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Abstract UiO-66 series metal–organic framework mate-

rials (MOFs) are typical porous materials assembled by

Zr4? with a large mass-to-nucleus ratio and terephthalic

acid ligands, which form tetrahedral and octahedral cages

arranged in a periodic triangular window pattern. Due to

the strong interaction between Zr and O, UiO-66 series

MOFs exhibit high thermal stability, structural stability,

and chemical stability. This article mainly reviews the

applications of UiO-66 and its composites in adsorption,

photocatalysis, and resource utilization, while exploring

the harm of pollutants to human health and the environ-

ment. In the first part, the differences in adsorption and

removal mechanisms of liquid organic pollutants, heavy

metals, and volatile organic compounds (VOCs) are

investigated. The results show that organic pollutants are

mainly removed by physical adsorption, electrostatic

interactions, hydrogen bonding, and p-p interactions, while

heavy metals are mainly removed by chemical adsorption,

electrostatic interactions, reduction, and chelation. VOCs

are mainly removed by the pore volume and pore size

structure of the material. Heterojunction catalysis can

achieve non-toxic treatment of pollutants, and this study

mainly focuses on UiO-based composite materials con-

structed by strategies such as semiconductor composites,

ion doping, and metal/dye encapsulation. In the second

part, the synergistic effect between the components of UiO-

based composite materials promotes the oriented and rapid

separation and transfer of carriers at the material interface,

thereby promoting the generation of active species such as

h?, �O2
- and �OH, and achieving rapid degradation of

pollutants and detoxification of heavy metals. In the third

part, heterojunctions can realize the resource utilization of

pollutants in water and air, producing energy-type sub-

stances such as hydrogen and methanol while solving

environmental problems. In addition, this article also

summarizes the harm of common typical pollutants to the

environment and human health. Finally, the development

prospects and unresolved problems of UiO-66-based

materials in water remediation, gas purification, and envi-

ronmental resource utilization are reviewed.
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1 Introduction

With the rapid development of society, global climate

change, environmental pollution (organic pollutants in

water bodies, volatile organic pollutants in the atmo-

sphere), and energy shortages have attracted people’s

attention [1]. Wastewater pollution mainly caused by

organic dyes, antibiotics, and heavy metals, as well as

atmospheric pollution mainly caused by carbon dioxide

(CO2) and volatile organic compounds (VOCs), not only

seriously endanger human health but also severely damage

the ecological environment. Therefore, their treatment is

urgent. Currently, commonly used technologies for the

purification of typical pollutants in the environment include

adsorption, catalysis, and bioremediation [2–5]. In the first

year of China’s ‘‘the 14th Five-Year Plan’’, ‘‘Carbon Peak

and Carbon Neutrality’’ was proposed. Photocatalytic CO2

utilization is considered as a potential decarbonization

technology. Facing the dual problem of water scarcity and

water pollution, photocatalytic technology can not only

achieve detoxification/degradation of environmental pol-

lutants but also produce energy materials such as hydrogen,

which has attracted a lot of attention from researchers

[6, 7]. As the indoor air environment on which humans rely

for a lot of time to survive, the presence of VOCs seriously

affects human health. Adsorption and photocatalysis can

remove pollutants and purify the indoor environment under

mild conditions [8–10]. Therefore, based on the actual

situation, the development of adsorption and photocatalysis

technologies with mild reaction conditions is timely, and

the development of efficient adsorption or photocatalytic

materials is crucial.

Currently, researchers are committed to developing new

materials with high adsorption capacity and catalytic

activity to remove pollutants from water and air, while

achieving resource utilization of pollutants. Metal–organic

framework materials (MOFs) assembled from metal nodes

and organic ligands are widely used in gas adsorption,

storage, sensing, catalysis, and drug release due to their

large specific surface area, tunable pore structure, and

controllable morphology [11–15]. In addition, the semi-

conductor properties of MOFs make them attractive in the

fields of photocatalytic hydrogen production, CO2 reduc-

tion, organic degradation, and heavy metal reduction

[16–19]. Importantly, compared with traditional porous

materials such as activated carbon, molecular sieves, and

mesoporous silica, MOF materials not only have higher

specific surface area, ease of structural functionalization,

and porous structure conducive to pollutant mass transfer

and adsorption, but their semiconductor properties are also

beneficial for photocatalytic pollutant removal [20]. UiO-

66 ([Zr6O4(OH)4(bdc)12]) is a popular UiO series MOF

material that has been widely studied due to its high

specific surface area, excellent structural stability, con-

nected three-dimensional (3D) structure, and photo-re-

sponsiveness [21]. UiO-66 is a representative microporous

MOF material composed of a Zr6 octahedron linked to 12

terephthalic acid ligands, forming tetrahedral cages and

octahedral cages [22]. In the Zr6 cluster of the octahedron,

six vertices are occupied by Zr4?, and eight triangular faces

are covered by four l3-OH and four l3-O. The [Zr6(l3-

O)4(l3-OH)4] nucleus is further capped by twelve car-

boxylic acid groups to form the [Zr6(l3-O)4(l3-

OH)4(COO)12] cluster. The UiO-66 series materials are

composed of tetrahedral cages (* 1.1 nm) and octahedral

cages (* 0.8 nm) arranged periodically through triangular

windows (* 0.6 nm), with a ratio of 1:2 [23]. In addition,

compared with the more stable zeolitic imidazolate

framework (ZIF) and Materials of Institute Lavoisier (MIL)

series MOF materials reported in the literature, the sec-

ondary structural units formed by the Zr6 cluster have

inertness and structural stability under various chemical

conditions due to the inherent oxygen affinity of ZrIV

[24, 25]. Meanwhile, UiO-66 materials with various func-

tional groups, such as UiO-66-NO2, UiO-66-Br, UiO-66-

Cl, UiO-66-COOH and UiO-66-NH2 (Fig. 1), have also

been synthesized and applied in the fields of environmental

purification and resource utilization through post-synthesis

or one-step synthesis [26, 27]. To achieve in-situ adsorp-

tion-catalytic degradation of pollutants, researchers have

combined various types and morphological structures of

semiconductors with UiO-66 materials, and the resulting

materials have been widely used in hydrogen production,

CO2 reduction, organic degradation, heavy metal reduc-

tion, and other fields [28–31].

