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Abstract Managerial flexibilities have to be taken into

account in ex-ante decision-making on IT investment

projects (ITIPs). In many papers of the IS literature, stan-

dard financial option pricing models are used to value such

managerial flexibilities. Based on a review of the related

literature, the paper critically discusses the assumptions of

the most frequently used financial option pricing model,

namely the Black–Scholes model, arguing for relaxed

assumptions that better represent the characteristics of

ITIPs. The authors find that existing real option analysis

approaches featured in the IS, Finance, and Economics

literature are unable to consider more than two of our

relaxed assumptions. Consequently, they present their own

approach in form of a simulation model for the valuation of

real options in ITIPs which offers a better representation of

the characteristics of ITIPs by taking the discounted cash-

flows and the runtime to be uncertain as well as the market

to be incomplete. Based on these modifications of the

Black–Scholes model’s assumptions, it is found that the

resulting option value contains idiosyncratic risk that has to

be taken into account in ITIP decision making. For the

realistic case of risk averse decision makers, the consid-

eration of idiosyncratic risk usually leads to a lower risk-

adjusted option value, compared to one calculated by

means of the Black–Scholes model. This confirms the

perception of managers who feel that financial option

pricing models frequently overvalue ITIPs and hence may

induce flawed investment decisions.

Keywords Real option analysis � Business value of IT

investment projects � Simulation model � Black–Scholes
model � IT investment project decisions � Assumptions �
Characteristics of IT investment projects

1 Introduction

Commonly used net present value analyses tend to under-

value information technology investment projects (ITIPs)

such as investments in standard software (e.g., Angelou

and Economides 2008; Taudes et al. 2000; Wu et al. 2009),

individual software (e.g., Bardhan et al. 2004; Diepold

et al. 2011; Schwartz and Zozaya-Gorostiza 2003), or new

technologies (e.g., Benaroch and Kauffman 2000; Ji

2010),1 mainly because they neglect managerial flexibili-

ties that can be exploited by project managers (cf.,

Benaroch et al. 2006, 2010; Taudes 1998). In this context,

real option analysis (ROA) for the valuation of managerial

flexibilities in ITIPs has increasingly caught the attention

of practitioners and researchers (cf., Benaroch et al. 2006,

2010). A real option is a right – but not an obligation – to

act on an underlying non-financial asset (e.g., an ITIP)
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either by deferring (postponing an ITIP), by changing

capacities, by abandoning (to stop an ITIP if it turns out to

be economically inefficient), or by expanding (scaling up

an ITIP) at predetermined costs and after a predetermined

period of time (Copeland and Antikarov 2003).2 To value

such real options, most papers featuring in the IS literature

use standard financial option pricing models such as the

Black–Scholes model (BSM; e.g., Benaroch et al. 2006;

Heinrich et al. 2011; Taudes 1998), its discrete counterpart

the Binomial model (e.g., Kambil et al. 1991; Khan et al.

2013), or the Margrabe model (e.g., Bardhan et al. 2004;

Dos Santos 1991). These models, however, were not

developed for complex real investments such as ITIPs and

usually simplify the complexities of ROA. Consequently,

managers feel that financial option pricing models over-

value real investments because there is a hiatus in the

underlying assumptions (cf., Copeland and Tufano 2004;

Van Putten and MacMillan 2004). In this context,

researchers should not only increase the understanding of

‘‘option thinking’’ (Taudes et al. 2000) but also develop

approaches by which the value of real options in ITIPs can

be judged as accurately as possible.

Accordingly, we develop a ROA approach based on

relaxed assumptions as suggested by Tallon et al. (2002),

thus paving the way for a more accurate valuation of real

options in ITIPs.

By relaxing the BSM assumptions3 in our approach (i.e.,

by taking the discounted cash-flows and the runtime to be

uncertain as well as the market to be incomplete), the

resulting option value contains idiosyncratic risk that has to be

taken into account in ITIP decision making. For the realistic

case of a risk averse decision maker, even a low degree of risk

aversion usually leads to a lower risk adjusted option value

compared to the option value calculated by means of the

BSM. Consequently, the use of the BSM overvalues the

option value for risk averse decision makers. This confirms

the above-mentioned feedback given by managers who feel

that financial option pricing models frequently overvalue

ITIPs and hence induce flawed decision-making on ITIPs.

The research presented in this paper is based on the

Design Science Research (DSR) paradigm (cf., Gregor and

Hevner 2013; Hevner et al. 2004; Peffers et al. 2008). After

introducing the particular research problem to be addressed,

we discuss the related literature. Therein, we present argu-

ments for a relaxation of the BSM assumptions to better

represent the characteristics of ITIPs (descriptive knowl-

edge). Subsequently, we discuss existing ROA approaches

regarding their compliance with our relaxed assumptions

(prescriptive knowledge) and state the remaining research

gap. In a next step, we build and evaluate our design artifact

as a rigorous formal simulation model. Here, as a first step,

we duplicate the BSM representing the benchmark for

modifying the BSM assumptions in four design steps. These

modified assumptions (M1)–(M4) represent instantiations of

the relaxed assumptions (A10)–(A40). In the last step, we

present our final simulation model capable of simultane-

ously considering the four modified assumptions (M1)–

(M4). For the purpose of demonstration, we instantiate our

simulation model (instantiated artifact) in terms of a pro-

totypical implementation and demonstrate that the artifact

can be given a material existence (Gregor and Hevner 2013)

in the shape of an operative (decision support) system. To

evaluate the results of our ROA approach, we apply the

instantiated artifact for each design step to the example

introduced by Taudes (1998), compare the resulting option

values with the option values from the BSM (competing

artifacts), and finally illustrate possible consequences for

ITIP decision-making. To further evaluate the compliance of

our approach with ITIPs, we conducted several expert

interviews with IT executives who confirm that our relaxed

assumptions better represent the general characteristics of

ITIPs compared to the BSM assumptions. Finally, we dis-

cuss limitations, directions for future research, and man-

agerial implications before concluding with a summary of

our key findings.

2 Related Literature

For our literature search we followed the guidelines given by

Webster and Watson (2002), taking into account related

literature from IS, Finance, and Economics. We included IS

journals from the basket of eight of the AIS,4 Finance and

Economics journals that are ranked B or higher according to

the German Academic Association for Business Research,5

and additionally, all relevant Finance and Economics jour-

nals from the Financial Times Ranking.6 After eliminating

2 For a detailed description of the idea of ROA, its typical context of

use, and how it can be applied, see Brach (2003), Copeland and

Antikarov (2003), Copeland and Tufano (2004), or Van Putten and

MacMillan (2004).
3 The analyses are based on the BSM assumptions as the BSM is

most commonly used in the IS literature (e.g., Benaroch and

Kauffman 1999; Benaroch et al. 2006; Heinrich et al. 2011; Su

et al. 2009; Taudes 1998; Taudes et al. 2000). The Binomial model as

well as the Margrabe model are generally based on the same

assumptions: The Binomial model is the discrete counterpart of the

BSM (cf., Cox et al. 1979) and the Margrabe model relaxes one

assumption and allows for uncertain discounted cash outflows

following a geometric Brownian motion (cf., Margrabe 1978).

