable ‘‘simple theory’’ (Davis et al. 2007, p. 482,

Table 1) as a basis for the assumptions in the simulation

model. Such ‘‘simple theory’’ must at least provide the

basic concepts and processes that describe a phenomenon

(Davis et al. 2007). On the other hand, if a theory already

clearly describes all constructs and processes in detail, it

may be difficult to extend such theory by simulation, since

most results will just be logical consequences of the theory.

Regarding deduction, simulation-based research can handle

massive volumes of data, thereby avoiding faulty gener-

alizations due to small sample groups. Simulations thus

shine in settings where such large datasets are easily

available for validation purposes. Furthermore, we reiterate

the potential of simulations to study complex, longitudinal,

and nonlinear IS phenomena (Davis et al. 2007) by iso-

lating specific parameters and studying their interactions in

purposefully constructed abstract models (Curşeu 2006;

Frank et al. 2014).

2.2 Epistemic Inferences of Simulation

Following the previous discussion, simulations both

deductively gain epistemic credit by using existing scien-

tific theory in their construction and inductively gain

epistemic credit by comparing simulation results with

empirical data (Winsberg 1999; Sargent 2005). On the one

hand, the use of simulation thus entails a careful reflection

of real-world problems as well as of existing theoretical

understandings of the real-world problems in simulation

models. On the other hand, it also requires an accurate

evaluation and validation of simulation experiments and a

thorough interpretation of the resulted insights’ implica-

tions for the given real-world problems.

Therefore, from an epistemological vantage point, each

step of a simulation process can be questioned in terms of

how appropriate the reflection of a real-world problem in

the simulation model is (transferring the existing real-

world knowledge to the simulation world), how reliable the

simulation experiments are (simulation), and how valid and

how meaningful the resulted insights of the simulation to

the given real-world problems are (transferring resultant

knowledge from the simulation and making sense of this

knowledge in the real-world context). To elaborate on these

inherent challenges of simulation-based research, we first

discuss different simulation techniques, then outline the

constituent steps of a simulation-based research process

and eventually discuss epistemic inferences in different

steps of such a process.

The term simulation, in our adopted definition by Davis

et al. (2007), refers to a very diverse class of methods, each

with its own epistemic capabilities and restrictions. Hence,

we distinguish different simulation techniques in our

analysis, namely, analytical simulations, stochastic pro-

cesses, system dynamics, genetic algorithms, artificial

neural networks, and general agent-based simulations, in

line with previous literature on simulation-based research

in IS (e.g., Davis et al. 2007; Spagnoletti et al. 2013; Zhang

and Gable 2014). Analytical simulation refers to simulation

models that are directly based on a mathematical descrip-

tion of a system and which focus the use of formal models

(e.g., game theory, and auctioning theory). Stochastic

processes are similar regarding the formal nature of the

underlying mathematical models, but differ in that at the

center of such simulations is a model of a stochastic pro-

cess, for example characterized by a random walk (Ripley

2009). Such simulations are frequently employed to study

the consequences of changes to highly stylized socio-eco-

nomic market models (e.g., Xiao and Dong 2015). System

dynamics refers to a specific modelling approach that

employs the concept of stacks and flows to simulate the

behavior of complex systems over time (Roberts et al.

1994; Sterman 2002). Genetic algorithms refers to an

optimization approach with roots in biology that models a

system as a set of heterogeneous entities – called candidate

solutions – which then iteratively evolve and adapt over

time to better match a given fitness function (Whitley 1994;

Davis et al. 2007). Similarly, artificial neural network

refers to a specific machine learning technique that is

commonly employed in simulations as a component that

adapts to and learns from input data (Graupe 2013).

Finally, we distinguish other, general agent-based models,

referring to any computational model that represents the
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actions and interactions of autonomous agents (Macal and

North 2009).

Following Sargent (2005), the simulation model devel-

opment process comprises distinct steps, starting with the

selection of the real-world system to be simulated (problem

entity) and ending with the actual implementation of the

simulation model on a computer (see the upper part of

Fig. 1). Researchers can then employ the implemented

simulation model to conduct simulation experiments and

use the obtained results in combination with empirical data

or extant system theories to create new knowledge (lower

part of Fig. 1).

The term problem entity is used to refer to the real-world

system in which the investigated phenomenon of interest is

situated. Researchers generally rely on scientific theory

(system theories), which describes extant knowledge about

the problem entity, to derive a conceptual model as a

foundation for the design of the simulation. While this

model of Sargent (2005) is quite general, it ensures that it is

applicable to a wide range of simulation-based research,

making it a useful starting point for our subsequent anal-

ysis. Furthermore, it has been widely used (Law 2008;

Bratley et al. 2011) and although other simulation process

models may use slightly different terminology, they are

very similar in their structure (e.g., Davis et al. 2007).

The relation between models and theory is the subject of

an ongoing debate in the philosophy of science and in IS

(Frigg and Hartmann 2012; Bichler et al. 2016). A common

position is that models are independent from theory in their

construction and their functioning (Winsberg 1999; Mor-

gan and Morrison 1999; Grüne-Yanoff and Weirich 2010).

In the context of simulation-based research this means that

scholars are required to interpret and refine scientific the-

ory, which is rarely precise enough to directly translate into

computerized simulation models. Along this process, one

can distinguish different types of models that are used in

simulation-based research (Winsberg 2003; Sargent 2005;

Küppers and Lenhard 2005). We use the term conceptual

model (Sargent 2005) to refer to the basic conceptual

understanding of the problem entity that scholars gain

through interpreting respective scientific theory. Winsberg

(2003) refers to this as a principle model: ‘‘The simula-

tionist begins by choosing a principle model – a model that

characterizes the system in terms of both the arrangement

of its constituent parts, and the rules of evolution that

govern the changes of state that the system undergoes over

time’’ (Winsberg 2003, p. 108).

The term simulation model specification refers to the

mathematical model that represents and reflects the con-

ceptual model in the simulation. Since any computer

implementation of a simulation necessitates a precise

mathematical definition of all employed constructs and

relations, researchers have to make simplifications and

assumptions to fill the parts of the conceptual model that

lack the required mathematical precision. This simplifica-

tion, which brings about specific assumptions about the

simulation model, should account for stylized facts that

only include abstract and relevant aspects of the real world

in the simulation model (Bichler et al. 2016). Finally, we

use the term simulation model to refer to the exe-

cutable simulation, i.e., the actual implementation on a

computer.