Over the past decade, various researchers have utilized

UiO-66 series materials in different research fields such as

adsorption, catalysis, and drug release. At the same time,

several papers on UiO-66 series MOFs have also been

published, exploring their application in the fields of

environmental purification or resource utilization.

Ahmadijokani et al. [32] used UiO-66 materials for the

adsorption/separation or degradation/reduction of organic

pollutants in liquid phase, while Usman et al. [33] sys-

tematically investigated the research progress of UiO-66

series materials in CO2 capture, separation, and resource

utilization. Winarta et al. [34] mainly reported on the

synthesis, structural defects, and functional stability of

UiO-66, while Zou et al. [35] explored the application of

UiO-66 series materials from the aspects of material syn-

thesis and functionalization, especially UiO-66. Numerous

review articles and research papers indicate the rapid

development and great potential application value of UiO-

66 series materials. However, the adsorption and catalytic

mechanisms of gas-phase pollutants and liquid-phase pol-

lutants are not completely consistent, and there is an urgent
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need for timely and systematic review of recent relevant

research progress to break through the limitations of cur-

rent material applications. Therefore, this paper systemat-

ically explores the research progress of UiO-66 based

materials in the fields of environmental and resource uti-

lization, including pore structure, specific surface area,

structural stability, hydrophobicity, and semiconductor

properties, providing theoretical guidance for the design of

structurally stable materials and basic data for the effective

removal of pollutants.

2 UiO-66 for adsorption of environmental
pollutants

Adsorption technology is widely used for the removal of

pollutants in the environment due to its advantages such as

simple processing, high efficiency, and economic feasibil-

ity [36]. Commonly used adsorbent materials include

activated carbon, biochar, zeolite and clay [37]. MOFs

materials are more favorable for the adsorption and

enrichment of pollutants than these traditional porous

materials because of their richer and adjustable pore

structures and extremely large specific surface area [38].

Therefore, the development of MOFs materials with high

adsorption capacity, adsorption rate, and desorption rate

plays a crucial role in the removal of pollutants.

2.1 UiO-66 for adsorption of organic pollutants
in liquid phase

The extensive use of dyes or pigments in processes such as

textiles, printing and dyeing, and leather has resulted in

pollutants being discharged into water bodies exceeding

the environment’s self-purification capacity, leading to a

significant deterioration in water quality. Adsorption is

considered an economical and efficient treatment technol-

ogy for water pollution, mainly relying on the electrostatic

interaction, p-p interaction, hydrogen bonding, or physical

adsorption of materials to remove pollutants [39–41].

However, organic pollutants in water bodies do not exist in

a single form but coexist in multiple forms, and there are

situations where charges are opposite, making it extremely

challenging to simultaneously remove dyes with opposite

charges. Ahmadijokani et al. [39] used UiO-66 materials

with good structural stability for the selective adsorption

and removal of four dyes, including Methyl Red (MR),

Methyl Orange (MO), Methylene Blue (MB), and Mala-

chite Green (MG). The results showed that under low pH

conditions, UiO-66 had a higher adsorption capacity for

anionic dyes than cationic dyes. The maximum adsorption

capacities of MR, MO, MB and MG were 384, 454, 133

and 370 mg�g-1, respectively. Meanwhile, in mixed dyes,

UiO-66 could selectively adsorb anions (Fig. 2). The

adsorption mechanism results showed that the interactions

between UiO-66 and anionic and cationic dyes were elec-

trostatic interaction, hydrogen bonding, p-p interaction,

physical adsorption, and pore adsorption of UiO-66.

Embaby et al. [40] explored the selective adsorption per-

formance of UiO-66 for anionic and cationic species by

investigating the differences in adsorption of anionic dyes

and cationic dyes by UiO-66. The result was consistent

with most literature reports. UiO-66 selectively adsorbed

anionic dyes, which was mainly due to the positive Zeta

potential of UiO-66 surface, facilitating the adsorption of

anionic dyes. Therefore, the adsorption capacity of Alizarin

Red S (ARS) was 400 mg�g-1. Dinh et al. [41] used UiO-

66-NO2 to adsorb and remove MB and MO. Due to the

presence of –NO2, UiO-66-NO2 had a strong electronega-

tivity, resulting in a much higher adsorption capacity for

MO (142.9 mg�g-1) than MB (41.7 mg�g-1). Meanwhile,

the coexistence of p-p interaction and hydrogen bonding

was observed from the adsorption mechanism, but hydro-

gen bonding played a primary role.

Antibiotics are widely used not only for the treatment or

prevention of human and animal diseases, but also to

promote animal growth in livestock and aquaculture.

Therefore, antibiotics released into the environment seri-

ously endanger the water quality and aquatic organisms.

Currently, adsorption removal of antibiotics relies mainly

Fig. 1 Synthesis of isoreticular UiO-66 functionalized analogues UiO-66-NH2, UiO-66-Br, UiO-66-NO2 (R=NH2, Br, or NO2), and UiO-
66-1,4-Naph, where UiO-66 framework with its Zr6O6 cuboctahedron SBU (green) is schematically represented as an octahedron.
Reproduced with permission from Ref. [24]. Copyright 2010, Royal Society of Chemistry

1 Rare Met. (2024) 43(6):2498–2526

2500 H.-M. Zhang et al.



on hydrogen bonding, electrostatic interaction, and p-p
interaction with material components. Fang et al. [42] used