4 http://aisnet.org/?JournalRankings.
5 http://vhbonline.org/service/jourqual/vhb-jourqual-21-2011/alpha

betische-uebersicht-jq-21/.
6 http://www.ft.com/cms/s/2/3405a512-5cbb-11e1-8f1f-00144feabdc0.

html.
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duplicates, we conducted a keyword search within the

resulting journals, searching for ‘‘Real Option’’ solely as

well as in combination with the terms ‘‘Assumption’’,

‘‘Black–Scholes’’, ‘‘Brownian Motion’’, ‘‘Stochastic Pro-

cess’’, ‘‘Complete Market’’, ‘‘Valuation’’, ‘‘Option Run-

time’’, and the corresponding plural forms. Next we closely

examined the references of the articles identified so far in

order to determine previous key contributions (going back in

time). Finally, going forward, we used Google Scholar to

track down the contributions which cited the previously

identified articles. Next we conducted a title analysis which

resulted in the identification of 183 articles for further

consideration. From this set of articles we extracted the

descriptive knowledge (cf., Gregor and Hevner 2013) which

criticized the assumptions of financial option pricing mod-

els. Based on the resulting 25 articles we investigate how the

assumptions of standard financial option pricing models

need to be relaxed to better represent the characteristics of

ITIPs (cf., Table 1). Further, we extracted the prescriptive

knowledge (cf., Gregor and Hevner 2013) where ROA

approaches are presented that are based on at least one

modification of the BSM assumption. These 43 articles are

presented in Table 2. All articles used for the discussion of

the related literature are summarized in an Online Appendix

(available via http://link.springer.com).

2.1 Descriptive Knowledge

In the IS literature, the core assumptions of the BSM are

(implicitly) transferred to the valuation of real options in

ITIPs (cf., Benaroch and Kauffman 1999; Heinrich et al.

2011; Taudes et al. 2000) as follows:

• Assumption (A1): the discounted cash-inflows (DCIF)

of ITIPs are uncertain and follow a geometric Brow-

nian motion (GBM).

• Assumption (A2): the market is complete.

• Assumption (A3): the discounted cash-outflows (DCOF)

of ITIPs are certain and known.

• Assumption (A4): the option runtime is certain and

known.

In the next four subsections we discuss the compatibility

of the four core assumptions, taking into account the actual

characteristics of ITIPs.

2.1.1 Discounted Cash-Inflows

In several articles of the IS field, DCIF of ITIPs are

modelled to follow GBM (e.g., Benaroch et al. 2006;

Heinrich et al. 2011; Su et al. 2009; Taudes 1998). The

probability distribution of GBM at any one point in time is

lognormal with linearly increasing mean and variance in

time (given a strictly positive drift parameter; cf., Hull

2009, p. 278). This implies that GBM is unbounded above

(Metcalf and Hassett 1995) and its mean and variance go to

infinity as time progresses (Brandimarte 2006, p. 101).7

While this seems to be an appropriate assumption to make

in the speculative setting of a stock market (Ewald and

Yang 2008), it rarely applies to ITIPs.8 Software or tech-

nology investment projects are usually subject to life cycles

(Bollen 1999; Mahajan et al. 1990) implying that the mean

of DCIF will only increase up to a certain point in time and

decrease thereafter. Moreover, DCIF of ITIPs often result

from cost savings that are always bounded. This contradicts

a linear increase of mean and variance. Another criticism

of GBM in the context of ITIPs concerns its infinitesimally

small increments, which cannot account for sudden impacts

(jumps) such as the launch of a new technology or the

entrance of a competitor into a narrow market (Kauffman

and Kumar 2008). Hence, assumption (A1) is relaxed as

follows:

Assumption (A10): DCIF of ITIPs follow an arbitrary

non-negative stochastic process9 depending on the

characteristics of the underlying ITIP.

Table 1 Relaxations of the BSM assumptions

Assumption BSM Relaxed

(A1)/(A10) DCIF are uncertain and follow GBM DCIF follow an arbitrary non-negative stochastic process

(A2)/(A20) The market is complete The market is incomplete

(A3)/(A30) DCOF are certain and known DCOF follow an arbitrary non-negative stochastic process

(A4)/(A40) Option runtime is certain and known Option runtime is represented by a non-negative random variable

7 Specifically, the probability of reaching any arbitrary positive value

in a finite time interval is strictly positive and under certain conditions

even equal to one (cf., Jeanblanc et al. 2009, p. 153).
8 An example of unbounded mean and variance on the stock market

is the case where the stock price of Volkswagen went from 210 EUR

to more than 1000 EUR within a couple of days (cf., http://www.

telegraph.co.uk/finance/newsbysector/transport/3281537/Porsche-

and-VW-share-row-how-Germany-got-revenge-on-the-hedge-fund-

locusts.html). This highlights the effects of speculative trading in the

context of stock markets, which is hardly justifiable in the context of

ITIPs.
9 A stochastic process is reasonable since mean and variance of ITIPs

usually vary over time. Assuming merely an arbitrary distribution

would imply that mean and variance remain constant throughout an

ITIP’s runtime, which is hardly justifiable.
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2.1.2 Completeness of the Market

A complete market implies that the underlying ITIP is con-

tinuously traded in any amount and thus, a perfect hedge can

be built to eliminate its risk. Through the elimination of the

risk, the resulting option value is deterministic and inde-

pendent of the decision maker’s risk preference (cf., Black

and Scholes 1973; Hull 2009, p. 289).

Continuously traded ITIPs are very rare (e.g., Diepold

et al. 2011; Kambil et al. 1991; Schwartz and Zozaya-

Gorostiza 2003). Many authors agree on this point of

criticism and argue that it is sufficient to identify a ‘‘twin

security’’ (Sick and Gamba 2010; Smith and Nau 1995;

Taudes et al. 2000) that perfectly correlates with the

underlying ITIP’s DCIF. However, as the majority of ITIP

risk factors are unique, a perfect hedge of an ITIP’s risk by

means of a twin security is unrealistic (Benaroch and

Kauffman 2000) and the identification of a twin security

that correlates highly but not perfectly is insufficient for

obtaining an accurate option value (Hubalek and

Schachermayer 2001).

Hence, without the possibility of perfectly hedging the

risk of ITIPs, the resulting option value is uncertain and a

decision maker has to consider her individual risk prefer-

ence (cf., Diepold et al. 2011). Accordingly, assumption

(A2) is relaxed as follows:

Assumption (A20): the market is incomplete.

Consequently, the risk of ITIP’s DCIF is either

unhedgeable or can only be partially hedged.

Table 2 Contributions treating the relaxed assumptions (A10)–(A40)

(A10) (A20) (A30) (A40) Articles in IS, Finance and Economics literature Row

GBM ? jumpsa Complete market Deterministic Certain Articles where the BSM is used, for example:

Benaroch and Kauffman (1999), Benaroch et al.

(2006), Brennan and Schwartz (1985), Dixit and

Pindyck (1994)a, Heinrich et al. (2011), Klaus et al.

(2014), Myers and Majd (1990), Su et al. (2009),

Taudes (1998), Taudes et al. (2000) and Tourinho

(1979)

1

Uncertain 2

Stochastic (GBM) Certain Angelou and Economides (2008), Bardhan et al.

(2004), Blenman and Clark (2005), Dos Santos

(1991), Elliott et al. (2007), Kauffman and Kumar

(2008)a, Kumar (1996, 2002, 2004a), McDonald and

Siegel (1986), Pindyck (1993), Schwartz and

Zozaya-Gorostiza (2003), Taudes (1998) and Wu

et al. (2009)

3

Uncertain 4

Incomplete market Deterministic Certain Balasubramanian et al. (2000), Benaroch and

Kauffman (2000), Childs et al. (2001), Diepold et al.