Scientific simulations that represent socio-technical

systems are not simply calculations, but instead ‘‘involve a

complex chain of inferences that serve to transform theo-

retical structures into specific concrete knowledge’’

(Winsberg 1999, p. 275). This process of knowledge-gen-

eration through simulation is described in Fig. 1, following

Sargent (2005). We focus our analysis on the links between

knowledge of the real-world system (in the form of sci-

entific system theories and empirical data) and the simu-

lation world (steps 1, 5, and 6 in Fig. 1), as well as the links

between two intermediate constructs within the simulation

world (steps 2, 3, and 4 in Fig. 1). Each of these creates

Fig. 1 Constituent steps of a simulation-based research process
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another layer of distance between reality and the obtained

simulation results, thus requiring epistemic justification.

Conceptual Modeling (1) Since ‘‘any reasonably com-

prehensive simulation of organizations must be constructed

from insights made with regard to how organizations have

been observed to operate,’’ (Kulik and Baker 2008, p. 88)

we analyze the construction of conceptual models based on

scientific theory. The importance of a theory-informed

conceptualization is underlined by Sargent’s choice of

including the abstraction of a system theory as the basis of

the conceptual model as a fundamental step in the simu-

lation model development process (Sargent 2005). Here,

system theory refers to any kind of theory from which the

conceptual model can be derived such as IS modeling

theories, which are already discussed in IS modeling lit-

erature (Bichler et al. 2016). While a unified modeling

theory is still missing, depending on the targeted concep-

tual model, researchers can employ a wide range of theo-

ries such as fuzzy set theory or alternative uncertainty

theories, including stochastics (Bichler et al. 2016).

Occasionally, IS researchers rely on formal theories to

logically derive models from a set of fundamental axioms

(Bichler et al. 2016). Consequently, such models are not

necessarily based on observations in the real world. In most

cases, however, the construction of conceptual models in

simulation-based IS research is ‘‘an activity that often

brings us beyond the original theoretical principles them-

selves’’ (Winsberg 2003, p. 118), since conceptual mod-

eling usually involves creativity and intuition (Winsberg

2003; Frank and Troitzsch 2005).

Philosophers of science often use the term autonomous

models (Morgan and Morrison 1999), in the sense that

models ‘‘function as instruments of investigation, [as they]

are partially independent of both theories and the world’’

(Morgan and Morrison 1999, p. 10). This view on partial

independence still recognizes that the process of model

construction is limited by the concepts and languages

employed in a scientific domain (Frank 2011; Loos et al.

2013). Rather, following Winsberg (2003), the view ‘‘that

models are autonomous or independent of theory is meant

to emphasize the fact that there is no algorithm for reading

models of theory’’, and thus involves creativity and intu-

ition (Winsberg 2003, p. 106). Furthermore, and particu-

larly relevant for IS, researchers often develop models that

have no clear, direct empirical grounding (Frank 2011). For

example, many studies aim to design IS artifacts that

overcome existing practices, therefore necessitating the

development of models that, at the time of model devel-

opment, lack an empirical original (Frank 2011).

On the one hand, the autonomy of models therefore

requires researchers to argue that the creative, intuitive

modeling choices lead to an accurate description of the

investigated phenomenon in the results obtained from the

final simulation model (in step 4). On the other hand, it is

often this very process that brings about new scientific

knowledge, for example through providing additional evi-

dence for or against intuitive refinements of extant theory.

Researchers are thus often required to revisit this step after

comparing the resulted insights of the simulation model

with extant theories or new empirical studies, which makes

simulation-based research an iterative process (Sargent

2005).

Specifying (2) The act of specifying concerns the

development of a mathematical representation of the con-

ceptual model. Similarly to the previous step, researchers

are required to make assumptions in translating a concep-

tual model to a computational model (Poile and Safayeni

2016), which is a transformation process that generally

involves ‘‘idealizations, approximations, and even self-

conscious falsifications’’ (Winsberg 2003, p. 108). As

implemented simulation models correspond to precise

mathematical constructs, a preliminary step in their cre-

ation requires that ‘‘specific rules replace general laws’’

(Pias 2011, p. 35). Winsberg (2003) refers to this creative

process as ad hoc modeling: ‘‘Ad hoc modeling includes

such techniques as simplifying assumptions, removal of

degrees of freedom, and even substitution of simpler

empirical relationships for more complex, but also more

theoretically-founded laws’’ (Winsberg 2003, p. 109). As

such, the resultant simulation model often only reflects

stylized facts, i.e., interesting patterns in empirical data that

focus statistical relations between observable phenomena

while abstracting from details (Houy et al. 2015). This

endeavor simplifies empirical data and makes specific

assumptions about the simulation model explicit. However,

due to the imprecisions introduced by ad hoc modeling, the

simulation model does not have the full faith and credit of

the governing theory’s epistemic credentials and thus

requires additional justification and validation. One of the

promising ways to ensure the validity of the simulation

models is to employ stylized facts based on existing system

theories (Houy et al. 2015; Bichler et al. 2016). By doing

so, the resultant simulation model comprises both scientific

theory and real-world empirical data, essentially mediating

between theory and real-world systems (Bichler et al.

2016).

Implementing (3) From an epistemic perspective, the

implementation of a specified model on a computer

requires a researcher to argue that the simulation model is

an error free and correct software implementation of the

simulation model specification on the given physical

hardware. A formal, algorithmic code verification is often

not feasible for complex software (D’Silva et al. 2008;

Ashish and Aghav 2013). Instead, researchers usually

argue that the process of implementing the simulation

model was rigorous, for instance by adhering to commonly
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recommended processes and software engineering

principles.

Experimenting (4) The central epistemic issue when

conducting simulation experiments is related to the

inability of researchers to analytically trace how the sim-

ulation results were obtained. This is often referred to as

epistemic opacity: it is simply impossible for humans to

follow and understand the millions of calculations that are

performed by the computer to obtain the results of simu-

lation experiments (Humphreys 1990; Grüne-Yanoff and

Weirich 2010). This is particularly true and even more

decisive for simulations that aim to understand emergent

phenomena, a common goal in the exploration of socio-

technical systems (Kochanowicz et al. 2013). The idea of

emergence in socio-technical simulation experiments has

been nicely described by Coleman (1994): to understand

macro-level associations between observed macro-level

socio-technical phenomena, one investigates how the

occurrence of a given macro-level phenomenon affects

individual elements of the analyzed socio-technical system

and how these individual elements interact and influence

each other. In consequence, these interactions again

aggregate to the observed macro-level phenomena (Cole-

man 1994; Boero and Squazzoni 2005; Manzo 2007;

Hedström and Ylikoski 2010).