UiO-66-NH2 for the adsorption of the antibiotic nor-

floxacin (NOR), and the maximum adsorption capacity was

222.5 mg�g-1. Meanwhile, NaCl and CaCl2 enhanced the

removal efficiency of NOR, but humic acid had almost no

effect on the adsorption of NOR. The adsorption results

showed that when the concentration of NOR was 10

mg�L-1, the removal efficiency of NOR was 91.6%, indi-

cating that UiO-66-NH2 was suitable for the removal of

low concentration antibiotics. Zhuang et al. [43] used UiO-

66 and UiO-66-NH2 for the adsorption removal of

diclofenac (DCF). UiO-66-NH2 had a higher adsorption

capacity than UiO-66, with maximum adsorption capacities

of 357 and 555 mg�g-1, respectively. The study indicated

that the adsorption was an exothermic process, and the

adsorption capacity did not change significantly within the

pH range of 4.8–7.7. In addition, with the increase of the

activation temperature of UiO-66-NH2, its adsorption

capacity for DCF also significantly increased. The

adsorption mechanism revealed that hydrogen bonding and

electrostatic interaction played an important role in the

adsorption of DCF. Liu et al. [44] prepared four functional

group Zr-MOFs (UiO-66-H, -NH2, -NO2, -Cl) for the

adsorption removal of low concentration amoxicillin

(AMX), among which UiO-66-NH2 had the highest

adsorption capacity ((2.3 ± 0.4) mg�g-1). Wang et al. [45]

prepared UiO-66-(COOH)2/GO composite by combining

UiO-66-(COOH)2 and graphene oxide (GO) for the

adsorption removal of tetracycline hydrochloride (TC).

Compared with pure UiO-66 (27.53 mg�g-1), the adsorp-

tion capacity of UiO-66-(COOH)2/GO reached

164.91 mg�g-1, which was attributed to the introduction of

GO and -COOH increasing the adsorption sites of

Fig. 2 UV–Vis spectra and adsorption images of different mixtures: a MO/MB; b MO/MG; c MR/MB; d MR/MG before and after
adsorption onto pristine UiO-66. Reproduced with permission from Ref. [39]. Copyright 2020, Elsevier
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pollutants. The possible mechanism of pollutant adsorption

was p-p interaction, chemical coordination, and weak

electrostatic interaction (Fig. 3). It can be seen that pure

UiO-66 matrix has good adsorption performance for pol-

lutants, but in actual water purification, nano-sized mate-

rials are difficult to separate from water and cannot be

reused, which affects practical application. Therefore, the

preparation of high adsorption capacity and easily separa-

ble adsorbents is conducive to the practical application of

MOF materials. Li et al. [46] used in-situ composite of

polyurethane sponge and UiO-66-NH2 for the removal of

2,4-dichlorophenoxyacetic acid (2,4-D). Compared with

powdered UiO-66-NH2, the composite material not only

maintained the adsorption capacity of 2,4-D, but also was

easy to separate. The adsorption result showed that the

adsorption capacity of 2,4-D reached 72.99 mg�g-1, and

the main adsorption mechanism was p-p interaction, as

well as hydrogen bonding interaction.

2.2 UiO-66 for heavy metal adsorption

2.2.1 Heavy metal ions

Heavy metals (copper, nickel, mercury, etc.) not only are

toxic, but also can accumulate in water bodies, posing a

risk to human health through the food chain [47]. Studies

have shown that heavy metals are adsorbed and removed

primarily by hydrogen bonding, chelation, surface com-

plexation, redox and precipitation. Research indicates that

heavy metals can accumulate in apples through their roots,

which can then be consumed by humans as fruit juice,

further exposing them to health risks [48]. Moreover,

industrial and agricultural activities have been identified as

sources of heavy metal contamination in water bodies,

which can in turn lead to toxicity in organisms and affect

the health of migratory birds [49]. In various studies, UiO-

66-NH2 and its modified composites have been used for

heavy metal adsorption. Wang et al. [50] used UiO-66-

PRAA, modified with phenothiazine-N-rhodanine, to

remove Cr(VI) through adsorption. UiO-66-PRAA had a

high adsorption capacity of 333.67 mg�g-1 at pH = 3 and a

temperature of 303 K, and exhibited good cycling perfor-

mance. The adsorption mechanism was found to be

chemisorption, with electrostatic, reduction, and chelation

mechanisms operating in that order. Similarly, Tang et al.

[51] used UiO-66-PTC, modified with phenylaminoth-

iourea, to adsorb Pb2?, with a maximum adsorption

capacity of 200.17 mg�g-1. Thermodynamic analysis

showed that the adsorption was exothermic and sponta-

neous, with Pb(II) adsorbed in a monolayer and the rate-

controlling step mainly involving chemisorption and

chelation with N or S. Yang et al. [48] encapsulated acid-

etched UiO-66 in chitosan for the adsorption of Pb(II) and

Cd(II), resulting in composites with good structural sta-

bility and high adsorption capacities of 654.9 and

343.9 mg�g-1, respectively, at 45 �C, due to the presence

of -OH and Zr(IV). In a study by Liu et al. [52], UiO-66

was coated with a silicon layer for Cd2? adsorption,

resulting in UIO-66@mSi-SO3H[UIO-66@mSi-SH[
UIO-66 in terms of adsorption capacity, with UIO-

66@mSi-SO3H exhibiting the highest capacity of

409.96 mg�g-1. Moreover, more than 90% of the adsor-

bents could be regenerated after 5 cycles. Huang et al. [53]

pointed out that Pb(II) was uniformly adsorbed on the

Fig. 3 Proposed mechanisms for adsorption of TC on UiO-66-(COOH)2/GO composites. Reproduced with permission from Ref. [45].
Copyright 2020, Elsevier
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surfaces of UiO-66 and UiO-66-NH2 in the form of a single

layer. UiO-66-NH2 can adsorb 320.73 mg�g-1 Pb(II) at

328K and pH = 8. According to Fourier transform infrared

spectroscopy (FTIR) (Fig. 4a), the characteristic peak of

the material at 1660 cm-1 becomes weaker after adsorp-

tion, indicating that O in C=O coordinates with Pb2? and

the site is occupied by Pb2?. The characteristic peaks of

UiO-66-NH2 at 3360 and 3460 cm-1 also become weaker

after adsorption, indicating that -NH2 has strong adsorption

performance. In addition, it can be seen from the ion

interference experiment that the introduction of -NH2

promotes the material to have strong stability and ion anti-

interference characteristics (Fig. 4b).

2.2.2 Heavy metal ions

Because the use of energy materials such as petroleum and

chemical industry has caused pollution of the atmosphere,

water and soil, nuclear energy has been rapidly developed.