(2011), Guthrie (2007), Henderson (2004; 2007),

Hilhorst et al. (2006), Hugonnier and Morellec

(2007) and Merton (1998)

5

Uncertain 6

Stochastic Certain 7

Uncertain 8

GMR ? jumpsa Complete market Deterministic Certain Dias and Nunes (2011), Dixit and Pindyck (1994),

Epstein et al. (1998), Ewald and Wang (2010),

Metcalf and Hassett (1995), Sarkar (2003), Schwartz

(1997) and Schwartz and Smith (2000)

9

Uncertain 10

Stochastic (GMR) Certain Jaimungal et al. (2013)a 11

Uncertain 12

Incomplete market Deterministic Certain Ewald and Yang (2008) 13

Uncertain 14

Stochastic Certain 15

Uncertain 16

Articles that include jumps are denoted with superscript letter ‘a’
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2.1.3 Discounted Cash-Outflows

As DCOF of ITIPs are usually subject to different risk

factors (e.g., unforeseen changing requirements or labor

costs), assumption (A3) is also criticized by several authors

(e.g., Angelou and Economides 2008; Bardhan et al. 2004;

Benaroch and Kauffman 1999; Kauffman and Kumar 2008;

Ji 2010; Schwartz and Zozaya-Gorostiza 2003), who take

DCOF to be uncertain. This raises the question of how

DCOF are distributed. Several authors suggest that, similar

to DCIF, DCOF should follow GBM (e.g., Bardhan et al.

2004; Dos Santos 1991; Kumar 1996, 2002; Taudes 1998).

However, GBM does not seem to be reasonable for all

types of ITIPs especially if DCOF mainly result from the

following two sources: cash-outflows for IT infrastructure

(e.g., hardware costs) and labor costs (e.g., of software

developers). Costs of obtaining a specified hardware

infrastructure usually decrease over time and changes in

labor costs usually occur as a result of specific events such

as changes in labor agreements or staffing. In this case

DCOF do not seem to linearly increase over time contrary

to what GBM implies. Accordingly, assumption (A3) is

relaxed as follows:

Assumption (A30): DCOF of ITIPs follow an arbitrary

non-negative stochastic10 process depending on the

characteristics of the underlying ITIP.

2.1.4 Option Runtime

A very common real option in the context of ITIPs is the

strategic growth option (e.g., Benaroch et al. 2006; Diepold

et al. 2011; Dos Santos 1991; Heinrich et al. 2011; Taudes

1998; Taudes et al. 2000). Strategic growth options spawn

new investment opportunities. One example is an infras-

tructure investment project that enables the pursuance of

further follow-up ITIPs. In this case, the option runtime

equals the runtime of the infrastructure investment project.

Within this infrastructure investment project unforeseeable

events such as staffing problems or collaboration problems

might come up and influence the runtime. To take these

uncertainties into account when valuing real options, Brach

(2003) suggests to use an uncertain option runtime. Con-

sequently, assumption (A4) is relaxed as follows:

Assumption (A40): the option runtime is uncertain and
represented by a non-negative random variable

depending on the characteristics of the underlying

ITIP.

All relaxed assumptions are summarized in Table 1.

2.2 Prescriptive Knowledge

To discuss the suitability of existing ROA approaches for

the valuation of ITIPs, we analyzed whether these

approaches are based on modifications of the BSM

assumptions that coincidentally represent instantiations of

the relaxed assumptions (A10)–(A40) (cf., Table 2).11

We identified several ROA approaches that are based on

the standard assumptions of the BSM (cf., Row 1 of

Table 2). We even found approaches where single BSM

assumptions are modified. Some approaches assume an

incomplete market (cf., Row 5 of Table 2) in compliance

with the relaxed assumption (A20), or DCOF to be uncer-

tain following GBM (cf., Row 3 of Table 2) representing

an instantiation of the relaxed assumption (A30), or DCIF
to follow geometric mean reversion (GMR) (cf., Row 7 of

Table 2) representing an instantiation of the relaxed

assumption (A10). We further identified two articles where

more than one BSM assumption is modified: Jaimungal

et al. (2013) assume DCIF and DCOF to follow GMR (cf.,

Row 9 of Table 2), and Ewald and Yang (2008) assume

DCIF to follow GMR and an incomplete market (cf., Row

11 of Table 2).

To sum up, single assumptions of the BSM are modified

in several articles. However, to the best of our knowledge

there is no ROA approach where more than two assump-

tions are simultaneously modified, coincidentally repre-

senting instantiations of the relaxed assumptions (A10)–
(A40).

3 Real Option Analysis Approach Based on Relaxed

Assumptions

In the next subsections we develop and prototypically

implement a simulation model which enables us to con-

sider the relaxed assumptions (A10)–(A40) for valuing

ITIPs. Before we present the simulation model, we intro-

duce a running example that we use to demonstrate and

evaluate our approach.

3.1 Running Example

To illustrate the effects of different modifications of the

BSM assumptions that represent instantiations of the relaxed

assumptions (A10)–(A40) on the option value, we use the

example of Taudes (1998) and Taudes et al. (2000) of a

company manufacturing auto parts and arms. Their example

illustrates a case where the company decides whether to

upgrade and continue using SAP R/2 or to switch to the

10 A stochastic process instead of a probability distribution is

reasonable for the same reason as for DCIF (time dependency of

mean and variance).

11 For a more detailed discussion of the prescriptive knowledge, see

http://ssrn.com/abstract=2575521.
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client/server version of SAP R/3. The migration to SAP R/3

enables the adoption of further IS functions such as elec-

tronic data interchange (EDI; e.g., EDI-based purchasing

and invoicing), workflow management for sales, document

retrieval and archiving, or an e-commerce system. Thus, the

company holds several strategic growth options (i.e., call

options) by having the right but not the obligation to invest

in the additional IS functions that are enabled by the

migration to SAP R/3. The value of such a software plat-

form, in this case SAP R/3, depends highly on the further IS

functions that can be implemented in the future as it usually

does not generate positive value on its own. Taudes (1998)

and Taudes et al. (2000) focus on the distinct valuation of

the option to invest in the EDI technology. The value of this

additional IS function results from DCIF (S0; cf., Table 3) of

the EDI technology, which depend mostly on savings in

inventory holding costs (e.g., decreasing buffer stocks,

write-offs of obsolete inventory), transportation cost (e.g.,

increased accuracy enables efficient use of transportation

capacities), premium freight (e.g., reduction in emergency

deliveries), and document handling costs (e.g., savings on a

number of tasks such as data entry or document filing). By

contrast, its DCOF (XT; cf., Table 3) result from the

implementation costs of the EDI technology.

In the next section we use the input parameters of the

example from Taudes (1998) who provides multiple input

parameter combinations to reveal their consequences on

the option value. These parameters and their initial values

are summarized in Table 3.

Taudes (1998) uses the BSM to value the growth option.

The calculated option values (in percent of S0) are sum-

marized in Table 4 for the different input parameter

combinations.

These results are used in the next subsections to illus-

trate the consequences of modifications of the BSM

assumptions (A1)–(A4) that represent instantiations of the

relaxed assumptions (A10)–(A40) on the growth option

value.