As it is not possible for a human to follow all the cal-

culations that model these situational, action-formation,

and transformational mechanisms, one has to instead rely

on additional techniques, such as graphical visualization, to

argue for the relation between simulation design and

observed output data from simulation experiments (Trier

2008; Lee et al. 2015). IS researchers may rely on the

extant knowledge from related disciplines, such as research

on the design of autonomous software agents and multi-

agent simulations (Birdsey and Szabo 2014; Doan et al.

2014), to structure their simulation experiments.

Validating and Predicting (5) Validation of simulation

results can either be done by comparing them with data

obtained from empirical studies (this step, validating and

predicting, in Fig. 1) or by evaluating them in the context

of already established scientific theory (step 6, validating

and hypothesizing, in Fig. 1). Using the first approach, the

epistemic credit of simulation results is largely related to

the ability of the simulation to reproduce or predict char-

acteristics of the socio-technical phenomenon under

investigation (Boero and Squazzoni 2005). Consequently, a

large number of validation techniques relies on a direct

comparison with real-world observations to argue that

simulation results constitute scientific knowledge.

In addition to using empirical data for the validation of

simulation results, researchers also develop simulations

with the goal to predict future empirical data. Both, testing

a simulation’s predictive validity and using a simulation to

predict, is complicated through epistemic issues related to

the predictive precision of a simulation model. In general,

due to abstractions and simplifications in the simulation

model development process, the results of simulation

experiments do not show a precise one-to-one correspon-

dence with empirical data. Instead, simulation experiments

rather aim to create statistical estimates of phenomena or

observations that suggest the presence of certain concep-

tual relations (Küppers and Lenhard 2005). Thus, scholars

have argued that in the empirical validation of simulation

results ‘‘adequacy replaces proof’’ (Pias 2011, p. 35),

meaning that no direct relation to reality is established, but

simulation results are instead judged against experience

and high-level observations. Similarly, ‘‘performance beats

theoretical accuracy’’ (Küppers and Lenhard 2005, p. 6)

when using simulations to predict, meaning that simulation

models are rather evaluated against their utility than against

a perfect correspondence with reality. In consequence,

however, this lack of predictive precision requires

researchers to be very careful in framing and positioning

their results from an epistemic perspective.

Validating and Hypothesizing (6) In addition to relying

on empirical observations, validation of simulation results

can also be done by comparing them with established

scientific theory. To that end, simulation results are con-

trasted with a theory-informed understanding of the phe-

nomenon of interest, in order to test whether the simulation

is able to adequately recreate extant scientific knowledge.

Respective validation techniques aim to facilitate this

process of data generation and interpretation, for example

by describing common types of visualizations or specific

parameterization strategies.

Furthermore, simulation results can also be used to

advance and refine extant knowledge, for example through

evaluating the influence of certain parameterization choices

and modeling decisions that were made in simulation

development to derive novel hypotheses and propositions

in a given theoretical framework (Epstein 2008). Contrary

to the traditional epistemic process commonly employed in

natural sciences, epistemological inference is ‘‘down-

wards’’ in simulation-based research, starting with abstract

theory and then going to empirical observations (Winsberg

2001). This leads to the issue of equifinality: different

initial conditions and different processes can lead to the

same final result, leading to a potential problem in

deducing novel theory from complex simulations (Epstein

1999; Davis et al. 2007; Harrison et al. 2007; Weinhardt

and Vancouver 2012; Poile and Safayeni 2016). How can

one argue about theoretical constructs and causal processes

based on the observation that ‘‘two black boxes are able to

reach the same outcome’’ (Poile and Safayeni 2016, p. 4)?

Researchers are therefore usually required to employ

multiple validation techniques to not only understand
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structure in the simulation results, but also how these

results were generated (Sargent 2005). Equifinality, and

associated concepts and problems, are the subject of

ongoing discussions within the IS discipline on emergence

in complex socio-technical systems (Lyytinen and New-

man 2008; Lee et al. 2015; Prat et al. 2015). Additionally,

related research on the verification of multi-agent simula-

tions proposes several techniques and frameworks to deal

with issues related to the black box nature of simulation

experiments (e.g., Doan et al. 2014; Montali et al. 2014;

Aminof et al. 2016; Jamroga et al. 2016).

3 Literature Review Approach

Relying on the preceding discussion of epistemological

particularities of simulation-based IS research, we now

investigate how IS scholars conduct such studies. To this

end, we opt for a structured literature review, following the

suggestions of Webster and Watson (2002) and vom

Brocke et al. (2015). With this literature review, we

specifically aim to not only summarize, but to analyze and

critically examine the status quo of simulation-based IS

research in the context of ongoing discussions on simula-

tion epistemology in the philosophy of science (Rowe

2014).

3.1 Literature Selection

To make our review of the pertinent literature as compre-

hensive as possible, we opt for a literature selection pro-

cedure that determines a representative set of papers from

the large body of related publications (vom Brocke et al.

2015). We therefore adopt the list of 21 top IS journals

analyzed by Lowry et al. (2013) as well as conference

papers presented at both of the most influential interna-

tional and European conferences in IS (i.e., ICIS and

ECIS). To identify relevant publications, we conducted a

search via the ISI Web of Science using the different

simulation techniques introduced in Sect. 2.1, as well as

the general term Simulation. In addition, we searched in the

AIS electronic Library (AISeL) for papers presented at

ECIS or ICIS. We used the following search string for the

fields abstract, title, and keywords, across all selected

journals for publications published up to the year 2016:

‘‘neural network’’ OR ‘‘system dynamic*’’ OR ‘‘NK

fitness landscape’’ OR ‘‘genetic algorithm*’’ OR

‘‘cellular automat*’’ OR ‘‘stochastic process*’’ OR

‘‘simulation*’’

In total, we retrieved 697 publications in this first step.

To select the most relevant and influential papers from this

database, we first only included papers that have on

average at least one citation per year since their publica-

tion. However, as papers published in 2015/2016 are too

recent to get a large number of citations, and as papers

published in AIS’s basket of top journals are crucial for our

review, we included all of them in our review. This results

in 255 papers, for which we then read the abstract and

introduction sections, to exclude papers that do not develop

an own computer simulation model. In this step, we

excluded, for example, papers that only discuss the use of

simulation in general, only reference other simulation

studies, or use simulation to refer to human experiments

that do not involve computation. The final result is a

database of 175 relevant papers (see Appendix A1; avail-

able online via http://link.springer.com).