However, the use of nuclear energy inevitably results in the

release of radioactive elements (Uranium, Strontium,

Cesium, Plutonium, etc.) into the environment [54–56].

Owing to its high chemical toxicity and solubility, even

low concentrations will be more harmful to the ecological

environment and human health. Researchers typically use

adsorption, ion exchange, photocatalysis, biological treat-

ment, and other means to remove radioactive elements.

Compared to adsorption technology, these methods can

produce more toxic intermediates in the treatment process

and cannot be used on a large scale. Zhao et al. [57]

investigated the influence of –COOH on the adsorption of

U(VI) and Eu(III). The introduction of –COOH reduces the

surface charge of UiO-66, resulting in a higher adsorption

capacity at low pH. At pH = 3, the adsorption capacity of

UiO-66-2COOH for U(VI) and Eu(III) was 100 and 60

mg�g-1, respectively. In order to explore its practical

application, it was used in dynamic adsorption experi-

ments, and the results showed that UiO-66-2COOH could

adsorb * 99% of U(VI)/Eu(III), and could still achieve

[ 90% adsorption after four cycles. In addition, the

adsorption mechanism of elements was investigated by FT-

IR. The characteristic peak at 927 cm-1 increased signifi-

cantly after adsorption, indicating that U(VI) was suc-

cessfully adsorbed on the material (Fig. 5a). The

characteristic peak of UiO-66 at 1660 cm-1 almost disap-

peared after the adsorption of U(VI) and Eu(III), indicating

that the adsorption of UiO-66 on U(VI) and Eu(III) was a

displacement. For UiO-66-COOH and UiO-66-2COOH

materials, the missing 1710 cm-1 peak is attributed to

chemical coordination between adsorbed ions and -COOH

(Fig. 5b, c). Meanwhile, Li et al. [58] also used FTIR to

investigate the adsorption mechanism of U(VI). After

adsorption, the characteristic peak at 908.3 cm-1 was

classified as the force stretching vibration peak of O=U=O,

indicating that U(VI) was successfully adsorbed. In addi-

tion, the characteristic peaks at 3424.1, 1432.9, 575.7 and

482.1 cm-1 were all shifted, indicating that the amino

group and node were the adsorption sites of U(VI)

(Fig. 5d). Gumber et al. [59] investigated the adsorption

properties of UiO-66(Ce) and CeO2@UiO-66(Ce) for

U(VI) in the pH range of 2–6. Due to the pore blockage of

CeO2, the adsorption capacity of UiO-66 was faster, but the

adsorption capacity (190 mg�g-1) was still lower than that

of CeO2@UiO-66(Ce) (239 mg�g-1). In addition, the ion

interference experiment shows that the material has good

selective adsorption performance for U(VI) in Fe (III), Co

(II), Ni (II) and Sr (II) ions.

Adsorption can remove heavy metals and organic pol-

lutants from water under economic conditions, which has

been widely concerned. Compared with traditional porous

Fig. 4 a FTIR spectra of UiO-66 and UiO-66-NH2 before and after Pb(II) adsorption; b effect of various interfering ions and HA on
adsorption efficiency. Reproduced with permission from Ref. [53]. Copyright 2022, Elsevier
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materials, MOFs are more effective at adsorbing and

removing pollutants due to their larger specific surface area

and high porosity. In addition, exposed metal nodes and

ligands of MOF as adsorption sites are also conducive to

pollutant removal. Meanwhile, the combination of MOFs

with materials containing heteroatoms or metal oxides can

increase the absorption of pollutants. Based on the

adsorption mechanism, it can be seen that there is not only

physical adsorption (pore, cavity size and surface area), but

also chemical absorption (surface functionality, surface

atomic coordination and electron density) of pollutants.

2.3 UiO-66 for VOC adsorption in gas phase

As a precursor to ozone and PM2.5, VOCs are a serious

threat to the natural environment and human health, and

have been widely studied. Currently, there are many

methods for treating VOCs, including combustion, capture,

and catalysis [60]. These methods typically have problems

with high operating costs, low efficiency, or secondary

pollution. In contrast, adsorption can be used to treat VOCs

under mild conditions and has the advantages of low cost,

simple operation, and no toxic intermediate species [61].

The development of materials with abundant microp-

orous structures is crucial for effective adsorption of

VOCs. The mesoporous structure facilitates pollutant

transfer while the microporous structure allows for

adsorption and enrichment of pollutants. Vo et al. [62]

synthesized a large number of UiO-66 materials using a

continuous flow tubular reactor under microwave radiation

and used them for toluene adsorption. The researchers

observed a decrease in toluene adsorption with increasing

temperature from 25 to 100 �C, which was attributed to the

physical adsorption mechanism of toluene on UiO-66(Zr).

At 25 �C, UiO-66(Zr) showed higher toluene adsorption

(130 mg�g-1) than MOF-5 (32.9 mg�g-1), MIL-101(Fe)

(98.3 mg�g-1), and Zeolite (30.7 mg�g-1) under the same

conditions. The maximum desorption rate of toluene was

nearly 95%. Meanwhile, Vo’s group [63] prepared ligand-

mixed UiO-66(Zr) materials using the same method and

found that toluene adsorption increased with an increase in

-NH2 content. The toluene adsorption increased from 139

to 180 mg�g-1 when the -NH2 content in the ligand

increased from 25% to 100%. Recovery of 95% of the

toluene adsorbed by each material was achievable.

Vellingiri et al. [64] investigated differences in toluene

adsorption among six MOF materials (UiO-66, UiO-

Fig. 5 FTIR spectra of MOFs before (black) and after (red) U(VI) adsorption: a UiO-66; b UiO-66-COOH; c UiO-66-2COOH; d FTIR
spectra for UiO-66-NH2 before and after U(VI) adsorption. Reproduced with permission from Ref. [57]. Copyright 2021, American
Chemical Society. Reproduced with permission from Ref. [58]. Copyright 2021, Springer

1 Rare Met. (2024) 43(6):2498–2526
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66(NH2), ZIF-67, MOF-199, MOF-5 and MIL-101(Fe)).