3.2 Simulation Model

Our simulation model is capable of considering various mod-

ifications of theBSMassumptions that coincidentally represent

instantiations of the relaxed assumptions (A10)–(A40). These
modified assumptions can be considered in isolation and in

combination. Specifically, the artifact can duplicate the BSM

and is further capable of dealing with uncertain DCOF, dif-

ferent stochastic processes (e.g., GBM (including jumps),

GMR (including jumps)) for DCIF and DCOF, the integrated

consideration of hedgeable and unhedgeable risks, and an

uncertain option runtime. To the best of our knowledge, this is

the first artifact which is capable of simultaneously considering

all relaxed assumptions (A10)–(A40).

3.2.1 Base Model

To have a benchmark for our following modifications, we

first duplicate the BSM. According to assumption (A1), we

take DCIF St to follow GBM, which is defined by Eq. (1)

(cf., Hull 2009, p. 266):

dSt

St
¼ lSdt þ rSdWt ð1Þ

Wt represents the Wiener process driving DCIF over

time (cf., Hull 2009, p. 261).

As GBM results in a lognormally distributed random

variable ST at the certain and known end of the option’s

runtime [cf., assumption (A4)], we use Eq. (2) to calculate

a realization ST,i of DCIF (cf., Brigo et al. 2007):

ST ;i ¼ S0 � exp r � 1

2
r2S

� �
T þ rS

ffiffiffiffi
T

p
ei

� �
ð2Þ

Here, ei is a realization of a standard normally dis-

tributed random variable.

To approximate the option value C [cf., Eq. (3)] of the

BSM, we independently draw n random realizations ei
(i = 1, …, n), calculate the resulting realizations ST,i using

Eq. (2), discount the differences between the realizations

ST,i and the certain and known XT [cf., assumption (A3)],

take the maximum of the result and zero (this is equivalent

to exercising an option if and only if its value is positive),

and finally take the average of the n resulting values.12

C ¼ 1

n

Xn
i¼1

max e�rT ST ;i � XT

� �
; 0

� �
ð3Þ

We conduct n = 100,000 simulation runs for each input

parameter combination of the running example and

Table 3 Input parameters and initial values of the running example

Parameter Initial value (s) Description

S0 500,000 DCIF

X0
13 500,000 (750,000;

1,000,000)

DCOF (from here on given in

percent of S0)

r(=lS) 8 % Risk free interest rate (drift rate of

St)

r2S 20 % (10; 30 %) Instantaneous variance of St

r2X 20 % (10; 30 %) Instantaneous variance of Xt (if

assumed to be uncertain)

T 2 (4; 10) years Option runtime

12 By taking C as a deterministic option value, we implicitly assume

that the risks associated with DCIF are hedged by means of a

replicating portfolio determinable in a complete market (cf., assump-

tion [A2]).
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calculate their respective option values. As we receive the

same results as calculated by means of the BSM (cf.,

Table 4), we show that our base model works correctly

(‘‘evaluation of correctness’’; cf., Hevner et al. 2004).

Based upon Eq. (3), we iteratively develop our simulation

model and analyze the consequences of our relaxed

assumptions on the real option value in the following sub-

sections. Here, we implement multiple modified assump-

tions [i.e., (M1)–(M4)] as feasible instantiations of the

relaxed assumptions (A10)–(A40) that better represent the

characteristics of ITIPs. Finally, we instantiate our artifact

(i.e., a ROA approach) which considers the modified

assumptions (M1)–(M4) simultaneously (cf., Sect. 3.2.6).

3.2.2 Modification of (A1) according to (A10)

As argued in Sect. 2.1.1, GBM does not offer an adequate

representation of DCIF of ITIPs. One possible stochastic

process for DCIF that may better represent the characteristics

of ITIPs is GMR, which is also suggested by, for example,

Ewald and Yang (2008) and Sarkar (2003). GMR has the

characteristics that the ITIP’s DCIF revert to a certain mean

and have a diminishing growth of variance (cf., Ewald and

Yang 2008; Singh et al. 2004). Specifically, in the example of

Taudes (1998) the EDI’s DCIF result from savings that can be

categorized into decreasing inventory holding costs, trans-

portation costs, premium freight, document handling cost, and

obsolete inventory costs. As cost savings are bounded, a

process such as GMR seems to be more reasonable compared

to GBM because mean and variance of GMR are bounded in

contrast to GBM.Thus, our first modified assumption is (M1):

(M1) DCIF (St) are uncertain and follow a GMR.

Taking this modified assumption into account, we sub-

stitute Eq. (1) with Eq. (4) (cf., Ewald and Yang 2008):

dSt

St
¼ a h� Stð Þdt þ rSdWt ð4Þ

In Eq. (4), a represents the speed of mean reversion, and

thus the velocity of St being dragged back over time to its

long-term mean S
�
resulting from h.

As we cannot calculate the realizations ST,i of a GMR

in closed form (c.f., Eq. (2) for the case of GBM), we

approximate GMR by a process with similar characteris-

tics called exponential mean reversion (EMR). EMR is

frequently used in the literature for exactly this purpose

(e.g., Brigo et al. 2007). Thus, we substitute Eq. (4) with

Eq. (5):

dSt

St
¼ a h� ln Stð Þð Þdt þ rSdWt ð5Þ

As the resulting distribution of ST is lognormal, we can

use Eq. (6) to calculate a realization ST,i of DCIF (cf.,

Brigo et al. 2007):

ST ;i ¼ exp ln S0ð Þe�aT þ h� r2S
4a

� �
1� e�aT
� �

þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2aTð Þ r

2
S

2a

r
ei

)
ð6Þ

To calculate the resulting option values in the running

example, we set the expected long-term mean S
�
equal to

the expected value of GBM13 with the runtime T:

S
�
¼ exp h� r2

S

4a

	 

¼ S0e

rT . We additionally take the mean

reversion speed a to be equal to 0.4.14 Conducting

n = 100,000 simulation runs for each input parameter

combination of the running example, we calculate the

option values depicted in Table 5 by means of Eq. (3).

In relation to the option values of the BSM in Table 4,

we find significantly lower option values due to the lower

overall variance of GMR/EMR. This stems from DCIF

being bounded because they mainly result from cost

Table 4 Initial option values of the BSM calculated using the running example

T 2 4 10a

X0 in % of S0ð Þ=r2S 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 %

100 % 0.25b 0.31 0.36 0.38 0.45 0.51 0.63 0.70 0.75

150 % 0.09 0.16 0.22 0.22 0.32 0.39 0.51 0.61 0.69

200 % 0.03 0.09 0.14 0.13 0.23 0.31 0.42 0.55 0.63

a We add this time horizon to additionally reveal long term consequences
b Given the input parameters, the option value in Taudes (1998) should be 0.25, according to our calculations. This seems to be a rounding error

13 Setting the long term mean of GMR equal to the respective

expected value of GBM, enables us to compare the results and

investigate the consequences of variance and mean reversion speed on

the option value in relation to the one derived using GBM (the BSM).
14 The mean reversion speed can be easily visualized with the so-

called concept of process half-life. This concept gives the average

time DCIF needs to revert to half of its distance from the long term

mean S
�
. It is calculated as H ¼ ln2=a and for the case of a ¼ 0:4 the

process reverts to half its distance from the long term mean in

H ¼ 1:73 years.
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savings. The deviation from the option value calculated by

means of the BSM increases in time, as the impact of

GMR/EMR on the overall variance of the process increases

in T. Additionally, the option value decreases in mean-

reversion speed due to a decreasing variance. These results

are in accordance with the ROA literature (cf., Ewald and

Yang 2008; Metcalf and Hassett 1995). Consequently,

ITIPs which are subject to a life cycle or where DCIF are

mainly realized through cost savings are overestimated by

the BSM (all other factors being constant).