3.2 Analysis Framework and Coding Procedure

For coding the selected papers, we developed a compre-

hensive analysis framework, based on the preceding dis-

cussion of epistemic inferences. We thereby focus on the

links between knowledge of the real-world system, in the

form of scientific system theories or empirical data, and the

simulation world. We distinguish three parts to form the

analysis framework and to structure the subsequent dis-

cussion of results:

Real world to simulation world First, we investigated

how researchers went about constructing conceptual mod-

els (step 1, modelling in Fig. 1). Since scientific knowledge

about the real-world systems is essentially based on sci-

entific theories (Bichler et al. 2016), we in particular ana-

lyzed how researchers employed extant system theories in

both the design of conceptual simulation models and the

interpretation of simulation results (Sargent 2005; Davis

et al. 2007; Poile and Safayeni 2016). In coding our results,

we relied on the list of 174 theories used in IS research,

which are retrieved by Lim et al. (2013). Due to the large

number of theories and the large number of papers in our

database, we derived regular expressions for each theory

(e.g. ‘‘Resource dependence theory’’ was replaced by

‘‘resource.?dependenc’’ to capture instances where ‘‘re-

source-dependency’’ is written with a hyphen and a ‘‘y’’),

which were then used in combination with text-mining

software to color-code relevant parts of the analyzed

papers. Then we read the respective papers, to see how

theories are used, and only included a theory in our coding

if it is explicitly referenced and employed in constructing

the simulation model or in evaluating simulation results.

Simulation world Second, we analyzed how researchers

translated their conceptual model to a simulation model,

relating to the steps specifying (step 2) and implementing

(step 3) in Fig. 1. Based on the preceding discussion of IS

as socio-technical systems (see Sect. 2), we classified

simulation-based research according to the socio-technical
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system components (i.e., actors, tasks, structure, technol-

ogy, and environment) that were included in the simulation

model, to understand which aspects of the investigated IS

were focused in the model and where potential simplifi-

cations may take place. We additionally coded papers

according to the employed simulation technique (stochastic

processes, analytical, system dynamics, genetic algorithms,

artificial neural networks, and agent-based), based on the

discussion in Sect. 2.1. Coding mainly relied on reading

the content of the methodology sections of the selected

papers, reaching into other sections whenever the model

was discussed in a different part.

Simulation world to real world Third, we studied how

the simulation was used to investigate and validate against

real-world phenomena, combining the steps experimenting

(step 4), validating and hypothesizing (step 5) and vali-

dating and predicting (step 6). Since simulations may

fulfill a very different purpose in scientific research (Boero

and Squazzoni 2005), we coded simulations by their

intended use, as this significantly affects the development

process of the simulation model (Davis et al. 2007). Fol-

lowing Harrison et al. (2007) and Axelrod (1997), we

distinguish the following uses for simulation: prediction

(how are model variables related), proof (show that certain

system behavior exists), discovery (discover unexpected

consequences of interactions), explanation (explain why

the system behaves in a certain way), critique (test existing

theories), prescription (suggest how to best interact with or

within the system), and empirical guidance (derive

hypotheses for empirical testing). During coding, we relied

on the descriptions given by Harrison et al. (2007,

pp 1238–1239) to investigate the introduction, results, and

discussion sections of the selected papers. Note that it is

possible for a simulation to serve multiple purposes. For

example, Wöhner et al. (2015) use a simulation model to

first predict the effects of different parametrizations on the

behavior of managed wikis, and subsequently employ the

obtained data to prescriptively argue how this concept can

be used to overcome related issues, such as online

harassment and cyberbullying (Wöhner et al. 2015).

Finally, we relied on Sargent (2005) to distinguish dif-

ferent validation techniques that researchers may employ in

the process of simulation-based research (see Table 2). For

coding, we read the methodology, results, and discussion

sections of the selected papers, as well as related

appendices.

To ensure the uniformity of the coding and to avoid

ambiguity, the coding scheme was discussed intensively

among all authors in a series of five workshops, totaling

11.5 h, to reach a common understanding on each element

of the given coding scheme. In the workshops, the authors

discussed the underpinning criteria for each of the coding

scheme’s elements, relying on the provided arguments in

the referenced studies upon which the analysis framework

and, consequently, the coding scheme, is built. The latter

resulted in the first version of a detailed guideline for

coding. In a first step, we then conducted a pilot coding, in

which two of the authors coded the same set of papers

independently based on the initial coding guideline. We

discussed the few disagreements among coders in the pilot

coding endeavor and adjusted the coding guideline

accordingly. This revised guideline was then used by the

first author to code all 175 selected papers, including a re-

coding of the pilot papers. Finally, we followed the rec-

ommendations of Lombard et al. (2002) and Saldaña

(2013) to formally assess the reliability of the coding. To

this end, we had two researchers independently code a

random, nonoverlapping sample of 10 papers each (20

papers total), thereby reaching the suggested reliability

sample size of[ 10% (Lombard et al. 2002, p. 601) of the

full sample. Appendix A2 provides the details of this

intercoder reliability analysis. Overall, we reached 93.54%

intercoder agreement across all items, and the additionally

calculated indices (i.e., Krippendorf’s a and Cohen’s j)
suggest that the coding is highly reliable for all intents and

purposes (Lacy and Riffe 1996; Lombard et al. 2002;

Neuendorf 2016).

4 Current State of Simulation-Based Research in IS

Table 3 provides an overview of the selected 175 papers,

showing during which period these papers were published

and which simulation techniques are employed. Most

papers in this database are published in Decision Support

Systems (65 papers), followed by Information Systems

Research (33 papers) and the Journal of Management

Information Systems (18 papers); see Table 7 in Appendix

A1 for a detailed overview by outlet.

We focus our discussion on the most interesting insights

resulting from a cross-element analysis of prior research, to

illustrate how different modelling choices during simula-

tion development are interrelated and how they influence

simulation use and validation. The structure follows the

introduced elements of the analysis framework in the pre-

vious section: we first examine the use of theories as a

foundation for simulation model development, then

investigate several aspects related to the development of

the simulation model itself, and finally describe how IS

scholars have used and validated simulation models in their

research. Table 4 summarizes our findings about simula-

tion-based research in IS.