The results showed that the saturation adsorption amounts

of the six MOFs for toluene were in the order of UiO-

66(NH2) (252 mg�g-1)[ZIF-67 (224 mg�g-1)[UiO-66

(166 mg�g-1)[MOF-199 (159 mg�g-1)[MIL-101

(98.3 mg�g-1)[MOF-5 (32.9 mg�g-1). The authors

pointed out that UiO-66 and MIL-101(Fe) were favorable

for toluene adsorption due to their large pore or cage

structures. The p-bonding force between the uncoordinated

metal node Cu of MOF-199 and toluene is also favorable

for toluene enrichment. The -NH bonds of UiO-66-NH2

and ZIF-67 can easily form hydrogen bonds with toluene,

giving them relatively high toluene adsorption capacity

(Fig. 6).

Hasan et al. [65] used two MOFs, UiO-66 and UiO-66-

NH2, for the adsorption of pyridine in both gas and liquid

phases. They showed that the adsorption capacity of UiO-

66 for pyridine increased with the proportion of -NH2 in

the ligand, which was attributed to the ability of -NH2 to

form hydrogen bonds with the N atoms in pyridine, facil-

itating its adsorption.

Zhou et al. [66] prepared a series of UiO-66 materials

with different morphological structures by adjusting the

content of glacial acetic acid. They observed that the

morphological structure of UiO-66 became progressively

more regular with increasing glacial acetic acid content,

while the specific surface area, micropore volume, and

grain size gradually increased. Additionally, when the

synthesized material was tested for dichloromethane

adsorption at 25 �C and 44 kPa, the adsorption trend was

UiO-66–5[UiO-66–2[UiO-66-1[UiO-66-0. The

adsorption capacity of UiO-66-5 with a regular morpho-

logical structure (510.3 mg�g-1) showed a 47.3% increase

compared to UiO-66-0 (346.4 mg�g-1). Ou et al. [67] also

Fig. 6 Schematics of toluene adsorption on MOFs: hypothetical energy profile for gaseous toluene adsorption on MOFs at
a unhindered, and b surface-hindered reactions, c and d their respective adsorption mechanisms. Reproduced with permission from
Ref. [64]. Copyright 2017, Elsevier

1Rare Met. (2024) 43(6):2498–2526

Application of UiO-66 and its composites for remediation and resource recovery 2505



prepared a series of UiO-66 with controlled morphology

and structural defects for the adsorption of benzene and

toluene by adjusting the content of glacial acetic acid. The

highest benzene adsorption capacity (367.13 mg�g-1) was

achieved when the ratio of acetic acid to terephthalic acid

was 1 (UiO-66-1.0HAc), resulting in a 49% increase in

adsorption capacity compared to UiO-66 without defective

sites. Increasing the ratio of glacial acetic acid to tereph-

thalic acid to 2 led to UiO-66-2.0HAc selectively adsorbing

a higher capacity of toluene due to the larger diameter and

higher polarity of toluene compared to benzene. The

toluene adsorption capacity of UiO-66-2.0HAc showed a

93% increase (410.21 mg�g-1) compared to UiO-66 with-

out defective sites (Fig. 7).

Zhang et al. [68] modified UiO-66 using

cetyltrimethylammonium bromide (CTAB). The results

showed that CTAB induced coordination defects in UiO-

66, and the resulting defective sites could act as adsorption

sites for toluene. Compared to pure UiO-66, the toluene

adsorption capacity of UiO-66 modified with CTAB was

higher, especially when the molar ratio of CTAB to Zr4?

was 0.5, with the highest toluene adsorption capacity

(275 mg�g-1) achieved. The authors also performed

toluene adsorption tests at different temperatures, and the

results showed that the toluene adsorption decreased

gradually with increasing adsorption temperature (Fig. 8).

Additionally, the amount of toluene adsorbed decreased as

the relative humidity in the system increased. This was

because the hydrogen in H2O could coordinate with the

carboxylic acid in the ligand in the presence of H2O, which

inhibited the adsorption of toluene at the adsorption site.

To address the problem of competitive adsorption between

toluene and water molecules, this research group [69] used

PVP as a structural guide to hydrothermally modify UiO-

66 for toluene adsorption. And the results showed that the

defective ligand could act as a site for toluene adsorption,

where the defective UiO-66 material with PVP/Zr4? of 0.5

had the highest toluene adsorption capacity (259 mg�g-1),

which was 1.7 times higher than that of pure UiO-66

(151 mg�g-1). Especially at a high humidity of 70%, the

defective sites of UiO-66 still had 84 mg�g-1 of toluene

adsorption. Shi et al. [70] synthesized UiO-66-NH2 with

defective sites for the adsorption–desorption of toluene

using CTAB as a template agent. Characterization results

showed that the defective-site UiO-66-NH2 exhibited high

toluene adsorption due to its high specific surface area,

pore capacity and additional adsorption sites caused by the

defective sites, with the highest toluene adsorption

(228 mg�g-1) at a CTAB/Zr4? ratio of 0.5 and little change

in the crystal structure of the material before and after

adsorption. Importantly, the addition of CTAB impeded the

contact between water molecules and hydrophilic groups,

which in turn had less effect on the adsorption of toluene

by water molecules.

Zhang et al. [71] used MOF-5 as a template to prepare

UiO-66 with defective sites for the adsorption of toluene.

M-U-0.01 with a MOF-5/Zr4? ratio of 1 had the highest

toluene adsorption capacity (257 mg�g-1), which was 1.7

times higher than that of the original UiO-66, attributed to

the strong interaction between toluene and the defective

UiO-66. In addition, the modified UiO-66 exhibited better

toluene adsorption properties than the pristine UiO-66,

although water molecules and high temperature factors

could cause the collapse of the UiO-66 structure, hindering

toluene adsorption and reducing the p-p interaction

between the material and toluene.