We additionally included jumps to GMR/EMR and

found higher option values depending on jump frequency

and jump size compared to the values in Table 5.15

3.2.3 Modification of (A2) according to (A20)

As argued in Sect. 2.1.2, it is unrealistic to assume that

all ITIPs risks can be hedged and thus, to assume the

market for DCIF of ITIPs to be complete. In the example

of Taudes (1998), decreasing premium freight over time

is due to an unexpected reduction of emergency deliv-

eries. As it seems to be hard to find a twin security to

hedge such a risk, DCIF include unhedgeable risks.

Consequently, this leads to the modified assumption

(M2):

(M2) The market is incomplete.

To observe the consequences of unhedgeable risk in our

simulation model, we split DCIF ~ST into one hedgeable

part HST and another unhedgeable part U
~ST

16:

~ST ¼ HST þ U
~ST ð7Þ

We assume the unhedgeable part U
~ST to have an

expected value of zero.17,18 Accordingly, we have to sub-

stitute Eq. (3) with Eq. (8) to calculate the expected option

value E½ ~C�:

E½ ~C� ¼ 1

n

Xn
i¼1

max e�rT
HST ;i þ U

~ST ;i �XT

� �
; 0

� �
: ð8Þ

Here, ~C represents the uncertain option value with

expected value E½ ~C� and standard deviation r½ ~C�.
Due to space restrictions we only treat the instantaneous

variance r2S = 0.2, and vary the proportion of unhedgeable

risk according to the vector # = (0, 0.25, 0.5, 0.75, 1).19

Conducting n = 100,000 simulation runs for each input

parameter combination of the running example, we obtain

the results shown in Table 6.

The different values of # yield the corresponding

idiosyncratic risk of the option value represented through

its standard deviation r½ ~C�, which is depicted in brackets

below the associated expected option value E½ ~C�. The

expected option value is constant in # and equal to the

associated option values in the BSM (Table 4). However,

the idiosyncratic risk of the option value is increasing in #,

starting from # = 0, where the overall risk of DCIF is

hedgeable (i.e., the BSM case), to the point where the

overall risk is assumed to be unhedgeable (# = 1). This

holds for increasing time horizons T, as well as for

increasing levels of the instantaneous variance of overall

DCIF r2S.
We found several approaches in the ROA literature that

assume the entire risk of the underlying asset to be

unhedgeable (cf., Diepold et al. 2011; Hilhorst et al. 2006;

Table 5 Option values given

that DCIF follow GMR (M1)
T 2 4 10

X0/r2S 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 %

100 % 0.17 0.22 0.26 0.26 0.30 0.34 0.54 0.55 0.56

150 % 0.03 0.08 0.12 0.08 0.14 0.19 0.33 0.37 0.39

200 % 0.00 0.03 0.06 0.02 0.06 0.10 0.18 0.23 0.28

15 Including jumps in Eq. (5) we get dSt
St

¼ a h� ln Stð Þð Þdtþ
rSdWt þ dJt , where the last term represents the jumps

JT ¼
PNT

j¼1 Yj � 1
� �

. NT is a Poisson distributed random variable

representing the number of jumps that occur until time T with

expected value E½NT � ¼ kT where k represents the average amount of

jumps per year. Y is a lognormally distributed random variable with

E Yð Þ ¼ 1 and an instantaneous variance of r2J . Thereupon, we modify

Eq. (2) to be ST ;i ¼ exp ln S0ð Þe�aTf þ h� r2
S

4a

	 

1� e�aTð Þþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2aTð Þ r
2
S

2a

q
eig � exp � rJ

2
NT þ

ffiffiffiffiffiffi
NT

p
rJeJ;i

� �
.

16 The tilde represents the fact that unhedgeable risk from this part of

the DCIF influences the risk associated with the option value.

17 E ~ST
 �

¼ E HST
 �

such that E U
~ST

 �
¼ 0:

18 We calibrate the variance of U
~ST to be equal to the difference of

the variances of ~ST and HST : Var U
~ST

 �
¼ Var ~ST

 �
� Var HST

 �
and

incorporate this by the use of the parameter # 2 ½0; 1� into the

instantaneous variances as Hr2S ¼ ð1� #2Þr2S.
19 The aim of the different parameter values for unhedgeable risk is

to visualize what happens if the share of unhedgeable risk varies. We

do not specify how to determine the different shares of hedgeable and

unhedgeable risk as this highly depends on the specific ITIP. A

decision maker could determine the amount of total risk and by

relation to market data should be able to quantify how much of the

risk is hedgeable through the use of a replication portfolio. The rest is

unhedgeable risk and has to be taken into account in the decision

process.
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Guthrie 2007). To the best of our knowledge, the ROA

approach presented here is the first able to vary the pro-

portion of hedgeable and unhedgeable risk and reveals the

implications on the value and risk of a real option

embedded in an ITIP.

3.2.4 Modification of (A3) according to (A30)

In Sect. 2.1.3, we argued for uncertain DCOF mainly

resulting from labor and infrastructure costs (cf., Sect.

2.1.3) which also holds for the running example to

implement EDI, presented by Taudes (1998). Moreover,

around half of all large ITIPs – defined as those with initial

price tags exceeding $15 million – massively blow their

budget (Bloch et al. 2012). This indicates that DCOF can

be unbounded and consequently be assumed to follow a

GBM. Accordingly, we present the following modified

assumption (M3) for DCOF:

(M3) DCOF ( ~Xt) are uncertain, follow a GBM and

the associated risk is unhedgeable.

Thus, we calculate realizations of DCOF ~Xt using

Eq. (2). To calculate the expected option value based on n

simulation runs, we substitute Eq. (3) with Eq. (9):

E½ ~C� ¼ 1

n

Xn
i¼1

max e�rT ST ;i � ~XT ;i

� �
; 0

� �
: ð9Þ

We take the instantaneous variance of DCOF r2X to be

equal to the instantaneous variance of DCIF r2X = r2S.
20

Conducting n = 100,000 simulation runs for each input

parameter combination of the running example, we obtain

the results shown in Table 7.

Taking DCOF to follow a GBM results in higher

expected option values in relation to the BSM values. This

stems from the considered uncertainty associated with

labor and infrastructure costs. Since we take this risk to be

unhedgeable, the resulting option values contain idiosyn-

cratic risk. The effect of taking DCOF to be uncertain on

the expected option value is extensively discussed in the

literature (e.g., Bardhan et al. 2004; Dos Santos 1991).

However, the consequences of unhedgeable DCOF on the

option value’s risk has not been considered in existing

ROA approaches so far.

In further modifications of (A3) we included jumps (cf.,

footnote 15), for example, or modelled DCOF to follow

GMR (cf., Sect. 3.2.2). In all cases, we found the expected

T
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20 In our simulation model arbitrary (and not necessary equal) values

for the instantaneous variances r2S and r2X are possible. However,

Taudes (1998) applies the Margrabe model to model uncertain (but

hedgeable) DCOF where both values are supposedly equal r2X ¼ r2S.
Consequently, to evaluate our simulation model as a competing

artifact (cf., Hevner et al. 2004), we use the same values.
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option value, as well as its risk, to be higher in comparison

to the BSM values (cf., Table 4).