Real world to simulation world Our analysis of simu-

lation-based IS research reveals that, similar to the trend in

the IS discipline in general, the development of theory-

based conceptual models in simulation-based studies is
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Table 2 Validation techniques in simulation-based research

Validation technique Description

Predictive validity Use the model to make predictions and compare them with real-world behavior

Historical data validation Use historical data not only for calibration but also for testing, e.g., by splitting the dataset in half

Event validity Compare simulated events with those occurring in real-world systems

Turing tests Check if experts can discriminate between model and real-world system output

Animation Display operational behavior graphically, e.g., show the movements of actors

Comparison with other models Compare the model with other extant validated models

Extreme condition tests Check if the model behaves reasonably when extreme values are selected for model parameters

Degenerate tests Test degeneracy of the model’s behavior by appropriate parameter selections

Internal validity Run probabilistic models multiple times and check for consistency

Parameter variability- sensitivity analysis Modify input parameters in a structured way and analyze the effects

Operational graphics Display the values of performance measures for the system over time

Traces Trace the behavior of specific objects in the model

Rationalism Deduce the model logically

Table 3 Overview of the use of

simulation techniques over time
Simulation technique Up to 1999 2000–2004 2005–2009 2010–2014 2015–2016 Total

Analytical 2 6 12 26 16 62

Agent-based 3 5 17 12 11 48

Stochastic processes 1 2 6 16 10 35

System dynamics 2 2 2 3 2 11

Artificial neural networks 0 2 3 3 2 10

Genetic algorithms 0 1 3 2 3 9

Total 8 18 43 62 44

Table 4 Summary of the literature review findings

Real world to simulation

world

Finding 1. Researchers increasingly rely on a wide range of system theories that can be easily translated into

mathematical models, both from IS and from reference disciplines

Finding 2. Agent-based and analytical simulations generally employ multiple, complementary theories to describe

different parts of the investigated socio-technical IS

Finding 3. Simulations based on artificial neural networks and genetic algorithms usually employ at most one system

theory

Simulation world Finding 4. Agent-based and system dynamics simulations cover a comparatively large number of socio-technical

system components

Finding 5. Artificial neural networks (and, to a lesser extent, analytical simulations, genetic algorithms, and

stochastic processes) often cover only few socio-technical system components

Simulation world to real

world

Finding 6. Agent-based (and, to a lesser extent, analytical and stochastic processes) simulations generally employ

multiple, complementary validation techniques

Finding 7. System dynamics simulations often rely on adapting and combining existing models for validation

Finding 8. Simulations that use genetic algorithms often employ traces for validation

Finding 9. Artificial neural networks generally use historical data validation based on large datasets

Finding 10. Stochastic processes and analytical simulations are often used to prove or to critique

Finding 11. Genetic algorithms are often used to prescribe or to provide empirical guidance

Finding 12. Artificial neural networks are mostly used to predict or to prescribe

Finding 13. Agent-based simulations are commonly used to discover or to explain
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growing (Fig. 2). Almost 80% of the analyzed papers that

were published between 2015 and 2016 employ at least one

theory in constructing their conceptual model. Compared to

the 1990s and 2000s, the use of theories in simulation-

based IS research has substantially increased in the 2010s,

so that the more recent studies more frequently use theo-

retical lenses.

A particularity of IS research is that, due to its multi-

disciplinary nature, a wide range of theories from reference

disciplines, such as the organization, management, and

computer sciences, are used in addition to native IS theo-

ries to guide both theory building and theory testing

(Straub 2012; Lim et al. 2013). The same can be observed

for simulation-based studies: the most frequently employed

theories are both (i) commonly used theories in IS or native

IS theories (e.g., game theory, the technology acceptance

model, competitive strategy, or portfolio theory) as well as

(ii) discipline-specific theories (e.g., auction and queuing

theories in economics and computer science), which are

easily applicable to the specific research questions of a

given study. In effect, researchers exploit a wide range of

theories that can be easily translated into mathematical

models and that help researchers to systematically derive

different scenarios subject to simulation (Finding 1 in

Table 4).

Table 5 distinguishes different simulation techniques to

investigate the average number of theories used in a single

publication as well as the percentage of publications that

use at least one theory. Combining these two data points

allows us to make several interesting observations: first, we

note that theories are mostly exploited in agent-based and

analytical simulations (see Table 5). For these simulation

techniques it is often the case that the complex socio-

technical real-world system requires the use of multiple,

complementary theories to describe different parts of the

conceptual model (Finding 2 in Table 4). The same is true

for system dynamics models in terms of using multiple

theories, however most system dynamics models in our

sample rely on adapting and combining existing models

instead of referencing system theories. Nevertheless, sys-

tem dynamics studies that employ system theories often use

multiple theories.

These simulation techniques (agent-based, analytical,

and system dynamics) can then be contrasted with genetic

algorithms and artificial neural networks. We find that

most studies rely on exactly one theory to justify input/

output parameters (in the case of artificial neural networks)

or parameters that define a candidate solution (in the case

of genetic algorithms). Since the corresponding simulation

models are essentially abstract, mathematical black boxes,

they do not require multiple theories to translate complex

socio-technical interactions into holistic conceptual models

(Finding 3 in Table 4).

Simulation world To analyze which components of a

socio-technical system are covered by simulation models,

we compare the percentages of publications that include a

socio-technical system component for different simulation

techniques (Fig. 3). Unsurprisingly, the coverage of socio-

Table 5 Use of theories by simulation technique

Simulation

technique

Average number of

theories used per

publication

Percentage of

publications using at least

one theory (%)

Artificial

neural

networks

0.70 60

Stochastic

processes

0.89 54

Genetic

algorithms

0.89 67

System

dynamics

0.91 36

Analytical 1.11 65

Agent-based 1.83 83

Fig. 2 Use of theories in simulation-based IS research
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technical system components often directly follows the

nature of the employed simulation technique. For example,

the autonomous agents in agent-based models usually

match the socio-technical description of actors, and system

dynamics models rely on a precisely defined structure.

In Fig. 3, we first can observe a larger coverage of

socio-technical system components in agent-based and

system-dynamics simulation models when compared to

stochastic processes and analytical simulations, which

explicitly model relations (Parunak et al. 1998; Carley

2001; Dooley 2002). To adequately represent a real-world

problem, agent-based and system dynamics simulation

models need to take a large number of factors into account,

relating to different socio-technical components of the

respective phenomenon and their interactions. Since the

overall behavior of the simulation model emerges as a

consequence of the modelled interactions, it is often a

priori not clear, which factors are important and which

factors may be ignored (Wu et al. 2015). Consequently,

such models generally cover a comparatively large number

of socio-technical system components (Finding 4 in

Table 4).

On the other end of this spectrum are artificial neural

networks, which do not require an explicit description of

socio-technical interactions. Instead, the underlying models

of this technique rely on abstract mathematical models that

do not resemble any real-world socio-technical system

components (Graupe 2013). Hence, we frequently find

simulations of IS that employ artificial neural networks

and only cover a limited number of socio-technical system

components (Finding 5 in Table 4).