VOCs are organic pollutants and when water molecules

are present in the environment, they compete with VOCs

for adsorption on the material surface, thus reducing the

adsorption capacity of VOCs. Hu et al. [72] used a

Fig. 7 Adsorption data scatter points of a benzene and b toluene over BCx-y series adsorbents at different P/P0 and their tentative
fitting isotherms based on Langmuir model simulations at 25 �C. Reproduced with permission from Ref. [67]. Copyright 2021, Elsevier
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mechanochemical strategy to combine dopamine and UiO-

66 to prepare hydrophobic UiO materials for the adsorption

of acetaldehyde and chlorobenzene (Fig. 9). Owing to the

improved hydrophobic properties of the materials, the

N-liganded UiO-66 (labelled as M-UiO-66(Zr-N3.0)) sig-

nificantly increased the adsorption of acetaldehyde

(9.42 mmol�g-1) and chlorobenzene (4.94 mmol�g-1)

compared to UiO-66 and UiO-66-NH2, while its adsorption

of water compared to UiO-66 and UiO-66-NH2 by 20%

and 47%, respectively. In addition, the rate diffusion con-

stants of chlorobenzene on M-UiO-66 (Zr-N3.0) were 7.8

and 40 times higher than those of UiO-66 and UiO-66-

NH2, respectively.

Sun et al. [73] used phenylsilane for the first time to

modify metal nodes to obtain UiO-66 with a hydrophobic

angle of 161�. The hydrophobised NH2-UiO-66(Zr)-shp

has excellent alkali resistance and is promising for a variety

of applications such as organic/water separation, self-

cleaning and liquid marble. In addition, UiO-66-NH2-shp

(48.4 ll) adsorbs 12 times more toluene than UiO-66-NH2

(3.9 ll).

Zhang et al. [74] investigated density functional theory

(DFT) calculation for the adsorption of hexaldehydes on

MIL-101(Cr), UiO-66, ZIF-8 and Cu-BDC (Fig. 10). The

DFT revealed four possible adsorption types: � C=O in

hexal and C–H in UiO-66 ligand (U1); ` C=O in hexal and

Fig. 8 Breakthrough curves of gaseous toluene on various adsorbents at different adsorption temperatures: a UiO-66; b CTAB-U-0.5.
Reproduced with permission from Ref. [68]. Copyright 2019, Elsevier

Fig. 9 Bridging effect: water clusters in pores of parent and modified UiO-66(Zr) and resulting voids. Reproduced with permission
from Ref. [72]. Copyright 2018, Elsevier
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Zr–OH in UiO-66 (U2); ´ C–H in hexaldehydes and O–C–

O in UiO-66 (U3); ˆ the aldehyde group of hexaldehydes

is H and O–C–O in UiO-6 (U4). U1–U4 play an important

role in the adsorption of hexal by UiO-66, and the order of

interaction energy is U2 (- 33.34 to - 38.86 kJ�mol-1)-

[U1 (- 23.10 to - 31.51 kJ�mol-1)[U4 (- 20.22 to

- 23.63 kJ�mol-1)[U3 (- 16.28 to - 17.13 kJ�mol-1).

The results show that Zr–OH and aromatic C–H in H2BDC

are important adsorption sites for hexanal.

Toluene has been extensively studied as a typical VOC.

Compared with traditional molecular sieve and activated

carbon, MOF has the advantages of higher adsorption

capacity, easy diffusion of VOCs (adjustable pore size

structure), selective adsorption of VOCs (benzene ring

structure of ligand, hydrophobic modification by grafting)

and fast desorption rate. However, VOCs in the atmosphere

are not a single entity, but several components coexist.

There are many types of VOCs in the atmosphere, which

can be divided into alkanes, aromatics, esters, and alde-

hydes based on their chemical structure. In addition, it can

also be divided into polar and non-polar, hydrophilic and

hydrophobic. In order to explore the practical application

possibility of UiO-66, researchers should pay attention to

the synchronous removal of multi-component VOCs,

including: the synchronous removal of aromatic-oxy-

genated VOCs, OVOCs-ClVOCs, aromatic-SVOCs, etc. In

addition, water vapor is unavoidable in the real environ-

ment, and it is also crucial to explore the selective

adsorption of materials.

Based on the above studies, it is clear that UiO-66 based

materials can remove harmful pollutants by efficient

adsorption under mild conditions, while pollutants with

significantly different properties can be selectively adsor-

bed and have good cycling stability. However, the con-

centration of pollutants in the real environment is not as

high as in the literature and the pollutants in the environ-

ment (liquid phase organic pollutants, heavy metals and gas

phase VOCs) are not static. It is important that the mate-

rials used for the adsorption of pollutants are easily sepa-

rable from the environment and that the adsorption and

removal of pollutants are achieved without adding new

sources of pollution. Therefore, it is essential to investigate

and obtain UiO-66 based adsorbent materials that can be

easily separated and recovered and to achieve the efficient

adsorption and removal of pollutants at low concentrations

and in dynamic systems.

Fig. 10 Optimal configurations obtained via DFT calculations and interaction energy between UiO-66 and hexanal: a C–H of linker
with C–O in hexanal (U1); b Zr–O–H with C-O in hexanal (U2); c O–C–O with C–H in hexanal (U3); d O–C–O with H in aldehyde group
of hexanal (U4). Reproduced with permission from Ref. [74]. Copyright 2020, Elsevier
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3 UiO-66 for photocatalytic degradation of organic
pollutants

The essence of photocatalysis is that when the energy of

incident light is greater than that of the bandgap width, the

electron–hole pairs (e--h?) generated by the catalytic

material are used for the oxidation–reduction reaction of

pollutants [75]. Studies have shown that the photogener-

ated electrons can not only reduce pollutants, but also react

with the oxygen adsorbed on the surface of the catalytic

material to generate strong oxidizing superoxide radicals

(�O2
-). In addition, the h? on the valence band can react

with H2O/OH- on the material surface to generate hydro-

xyl radicals (�OH) [76]. H?, O2
- and �OH all have strong

oxidizing properties, and can selectively oxidize pollutants

into harmless CO2 and H2O. Therefore, it is crucial to

develop an efficient, non-toxic, chemically stable, and

easily prepared catalytic material for the photocatalytic

removal of pollutants.