3.2.5 Modification of (A4) according to (A40)

In Sect. 2.1.4 we argued that especially for strategic growth

options, the option runtime often deviates from the initially

planned runtime. In the running example of Taudes (1998)

it can hardly be assumed that the time when the migration

to the client/server version of SAP R/3 is finished (i.e.,

option runtime) is known with certainty ex-ante. Accord-

ingly, we present the following modified assumption (M4):

(M4) The option runtime (~T) is represented by a

Poisson distributed random variable21 and the asso-

ciated risk is unhedgeable.

To calculate the expected option value based on the

modified assumption (M4) we replace Eq. (3) with

Eq. (10):

E½ ~C� ¼ 1

n

Xn
i¼1

max e�r ~Ti S ~Ti;i
� XT

	 

; 0

	 

: ð10Þ

We take the expected value of the option runtime E ~T
 �

to be equal to the initial option runtime T of Taudes (1998)

(cf., Table 3) and its minimum option runtime to be exactly

half the initial option runtime T
2
. Since there is almost no

evidence that ITIPs are finished earlier than initially

planned, we set all realizations of the option runtime ~T that

are lower than T to be equal to T. Based on n = 100,000

simulation runs for each input parameter combination of

the running example, we obtain the results reproduced in

Table 8.

By taking the option runtime to be uncertain, the

expected option values are slightly higher than in the BSM

and the option value is associated with a non-negligible

amount of risk. This results from the fact that the imple-

mentation of EDI depends on the initial migration project

which can take longer than initially planned. To the best of

our knowledge, an uncertain option runtime has not yet

been considered in existing ROA approaches.

3.2.6 Modification of (A1), (A2), (A3), and (A4) according

to (A10), (A20), (A30), and (A40)

In this subsection we demonstrate that multiple assump-

tions of the BSM can be modified simultaneously accord-

ing to the relaxed assumptions by means of our simulation

model.

We combine (M1) DCIF (St) are uncertain and follow a

GMR including jumps,22 (M2) the market is incomplete,

(M3) DCOF ( ~Xt) are uncertain, follow a GBM and the

associated risk is unhedgeable, and (M4) the option runtime

( ~T) is represented by a Poisson distributed random variable

and the associated risk is unhedgeable.

Considering the modified assumptions (M1)–(M4), we

modify and expand Eq. (3) to calculate the expected option

value:

E½ ~C� ¼ 1

n

Xn
i¼1

max e�r ~Ti S ~Ti;i
� ~X ~Ti;i

	 

; 0

	 

: ð11Þ

Table 8 Expected option values and standard deviations given that the option runtime is represented by a Poisson distributed random variable

(M4)

T 2 4 10

X0/r2S 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 %

100 % 0.27 (0.04) 0.34 (0.05) 0.39 (0.05) 0.4 (0.05) 0.48 (0.05) 0.54 (0.05) 0.65 (0.04) 0.72 (0.03) 0.77 (0.03)

150 % 0.11 (0.04) 0.19 (0.05) 0.25 (0.06) 0.25 (0.05) 0.35 (0.05) 0.42 (0.06) 0.54 (0.05) 0.64 (0.04) 0.71 (0.04)

200 % 0.05 (0.03) 0.12 (0.05) 0.17 (0.06) 0.16 (0.05) 0.26 (0.06) 0.35 (0.06) 0.45 (0.05) 0.58 (0.05) 0.66 (0.04)

Table 7 Expected option values and standard deviations given that DCOF follow GBM and are unhedgeable (M3)

T 2 4 10

X0/r2S 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 %

100 % 0.31 (0.18) 0.40 (0.22) 0.46 (0.23) 0.45 (0.22) 0.56 (0.23) 0.63 (0.23) 0.70 (0.21) 0.80 (0.19) 0.86 (0.16)

150 % 0.16 (0.15) 0.27 (0.2) 0.35 (0.22) 0.32 (0.21) 0.45 (0.24) 0.54 (0.25) 0.61 (0.23) 0.74 (0.21) 0.82 (0.18)

200 % 0.09 (0.11) 0.19 (0.17) 0.27 (0.21) 0.23 (0.19) 0.38 (0.23) 0.48 (0.25) 0.55 (0.24) 0.70 (0.23) 0.79 (0.20)

21 We take a Poisson distribution as Poisson distributed random

variables are commonly recommended to represent uncertain time in

literature (cf., Blanchet-Scalliet et al. 2005).

22 To represent unforeseen impacts on DCIF resulting from sudden

events such as the entrance of a new competitor in a narrow market,

we include jumps in the modified assumption (M1) (cf., footnote 15).
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We set all parameter values according to the parameter

values in the modified assumptions (M1)–(M4). Addition-

ally, we take jumps in DCIF to occur approximately once

every 3 years (k = 0.3) and their instantaneous variance is

assumed to be r2J = 0.3.

We finally conduct n = 100,000 simulation runs for

each input parameter combination of the running example.

The results are shown in Table 9.

In comparison to the results in Table 4 we observe the

additional risk induced by jumps of DCIF, uncertain

DCOF, as well as the uncertain option runtime to overall

increase the expected option value. As all sources of risk

are assumed to be unhedgeable, the option value contains

idiosyncratic risk. In a comparative analysis for the case

T = 2, X0 = 100 %, r2S = 10 % we illustrate the differ-

ence between the expected option value of our approach

from Table 9 and the option value of the BSM from

Table 4 depending on varying sets of different input

parameter values (see Fig. 1, Panel A). Accordingly, we

illustrate the difference between the standard deviation of

our approach from Table 9 and the standard deviation of

the BSM, which equals zero due to the assumed non-ex-

istence of unhedgeable risks (see Fig. 1, Panel B).

We see that the difference in the (expected) option value is

positive and increases in instantaneous variance of DCOF

(Var DCOF r2X 2 [0.1; 0.5]) and in jump parameters (Jump

Freq. k and Size r2J 2 [0.3; 0.5]). It further decreases in

instantaneous variance of DCIF (Var DCIF r2S 2 [0.1; 0.5])

and in option runtime (Time T 2 [2; 10]). We additionally

see that the difference in the standard deviation is positive

and increases in all mentioned input parameters.

3.3 Decision Making

Since the option values calculated by means of our ROA

approach contain a significant amount of idiosyncratic risk, a

decision maker has to take this risk into consideration in

addition to the expected option value in ITIPs decision

making. To make rational and theoretically well founded

decisions based on the expected value and the risk of a ran-

dom variable (in our case, the option value), preference

functions that are compatible with the Bernoulli principle

(cf., Bernoulli 1954) can be used. The choice of an appro-

priate preference function mainly depends on (1) the chosen

risk measure, (2) the risk preference of the decision maker,

and (3) the distribution of the considered random variable.

1. Preference functions are usually defined for a specific

risk measure. As risks can be deemed to deviate from

an expected or target value either negatively, or both

negatively and positively, a corresponding risk mea-

sure has to be selected. This consequently restricts the

choice of a preference function.