Simulation world to real world We now analyze how

simulations are validated and used in IS research. Figure 4

shows the percentages of papers that employ different

validation techniques (not including animation, degenerate

tests, and Turing tests, which are not explicitly reported in

any of the 175 analyzed papers) grouped by simulation

technique. From this figure, we can see that agent-based

simulations in particular rely on a wide range of different

validation techniques to establish the credibility of the

simulation model. The complex socio-technical nature of

the investigated real-world IS phenomena augments the

difficulties that researchers face in following the emergent

process in which results are obtained in agent-based sim-

ulation experiments. Consequently, a single paper gener-

ally reports the use of multiple, complementary validation

procedures for example, data driven techniques (e.g., his-

torical data validation, variability-sensitivity analysis) as

well as established knowledge (e.g., comparison to other

models, face validity) and graphical support tools (e.g.,

operational graphics, traces). The same can be observed,

to a lesser extent, for analytical and stochastic processes

simulations that model complex socio-technical interac-

tions over time (Finding 6 in Table 4).

Again, we note that most system dynamics models in our

sample adapt or combine existing models in their con-

struction, which is reflected in the high percentage for

comparison to other models in Fig. 4. The credibility of the

extant models is then used to argue for modeling choices in

a new simulation model (Finding 7 in Table 4). Regarding

genetic algorithms, we find a surprisingly high percentage

of publications that employ traces, i.e., track the behavior

of specific objects during a simulation experiment. In these

cases, researchers often follow the mutations and the

development of a successful candidate solution and then

use these observations to argue that the simulation model

behaves as intended (Finding 8 in Table 4). Finally, sim-

ulations that rely on artificial neural networks commonly

employ historical data (see Fig. 4) to establish epistemic

credibility in the simulation model. These papers essen-

tially perform some type of cross-validation, where a

dataset is split into training and validation parts. If the

dataset is large enough and of sufficient quality, this is

often enough to suggest that the simulation model behaves

as intended, thus not requiring further validation efforts

(Finding 9 in Table 4).

Figure 5 shows the percentage of papers employing a

simulation technique for a specific use. More direct simu-

lation techniques (stochastic processes, analytical) are

often used to conduct proofs, in the sense that the simu-

lation is employed to show that the modeled processes can

produce a certain type of behavior (Harrison et al. 2007).

Similarly, such simulation techniques can be employed to

critique extant theoretical explanations of the observed

Fig. 3 Socio-technical components modeled by simulation technique
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phenomena, for example by describing more accurate or

more parsimonious models. These simulation uses gener-

ally require a very precise mathematical description of the

observed IS phenomena at the outset of the study (Finding

10 in Table 4).

Similarly, genetic algorithms can be employed to

demonstrate that certain adaptation strategies work (proof)

or are better than previously suggested strategies (critique).

Nevertheless, genetic algorithms are more dominantly used

to provide empirical guidance by tracing the development

of a successful candidate solution to uncover the factors

that determined its success. This technique is also fre-

quently used to suggest more efficient designs of IS (pre-

scription), generated through genetic mutations (Finding

11 in Table 4).

Artificial neural networks are mostly used to predict one

or more output variables based on a set of multiple input

variables. Along the same line, this simulation technique is

frequently used to provide empirical guidance to testing

multiple configurations of input variables, and use the

results to identify the most important predictors for the

studied phenomena. Another common use is the applica-

tion of artificial neural networks in the design of specific IS

(i.e., the simulation use prescription), which more effi-

ciently manage certain tasks activities (Finding 12 in

Table 4). For example, Kim and Street (2004) develop an

artificial neural network that prescribes optimal customer

targets for marketing.

In contrast, agent-based simulations are generally

employed to discover unexpected consequences of the

modeled interactions, and to explain the processes that

produce the observed behavior. For example, Johnson et al.

(2014) use simulation to study emergence mechanisms of

social networks. The researchers start with several highly

stylized descriptions of such mechanisms (e.g., social

network structure emerges only through the rule of pref-

erential attachment), which by themselves do not ade-

quately represent the complex socio-technical interactions

involved in the observed phenomena. Consequently, the

researchers propose a blended, multi-theoretic model that

better captures observed distributions in online networks

(Finding 13 in Table 4).

5 Discussion

We now reflect our findings from the literature review (see

Table 4) in light of the preceding discussion on the epis-

temic particularities of simulation-based research in IS. We

follow the structure of the preceding section (real world to

Fig. 4 Employed validation techniques by simulation technique

Fig. 5 Simulation use by simulation technique
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simulation world, simulation world, and simulation world

to real world). The goal is to point out the choices and

consequences that researchers face, and to evaluate the

actual decisions that extant research took from an epistemic

perspective.

Real world to simulation world Our review reveals that

scholars increasingly refer to extant system theories in

simulation-based research (see Fig. 2) to support partially

creative and intuitive modeling choices in the development

of the conceptual model (Finding 1) (Winsberg 1999;

Frank and Troitzsch 2005). Researchers generally opt for

one of the following two choices for employing theories:

(i) a rather comprehensive multi-theoretic foundation or (ii)

a parsimonious employment of system theories. The for-

mer, multi-theoretic approach to simulation model devel-

opment is particularly used in agent-based and complex

analytical simulations for discovery and explanation of the

respective phenomenon of interest (Findings 2 and 13). In

contrast, the latter approach – to employ system theories

parsimoniously – is common for artificial neural networks

and genetic algorithms that are used for prediction and

prescription. Such simulations usually rely on a single

specific theory to support the development of the simula-

tion model (Findings 3, 11, and 12).

To better understand this division in the observed sim-

ulation-based IS studies, we analyze it in light of the

dichotomy between inductive and deductive approaches to

research (Johnson 1996). In our context, the epistemic

credit of a simulation model may be established deduc-

tively through extant theory or inductively through

empirical data (Winsberg 1999; Sargent 2005; Davis et al.

2007). Some simulation techniques, for instance agent-

based and analytical simulations, facilitate mechanism-

based descriptions grounded in theory, since they easily

allow to combine different theories to describe different

parts of the simulation model (Curşeu 2006; Davis et al.

2007; Hedström and Ylikoski 2010). Consequently, such

simulation-based studies purposefully combine comple-

mentary theories, i.e., a synergistic combination of theories

that aims at a comprehensive analysis of the phenomenon

of interest (Tiwana and Bush 2007). This is particularly

important for agent-based, system dynamics, and complex

analytical simulations that are used to study emergent

phenomena. In such cases, the relation between minor

deviations in the simulation model and resultant changes in

simulation outputs is difficult to capture with standard

statistical techniques (Hedström and Ylikoski 2010; Grüne-

Yanoff and Weirich 2010; Houy et al. 2012). Thus, instead

of such variation-based approaches, they often employ a

combination of theories to describe individual components

of a system (Woodard and Clemons 2014). The use of

complementary theories helps scholars to justify modeling

choices and also facilitates the interpretation of newly

discovered insights in the simulation results (Morgan and

Morrison 1999; Woodard and Clemons 2014; Bichler et al.