3.1 UiO-66 for degradation of liquid phase
contaminants

Organic dyes are difficult to decompose in the natural

environment and most of them are harmful to both the

environment and human health, and can even cause muta-

tions, so dyes must be removed from water. Compared to

adsorption techniques, photocatalytic techniques can

achieve complete catalytic degradation of pollutants under

the action of h?, �OH and �O2
-, achieving the goal of

harmless treatment. Jin et al. [77] used UiO-66-NH2, UiO-

66-NO2 and UiO-66-NH2/UiO-66-NO2 to photocatalyti-

cally degrade RhB, and the results showed that the mixed

UiO-66-NH2/UiO-66-NO2 had the optimal photocatalytic

activity (95.5%) and cyclic stability, and the free radical

experiment showed that �O2
- was the main active species.

Mu et al. [78] prepared a series of structurally identical UiO-

66 (X = H, NH2, Br, (OH)2, (SH)2) for photocatalytic

degradation of RhB, and the results showed that good visible

light absorption did not necessarily mean high photocatalytic

activity, but a faster e--h? separation rate and active species

generation rate were conducive to rapid degradation of pol-

lutants. Although pure UiO-66 matrix has good pollutant

removal rate, there are still problems such as easy carrier

recombination and limited light response range. Therefore,

researchers generally use semiconductor materials coupled

with pure UiO-66 matrix, and the composite material not

only has the characteristics of pure MOF large specific sur-

face area and porous structure, but also has excellent pho-

tocatalytic properties of semiconductor materials. Bibi et al.

[79] prepared a series of BiOBr/UiO-66-NH2 composite

materials using a co-precipitation method for the visible light

degradation of the dye RhB. The effective transfer and

separation of charges at the heterojunction interface and the

synergistic effect of BiOBr/UiO-66-NH2 resulted in high

photocatalytic activity of the composite material, especially

for the composite material with 15 wt% UiO-66-NH2, which

could remove 83% of RhB after 2-h light irradiation. Fur-

thermore, the capture experiment showed that h? and �O2
-

were the main active species for RhB degradation. Liang

et al. [80] prepared core–shell CdS@UiO-66-NH2 using an

in-situ solvothermal method for the degradation of MG and

MO. Characterization results showed that the mesoporous

UiO-66-NH2 shell was not only conducive to the absorption

of core (CdS) light, but also provided abundant active sites

and tightly coupled interfaces between components. The

high specific surface area, molecular-level interfacial con-

tact between components, and n–n one-dimensional

heterojunction significantly improved the photocatalytic

activity of the material, which could remove 99.5% of MG

and 95.7% of MO after 25 and 45 min, respectively (Fig. 11).

Abdi et al. [81] prepared TiO2/ZrO2 composite materials

using UiO-66 as a carrier for the degradation of RhB. Owing

to the increased absorption of visible light and the rapid

separation of charge carriers promoted by the composite

material, the composite material had good photocatalytic

activity, and after four cycles, it still had high stability and a

90% RhB removal rate.

Antibiotics that are not metabolized in the organism are

generally excreted into the environment through forms such

as feces and urine, resulting in higher frequencies and con-

centrations detected in water environments. Yang et al. [82]

used UiO-66-NH2 as a carrier to adjust the morphology of

BiOBr for NOR degradation. The 3D structure and tight

interface contact of the composite material facilitate the full

utilization of light energy, increase the exposure of active

sites, and suppress the recombination of carriers. The activity

results indicated that the BiOBr/UiO-66-NH2 composite

material with 20% UiO-66-NH2 had the best photocatalytic

activity, and after 180-min illumination, it could remove

93.60% of NOR. The active species capture experiment

showed that �O2
- was the main active species. Cao et al. [83]

prepared Co-doped UiO-66 by one-step solvothermal

method, and used it for TC adsorption and photocatalytic

degradation. The CoUiO-1 composite material with a Zr:Co

ratio of 1 had the highest TC adsorption capacity, with an

adsorption capacity of 224.1 mg�g-1. The high TC adsorption

capacity can be attributed to the p-p interaction and electro-

static interaction between the composite material and TC.

The adsorbed material can photocatalytically remove 94% of

the initial concentration of TC. In addition, the TC adsorption

capacity and photocatalytic degradation capacity of CoUiO-1

were 7.6 and 6.9 times that of pure UiO-66, respectively. Wu

et al. [30] prepared TiO2@UiO-66-NH2 composite material

by one-step solvothermal method for TC removal. The

composite material had high photocatalytic activity for TC,
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which was attributed to its high adsorption capacity for TC

and rapid separation of photogenerated carriers. In addition,

after four cycles, the photocatalytic activity of the composite

material did not decrease significantly, indicating its good

stability and recyclability. Zhao et al. [84] used ball milling to

prepare Bi5O7I/UiO-66-NH2 for the removal of ciprofloxacin

(CIP). Based on the results of active species capture experi-

ments, Schottky tests, electron spin resonance (ESR), and

DFT, it was found that the heterojunction of Bi5O7I/UiO-66-

NH2 followed a direct Z-type heterojunction electron transfer

path. In addition, the characterization results showed that the

introduction of UiO-66-NH2 significantly increased the

specific surface area of the material, thereby improving the

adsorption capacity for pollutants and the activity sites for

degrading pollutants. The activity results showed that the

composite material with 50% UiO-66-NH2 had excellent

photocatalytic activity, and after 120-min illumination, it

could remove 96.1% of CIP (Fig. 12).

3.2 UiO-66 for reduction of heavy metals

Heavy metal ions produced by processes such as electro-

plating, tanning, printing and dyeing, polishing, and

pigments are widely presented in surface water and

groundwater, seriously endangering the natural ecological

environment and human health, and have become a pol-

lution problem of global concern [85]. The most common

heavy metal ions in water are Cu2?, Cr3?, Ni2?, Pb2?,

Hg2? and Cd2?, which are usually removed by photo-

catalysis, adsorption, membrane separation, and biodegra-

dation methods [86, 87]. Among many methods,

photocatalysis is considered an economically effective

detoxification method. He et al. [88] encapsulated dye

molecules (RhB and Eosin Y (EY)) inside UiO-66 for the

reduction of Cr(VI) to Cr(III). Characterization showed

that the adsorption capacity of the material for Cr signifi-

cantly increased after encapsulating the dye molecules, and

99% of Cr(VI) could be removed through adsorption and

degradation. After being combined with noble metals, the

adsorption capacity of Cr(VI) was significantly reduced

due to electrostatic effects, but the reduction efficiency was

greatly improved, increasing from 8.4% to 58.2%. Wei

et al. [89] used grinding to load a small amount of 3,4,9,10-

perylenetetracarboxylic dianhydride (PTCDA) onto the

surface of NH2-UiO-66 for the reduction of heavy metal

Cr(VI), and the characterization results showed that the

Fig. 11 Photocatalytic degradation of a MG, and b MO over CdS-NR, UIO-66-NH2 and CdS@UIO-66-NH2 composites; c the first-
order kinetics of MG photocatalytic degradation; d photocatalytic recycle degradation of MG over CdS nanorod and CdS@UIO-66-
NH2-10. Reproduced with permission from Ref. [80]. Copyright 2018, Elsevier
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addition of PTCDA broadened the material’s light