2. Most preference functions are contingent on the

decision maker’s risk preference. Thus, before a

Table 9 Expected option values and standard deviations given a combination of our different modified assumptions (M1)–(M4)

T 2 4 10

X0/r2S 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 %

100 % 0.30 (0.57) 0.37 (0.68) 0.43 (0.79) 0.42 (0.77) 0.49 (0.89) 0.55 (1.00) 0.65 (1.33) 0.71 (1.45) 0.75 (1.57)

150 % 0.17 (0.51) 0.25 (0.62) 0.32 (0.74) 0.30 (0.72) 0.39 (0.84) 0.46 (0.97) 0.57 (1.31) 0.65 (1.43) 0.71 (1.56)

200 % 0.11 (0.45) 0.18 (0.57) 0.25 (0.69) 0.22 (0.67) 0.32 (0.81) 0.4 (0.94) 0.51 (1.28) 0.60 (1.41) 0.67 (1.54)

Var DCIF Time Var DCOF Jump Freq. and Size
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0.50
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Panel B: Difference Standard Deviation

-0.05

0.00
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0.20
Panel A: Difference (Expected) Option Value

Fig. 1 Comparative analysis
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preference function can be chosen, it has to be

determined whether the decision maker is risk seeking,

risk neutral, or risk averse.

3. Some preference functions can only be used for

random variables with specific probability distributions

such as normally distributed random variables.

Since (1) most companies consider risk of ITIPs as a

negative deviation from a target value (Otim et al. 2012),

(2) managerial decision makers are usually risk averse (cf.,

Parnell et al. 2013, p. 56; Ross 2014; Sandmo 1971), and

(3) the probability distribution for the resulting option

value cannot be determined in general, we choose the

following preference function that complies with the above

mentioned realizations of the criteria (1)–(3):

U ¼ E½ ~C� � nLPM1: ð12Þ

The parameter n[ 0 represents the decision maker’s

degree of risk aversion and LPM1 is the first lower partial

moment representing the expected loss. The expected loss is

calculated as LPM1 z; ~Ci

� �
¼ 1

n

Pn
i¼1 z� ~Ci

� �
f ~Ci

� �
(cf.,

Unser 2000). Thereby, z represents a target value (in our case

we set z ¼ E½ ~C�), ~Ci is a realization of the uncertain option

value, and f ~Ci

� �
¼ 1 for ~Ci\z and f ~Ci

� �
¼ 0 for ~Ci � z.

Table 10 lists the risk aversion parameters n that lead to

the same risk adjusted option value compared to the option

value calculated by means of the BSM (i.e., the break-even

value) for all input parameter value combinations of our

running example.23

Thus, for a decision maker’s degree of risk aversion that

is greater than the break-even values in Table 10 (e.g.,

n = 0.19 in case of T = 2, X0 = 100 % and r2S = 10 %),

the risk adjusted option value is lower compared to the

option value calculated by means of the BSM (and vice

versa). Since the risk aversion parameter n is strictly pos-

itive and can take arbitrary high values,24 we conclude that

even for a low degree of risk aversion the BSM usually

overvalues the real option. Thus, using the BSM to value

ITIPs may lead to flawed investment decisions where in

fact unprofitable investments are undertaken.25

4 Expert Evaluation of the Relaxed Assumptions

So far, we have already evaluated our simulation model in

terms of correctness by applying it to the running example

of Taudes (1998) based on the BSM assumptions and

receiving the same option values as calculated by means of

the BSM (cf., Sect. 3.2.1). Consequently, the deviations

from the BSM option values in the Sects. 3.2.2–3.2.6 solely

result from the modified assumptions (M1)–(M4) which

were stated in accordance with our relaxed assumptions

(A10)–(A40). In order to verify whether these relaxed

assumptions better represent the characteristics of ITIPs,

we conducted five semi-structured interviews with decision

makers in industry. This included an associate of an IT

consulting company, a senior ERP architect of a multina-

tional engineering and electronics company, a freelancer

who works for different clients in various ITIPs, a con-

sultant of a business consulting company, and the Financial

Manager of IT Strategies and Corporate IT of a global IT

services provider. As the interviewees work in different

ITIPs, functions and companies, their contributions provide

a ‘‘triangulation of subjects’’ (cf., Rubin and Rubin 2011).

Each of the interviews took about an hour. We structured

the interview questions according to the four topics given

by the relaxed assumptions: (1) DCIF, (2) market com-

pleteness, (3) DCOF, and (4) option runtime. The interview

guidelines were sent out to the interviewees prior to the

interviews. All interviews were audio-taped, transcribed,

notes were taken during the interviews and written sum-

maries produced immediately after the interviews were

completed. We subsequently performed a qualitative con-

tent analysis (cf., Patton 2002) of the interview transcripts

and summaries, resulting in insights from practice con-

cerning the relaxed assumptions for ITIPs. In the following

we briefly present the results.

Table 10 Risk aversion

parameters that lead to the same

risk-adjusted option value as the

BSM

T 2 4 10

X0/r2S 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 %

100 % 0.19 0.20 0.21 0.12 0.10 0.10 0.05 0.02 0.00

150 % 0.49 0.38 0.35 0.30 0.22 0.19 0.14 0.07 0.04

200 % 0.71 0.53 0.46 0.45 0.31 0.26 0.21 0.12 0.07

23 We have to compare the option value of the BSM with the risk

adjusted option value of our approach, as the BSM is applicable to

every type of risk preference due to the underlying assumptions (cf.,

Black and Scholes 1973; Merton 1973).
24 Arbitrary high values of the risk aversion parameter represent

decision makers that are completely unwilling to take risk. According

to the study of Dohmen et al. (2005), around 7 % of all decision

makers are completely unwilling to take any risk.

25 For the unusual cases of risk seeking and risk neutral decision

makers, the BSM undervalues the real option, in which case using the

BSM to value ITIPs may lead to investment decisions where in fact

profitable investments are not undertaken.
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1. DCIF: All interviewees commented that according to

their experience DCIF are uncertain, cannot reach

arbitrarily high values, and that changes in DCIF often

result from specific unforeseeable events (e.g., a new

competitive product in the market, or unforeseen

changes in government regulations). Moreover, all

interviewees stated that if the runtime of an underlying

ITIP increases, the DCIF are more likely to remain

constant or even decrease, rather than increase. An

example was mentioned by one interviewee who said

that ‘‘the longer we take to roll out an ITIP, the lower

the market potentials usually will be’’ (i.e., time-to-

market effects). Another interviewee mentioned that

‘‘delaying an ITIP, in our case a SAP HANA project,

usually leads to later operational cost savings that are

intended by the project’’. Two interviewees mentioned

that the DCIF may increase in time if the underlying

technology is still in an early developmental stage. The

specific example mentioned was that ‘‘if the technol-

ogy we roll out is in an early development stage and

we increase the runtime, the new functionalities have

more time to mature and consequently DCIF are likely

to increase’’. On the other hand, they also stated that

for mature technologies the DCIF may decrease over

time. This supports the argument that GBM provides

an inadequate representation of DCIF for ITIPs that are

subject to a technology life cycle. This also supports

our modified assumption (M1) that DCIF follow GMR.

2. Market completeness: All interviewees agreed that it is

not possible to completely hedge the risk of ITIPs with

a twin security on the financial market and that the

majority of the risk cannot be hedged at all. Examples

for risk factors that cannot be hedged are a shortage of

resource availability (e.g., programming experts are

needed by another project), changing requirements, or

external risk factors such as changing government

regulations. The interviewees also argued that hedge-

able risks are very rare and only make up the minority

of risks of ITIPs. An example was given by one

interviewee who said that ‘‘we only hedge currency

risks associated with the overall (world-wide) ITIP

portfolio of our company’’. This supports our modified

assumption (M2) that risks associated with ITIPs

cannot be hedged at all, or at best partially.