2016). An example of such research is the work of Nan

(2011), where several theories of IT use (e.g., the struc-

turational theory of technology and technology acceptance

models) are combined with a complex adaptive systems

approach to develop an agent-based simulation model (Nan

2011). Nan (2011) uses system theories to justify a wide

range of modeling choices, ranging from models of mental

activities of employees to organizational structures and

environmental factors.

Conversely, other simulation techniques, such as artifi-

cial neural networks, remain epistemically opaque in their

operation, but allow to easily verify the simulation results

against large sets of empirical data (Sargent 2005; Grüne-

Yanoff and Weirich 2010). In these cases, researchers are

only required to a priori hypothesize the investigated

relationships, but they do not need to detail and argue for

the internal mechanisms that cause the observed effects.

Instead, the simulation gains epistemic credibility induc-

tively by validating the simulation results against empirical

data. As an example, Rivkin (2001) investigates the opti-

mal level of strategic complexity in organizations by using

a single, highly stylized fact. This stylized fact is based on

case studies and prior theoretical work that links strategic

complexity with a performance measure. This essentially

follows the recommendation of Davis et al. (2007) to start

with simple theory (i.e., a game theoretic description of

strategic maneuvers) that addresses the phenomenon of

interest and then directly translate this theory to a com-

putational representation for a suitable simulation tech-

nique. Researchers may consult Bichler et al. (2016), who

elaborate on the development of stylized facts based on

existing system theories as well as Houy et al. (2015), who

describe how stylized facts can be derived from literature

and data.

Simulation world Figure 3 shows that there are signifi-

cant differences regarding the coverage of socio-technical

components in different simulation techniques (Findings 4

and 5). Some simulation techniques, such as agent-based or

system dynamics, rely on a description of interaction pat-

terns on a local level to model system behavior (Bonabeau

2002). For these simulation techniques, we generally find a

rather comprehensive coverage of socio-technical IS

components in the simulation models. On the other hand, if

a simulation technique relies on grounding the simulation

model in a theoretically derived, abstract, and formal

mathematical model, a more selective coverage of socio-

technical components may be better suited. Such a selec-

tive coverage facilitates the verification of the implemented

simulation model and the subsequent validation and inter-

pretation of simulation results (Adner et al. 2009). Thus,

artificial neural networks and, to a lesser extent, analytical
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simulations, genetic algorithms, and stochastic processes

may employ simulation models that only cover a limited or

minimal number of socio-technical components.

This insight is in line with existing discourses on the

creation of conceptual models: ontologically adequate

conceptual models that provide mechanism-based expla-

nations of emergent phenomena are often required to

hypothesize and detail hidden, but nevertheless relevant,

causal mechanisms in simulation models (Frank 2011;

Frank et al. 2014). Such conceptual models need to con-

sider all potentially relevant aspects of complex systems,

including behaviors and co-evolutionary structures

(McKelvey 2002; Houy et al. 2012), which is particularly

true for simulation techniques that are commonly used to

study emergent socio-technical phenomena.

For example, Nan (2011) to a wide extent covers socio-

technical system components in the developed simulation

model – comprising employees, tasks, information tech-

nology artifacts, organizational structures and environ-

mental factors –, which is then used to experiment and to

discover new explanations for the investigated phe-

nomenon. In contrast, simulation techniques that remain

epistemically opaque in their operation, for instance arti-

ficial neural networks, hide these details in the simulation

model. Researchers may consult extant literature on socio-

technical IS modeling (e.g., Lyytinen and Newman 2008;

Bednar and Sadok 2015; Wu et al. 2015; Beese et al. 2015)

and IS modeling in general (e.g., Houy et al. 2012; Frank

et al. 2014; Frank 2014) to guide their simulation

endeavors.

Simulation world to real world The adequacy of a val-

idation strategy is dependent on the specific simulation

technique, the simulation use, the characteristics of the

empirical target and the corresponding epistemic chal-

lenges (Boero and Squazzoni 2005). In general, it is rec-

ommended to combine internal verification with empirical

validation in a circular process (Sargent 2005). This not

only helps scholars to iteratively develop and test the

simulation model, but also to validate obtained simulation

results (Axtell et al. 1996; Edmonds and Hales 2003; Boero

and Squazzoni 2005; Burton and Obel 2011). Literature on

simulation model validation generally suggests the use of

multiple validation techniques to build confidence in the

connection of the simulation model to the underlying real-

world system (Sargent 2005; Davis et al. 2007; Harrison

et al. 2007). This is in line with the results of our literature

review in Fig. 4, which shows that different simulation

techniques rely on different validation strategies, which

generally comprise multiple and different validation tech-

niques (Findings 6, 7, 8, and 9). More precisely, we find

that artificial neural networks rely on the availability of

large datasets, and that system dynamics models rely on

adapting and combining existing models. Other simulation

techniques, for example agent-based simulations, rely on

several complementary validation techniques as well as on

the available empirical data.

Especially in the context of complex and dynamic socio-

technical IS phenomena, the extent to which the simulation

model accurately predicts and captures the essential

behavior of the real-world system is often unclear. Some

simulation approaches, such as artificial neural networks

(see, e.g., Olson et al. 2012; Wang and Chuang 2016), offer

a straightforward way towards inductively establishing

epistemic credibility in the simulation model. To validate

artificial neural networks, researchers may thus refer to

established guidelines, for example consulting Arlot and

Celisse (2010) on cross-validation procedures. In contrast,

epistemic opacity (i.e., the inability of researchers to ana-

lytically trace how simulation results are obtained) is

notably difficult for simulation techniques that aim at the

discovery of novel phenomena and unexpected conse-

quences (Harrison et al. 2007). Consequently, such simu-

lation-based research additionally relies on deductive

reasoning to argue for the epistemic credit of the

simulation.

Interpreting novel and unexpected simulation results

requires a precise understanding of the dynamic processes

in the simulation model (Burton and Obel 2011). These

processes in the simulation model are often reflected in the

action-formation and transformational mechanisms of the

conceptual model, such as organizational and individual

learning, decision-making, and imitation (Coleman 1994;

Burton and Obel 2011). Issues in understanding emergent

results of simulation experiments are related to existing

discussions on computational models that go ‘‘beyond what

is to explore possibilities and examine boundaries to what

might be’’ (Burton and Obel 2011, p. 1197), essentially

combining the issues arising from equifinality and the

opacity of simulation experiments. If multiple assumptions

may have led to the same outcome (equifinality), how can

one argue that the observed outcome justifies the assump-

tions? Due to the inability of humans to follow all calcu-

lations in a simulation experiment in detail (opacity), such

studies instead require a solid theoretical grounding and

should employ multiple validation techniques – essentially

combining both inductive and deductive reasoning – to

establish credibility in the simulation results (Winsberg

2001).

Simulation uses In line with the work of Harrison et al.

(2007) on simulation modeling in organizational research,

we find that researchers in IS employ simulations for a

variety of purposes, for which different simulation tech-

niques may be suitable (Findings 10, 11, 12, and 13).

Whereas stochastic processes and analytical simulations

are frequently used to critique or prove, agent-based sim-

ulations generally aim at the discovery of new phenomena

123

J. Beese et al.: Simulation-Based Research in Information Systems, Bus Inf Syst Eng 61(4):503–521 (2019) 517



or at explaining previously made observations. Artificial

neural networks and genetic algorithms are also frequently

employed in the design of IS, fulfilling a more prescriptive

purpose.

Considering the earlier discussion on epistemic infer-

ences in simulation-based research, we find that there is a

fundamental difference between using simulation to predict

empirical observations (step 5 in Fig. 1) and using simu-

lation to hypothesize (step 6 in Fig. 1). This difference is

reflected in the choice of simulation technique and conse-

quently in the design of the simulation model. For example,

criticizing extant theory or proving novel theory necessi-

tates coherent and intelligible inferences in modeling

decisions. This is mostly complicated owing to epistemic

issues related to the predictive precision of a simulation

model: due to highly stylized abstractions and simplifica-

tions, the simulation model does not necessarily show a

precise correspondence with empirical data. Thus, instead

of claiming to create indubitable proof, many simulation

experiments rather aim to create statistical estimates of

phenomena or observations that suggest the presence of

certain conceptual relations, captured, for example through

stylized facts (Küppers and Lenhard 2005). Simulations

that aim to predict or prescribe, therefore often focus on

their utility, rather than their correspondence with reality,

and are mainly conducted through artificial neural net-

works and genetic algorithms.

In contrast, epistemically opaque simulations offer a

potential to study unexpected emergent phenomena that are

not inherently obvious in the design of the simulation

model. For example, agent-based simulations generally

aim to explore or discover new phenomena in complex

socio-technical IS. Researchers usually test how different

initial conditions and different processes lead to specific

results in simulation experiments (Epstein 1999; Davis

et al. 2007; Harrison et al. 2007; Weinhardt and Vancouver

2012; Poile and Safayeni 2016). Due to issues related to

equifinality and epistemic opacity, these simulations need

to be designed in a way that allow theoretical constructs to

be traced back to these modeling choices.

For example, Hua et al. (2011) propose an agent-based

simulation model that investigates how combinations of

operational decisions propagate through complex supply

chain networks and finally lead to bankruptcy of organi-

zations. For obtaining their results, they are required to

conduct a series of highly structured simulation experi-

ments that allow them to distinguish important decisions

from unimportant or unrelated factors (Hua et al. 2011).

Scholars interested in building such simulations may rely

on a variety of extant knowledge, including, for example,

research on visualization techniques (Zhuge 2006; Trier

2008) or on multilevel modeling and analysis (Bélanger

et al. 2014; Frank 2014).

6 Conclusion

This study starts with the premise that although the pres-

ence of simulation-based research in IS discipline is rela-

tively low, it has recently started to gain recognition within

the IS community. This motivates us in considering the

particularities of both IS, as a multidisciplinary research

field, as well as simulation, as a third way of doing science

compared to theoretical and empirical analyses. We first

discuss the complex socio-technical nature of IS phenom-

ena, which needs to be considered in simulation-based

research, and the epistemic implications of using simula-

tion-based research approaches. Building on these discus-

sions, we derive an analysis framework to investigate the

status quo of simulation-based research in IS. We finally

synthesize the extracted findings on the current use of

simulation in IS research and elaborate on them with regard

to currently ongoing discussions on the epistemic particu-

larities of simulation-based research. In doing so, we aim

not only to consolidate existing implicit knowledge about

the use of simulation in IS, but also to guide prospective

simulation-based IS research.

Accordingly, we briefly summarize the key insights

from this study. First, the use of theoretical lenses (both the

frequently used theories in IS and the native IS theories) is

recommended to develop theory-informed simulation

models. There is a choice to opt for a comprehensive multi-

theoretic foundation in simulation model development

versus a more parsimonious use of theory. The multi-the-

oretic approach is particularly well-suited for deductively

establishing epistemic credibility in complex simulation

models, whereas the parsimonious approach generally

relies on inductive arguments based on empirical obser-

vations. Second, some simulation techniques require a

comprehensive coverage of system components to account

for the socio-technical nature of IS phenomena, while other

simulation techniques can more easily isolate and focus on

specific components. Simulations that aim to provide

mechanism-based explanations are required to detail hid-

den causal mechanisms in the simulation models. In con-

trast, simulations that remain epistemically opaque in their

operation, e.g., artificial neural networks, allow to hide

away these details. Third, IS scholars should consciously

and purposefully employ different validation techniques to

ensure the reliability and validity of obtained simulation

results. We find that a clear inductive or deductive

approach is only rarely possible. Instead, simulations

generally must be validated by using multiple, comple-

mentary, deductive and inductive techniques, which

counteract the loss of credit due to the different epistemic

inferences made in the simulation process. Fourth, the

choice of simulation techniques by IS scholars should be in

line with the intended type of theorization in the given
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study. Criticizing extant theory or proving novel theory

necessitates coherent and intelligible inferences in model-

ing decisions (e.g., in analytical simulation models). In

contrast, emergent and epistemically opaque simulations

(e.g., agent-based simulations) offer a potential discover

new phenomena and explore the underlying mechanisms.

Finally, we want to discuss two important limitations of

this research. First, and most notably, this research is

inevitably selective in discussing related topics as well as

limited in the depth of discussions due to the breadth of the

investigated subject. For each single simulation technique,

there exists a wealth of published knowledge and often we

only scratch the surface in this paper. While we try to

provide pointers to further information for readers, well-

versed experts in a specific simulation technique will most

likely have a deeper understanding of the corresponding

intricacies than we present in this analysis.

Furthermore, a literature review is methodologically

limited to an investigation of the status quo of a phe-

nomenon, since it only considers previously published

research. However, analyzing and critically examining the

results of our literature review in the context of ongoing

discussions in the philosophy of science allows us to not

only summarize prior research, but also to critically

examine the contributions and to provide additional

explanations for the observed patterns in the reviewed

papers (Rowe 2014). Consequently, by studying a repre-

sentative sample of simulation-based research in IS, we can

use the tacit knowledge of experienced simulation

researchers to facilitate future simulation-based IS studies

for less experienced scholars.
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