3. DCOF: All interviewees stated that, in their experi-

ence, DCOF of ITIPs are uncertain. Examples the

interviewees mentioned for uncertain DCOF were that

‘‘resources can fail and need to be replaced immedi-

ately by a more expensive one’’. Consequently, this

undermines the plausibility of the BSM assumption of

certain and known DCOF for ITIPs and supports our

relaxed assumption that DCOF follow an arbitrary

non-negative stochastic process. Moreover, the inter-

viewees mentioned that an unexpected increase in the

option runtime leads to increasing, rather than decreas-

ing, DCOF. In this context, one interviewee stated that

‘‘we often only identify new requirements during the

runtime of an ITIP, which leads to an extended scope

of the ITIP that again extends the runtime and

increases DCOF’’. This therefore supports our modi-

fied assumption (M3) that DCOF are uncertain and

follow a GBM.

4. Option runtime: All five interviewees considered the

runtime of ITIPs to be uncertain. They further men-

tioned that it is unrealistic for ITIPs to be completed

ahead of schedule. An explanation for this phe-

nomenon was given by one interviewee who said

‘‘ITIPs are never completed earlier because people

make use of the estimated time, even if they could

have come to an end earlier’’. By contrast, the majority

of ITIPs take longer to complete than planned. This

supports our relaxed assumption (A40) that the

option runtime is uncertain, at least for real options

where the completion of an ITIP is the precondition

for their execution (e.g., strategic growth options

which, according to our interviewees, are one of the

most frequently occurring option types in practice).

This also supports the implementation of the uncer-

tain option runtime within our ROA approach, where

we do not allow for realizations of the option

runtime to be any shorter than the initially scheduled

option runtime.

These results verify our central claim that our relaxed

assumptions offer a better representation of ITIP charac-

teristics and thus support our modified assumptions. This is

a strong indication that our ROA approach leads to a more

accurate valuation of ITIPs compared to ROA approaches

that were presented in the literature so far.

5 Discussion

Although we rigorously designed and evaluated our ROA

approach, we recognize some limitations. In the following

subsections we present possible directions on how to

address these limitations in future research and discuss

potential consequences of the implementation of our

approach in practice.

5.1 Implications for Future Research

We implicitly assume the correlation between DCIF and

DCOF to be approximately zero. However, cases may exist
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where DCIF and DCOF may be correlated. This means that

decision makers have to be aware that the option value of

an ITIP will be affected if DCIF and DCOF are correlated

(cf., Dos Santos 1991; Kumar 1996). As stated by Dos

Santos (1991) and Taudes (1998), a positive correlation

between DCIF and DCOF reduces the option value since

the probability of a high difference between DCIF and

DCOF will be lower. We aim to incorporate such corre-

lations into our simulation model in future research.

Our simulation results are based on specific input

parameter value combinations. We further conducted

multiple simulations for a large set of reasonable input

parameter value combinations and found that for all these

combinations the findings stay the same. This indicates that

our results hold in general.

As is the case with economic models in general, the

more we relax restrictive assumptions, the more parameters

have to be estimated (cf., the additionally required input

parameters estimated for a combination of the modified

assumptions (M1)–(M4)). Hence, decision makers have to

be aware of the trade-off between the additional value of a

more precise approach and the additional effort and

uncertainty concerning the estimation of more input

parameters in comparison to a closed form solution such as

the BSM. To reduce this effort and uncertainty, we aim to

empirically analyze already completed ITIPs to find the

best fitting non-negative stochastic processes and parame-

terizations for DCIF and DCOF, especially. The results of

this study can be used as default parameterizations of our

approach for different types of ITIPs.

5.2 Managerial Implications

ROA approaches are considered to be highly relevant for

enabling the improved planning and selection of ITIPs, but

they are currently rarely applied by companies for two

main reasons: first, managers are not satisfied with the

results of current ROA approaches, given that investment

projects are far more complex than financial options, and it

would not be appropriate to try to make the investment

project fit into a financial option pricing approach which

considerably reduces its complexity (cf., Copeland and

Tufano 2004; Van Putten and Macmillan 2004). Second,

ROA approaches are too difficult to apply in practice (cf.,

Copeland and Tufano 2004). With the ROA approach

presented here, we specifically address the first issue by

adequately considering the higher complexity within the

relaxed assumptions and by providing an ROA approach

that paves the way for an accurate valuation of managerial

flexibilities in ITIPs. To address the second issue and to

simplify the application of ROA in practice, we aim to

further develop our prototypical implementation to arrive

at a user friendly decision support system for ITIP selection

decisions. For that purpose, we aim to add a user-friendly

interface and generate default parameterizations based on

historical data of different types of ITIPs (cf., Sect. 5.1).

This allows decision makers to use our ROA approach

without knowing the mathematical details. We also plan to

visualize the results via graphics to make them more

accessible. Thus, we believe that our ROA approach and its

implementation will help to close the gap between research

and practice and to increase the acceptance of ROA in

practice.

6 Conclusion

‘‘A major challenge for IS research lies in making models

and theories that were developed in other academic disci-

plines usable in IS research and practice’’ (Benaroch and

Kauffman 1999). Against this backdrop, we developed an

ROA approach based on relaxed assumptions which paves

the way for an accurate valuation of managerial flexibilities

in ITIPs. This research is based on the Design Science

Research paradigm (cf., Gregor and Hevner 2013; Hevner

et al. 2004; Peffers et al. 2008). We started by arguing that,

due to their restrictive assumptions, standard financial

option pricing models such as the BSM are not generally

applicable. Based on the IS, Finance, and Economics lit-

erature we relaxed these assumptions to better represent the

characteristics of ITIPs. We then developed a simulation

model that enables the valuation of real options on ITIPs

based on different modifications of the BSM assumptions

that represent instantiations of the relaxed assumptions

(A10)–(A40). To the best of our knowledge, this is the first

ROA approach capable of simultaneously considering

arbitrary modifications of the BSM assumptions (A1)–

(A4).

By relaxing the BSM assumptions (i.e., taking the dis-

counted cash-flows and the runtime to be uncertain as well

as the market to be incomplete), the option value resulting

from our ROA approach contains idiosyncratic risk that has

to be taken into account in ITIP decision making. For the

realistic case of a risk averse decision maker, even a low

level of risk aversion usually results in a lower risk-ad-

justed option value compared to the option value calculated

by means of the BSM. In other words, the use of the BSM

overvalues the option value for risk averse decision mak-

ers. This confirms the perception by managers that ITIPs

tend to be overvalued by financial option pricing models

and can lead to flawed ITIP selection decisions.

We would like to conclude by outlining the generaliz-

ability and the breadth of the results of our approach. We

deduced the modifications of the BSM’s restrictive

assumptions from existing discussions in the ROA litera-

ture and the key characteristics of ITIPs. These
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modifications do not seem to be restricted to ITIPs alone

but rather to be general enough to apply to other real

investments such as natural resource investments, invest-

ments in supply chains, etc. Hence, our simulation model

seems to be capable of valuing a more general class of real

options and the findings of this paper are likely to have a

broader relevance beyond ITIPs.
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