absorption range and promoted charge carrier separation

for the reduction of Cr(VI). Meanwhile, the activity of the

material was explored by changing the pH, initial con-

centration, and adding small organic acids, among which

NU100P10 had the best photocatalytic activity, and still

had a good removal rate of Cr(VI) after five cycles. ESR

and capture agents showed that e- and �O2
- were the main

active species for the reduction of Cr(VI). Compared with

powdered materials, membrane-type photocatalytic mate-

rials have good potential for photocatalytic applications.

Du et al. [90] used membrane-type UiO-66-NH2(Zr/Hf) for

the reduction of heavy metal Cr(VI). Owing to the mate-

rial’s good chemical and water stability, it still had a 94%

removal rate of Cr(VI) after 20 cycles (Fig. 13).

There are many types of heavy metals in water, and

different researchers use different probe molecules to

explore the potential applications of UiO-66 material in

water remediation. Li et al. [91] used CdS/UiO-66-NH2

material under non-sacrificial conditions to reduce uranium

(VI) in wastewater to trivalent ((UO2)O2�2H2O) (Fig. 14).

The results showed that while e– and �O2
– were reducing

uranium (VI), h? was oxidizing S2- to SO4
2-, and the

composite material had a removal rate of 85.62% for ura-

nium-containing wastewater from mines under sunlight.

3.3 UiO-66 for catalytic oxidation of VOCs

Although MOF materials have a large specific surface area,

high porosity, and semiconductor properties, their rapid

carrier recombination results in poor photocatalytic activity

[92]. Therefore, many researchers have synthesized com-

posites of TiO2 and MOFs, hoping that the composite

material can not only maintain the excellent photocatalytic

activity of TiO2 but also inherit the advantages of MOFs’

semiconductivity and large specific surface area, thereby

overcoming the problems of TiO2’s low adsorption

capacity for VOCs and easy carbon deposition deactiva-

tion, as well as MOFs’ poor activity. Yao et al. [93] syn-

thesized a series of TiO2@UiO-66-NH2 materials for the

photocatalytic degradation of styrene under visible light

dynamic conditions (Fig. 15). Based on the soft-hard acid–

base theory, the ultrafine TiO2 nanoparticles encapsulated

that inside UiO-66-NH2 have good interface contact, and

the composite material has good light responsiveness and

carrier separation rate. In addition, the 3D structure of UiO-

66 facilitates the mass transfer and diffusion of pollutants,

forming a VOC-rich environment near the active site.

Therefore, compared with pure UiO-66-NH2 and TiO2,

TiO2@UiO-66-NH2 composite materials have excellent

styrene removal rate and anti-carbon deposition deactiva-

tion performance. TiO2@UiO-66-NH2 with 5% TiO2 can

remove 99% of styrene after 600 min of illumination.

Zhang et al. [94] prepared a series of TiO2-UiO-66-NH2

composite materials using solvent evaporation method for

the photocatalytic oxidation of toluene and acetaldehyde.

Due to the higher specific surface area, abundant pore size

distribution and intrinsic semiconductor properties of UiO-

66-NH2 compared to traditional porous materials such as

activated carbon, TS-1 (Titanium Silicalite-1), and SBA-15

(Santa Barbara Amorphous-15), it exhibited good toluene

and acetaldehyde removal rates in the dynamic system.

After continuous degradation for 720 min, the removal rate

of acetaldehyde and the CO2 generation of the TiO2-UiO-

66-NH2 composite material were 10.5 and 14.3 times

higher than that of pure UiO-66-NH2, respectively. Addi-

tionally, TiO2@UiO-66 composite materials were further

prepared for the removal of toluene and formaldehyde

using a one-step solvothermal method [95]. Characteriza-

tion of the series revealed that the tight interface contacted

Fig. 12 a Adsorption-photocatalytic curves of CIP under different BU-5 loadings; b corresponding degree of adsorption,
photodegradation and k values at conditions of CIP = 10 mg�L-1, pH = 5.8. Reproduced with permission from Ref. [84]. Copyright
2021, Elsevier
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and matched bandgap structure between components

facilitated the rapid separation of charge carriers. Further-

more, UiO-66 preferentially adsorbed toluene and desorbed

its degradation product CO2, which in turn promoted the

deep catalytic oxidation of toluene and avoided carbon

deposition deactivation of the material. Most importantly,

the degradation pathway of toluene was investigated by in-

situ infrared spectroscopy, which showed that toluene was

first degraded to benzaldehyde and benzoic acid, and then

opened to form small molecule oxalic acid, ultimately

degrading to harmless CO2 and H2O (Fig. 16).

3.4 UiO-66 removing compound contamination

Due to the discharge of industrial, agricultural, and

municipal wastewater, water bodies are contaminated with

heavy metals such as Cd, Cr, Ni and Pb to varying degrees

[96, 97]. The wastewater discharged from industries such

as petroleum, coal mining, metal smelting, and tanning also

contains serious complex pollution of heavy metals and

organic pollutants [98, 99]. Therefore, it is known that

pollutants in water bodies do not exist in a single form, but

in multiple forms of coexisting pollution. Photocatalytic

technology can use the electron–hole pairs generated by the

material itself for the reduction of heavy metals and the

oxidation of organic pollutants, and thus, it is considered a

green and feasible treatment technology. Zeng et al. [100]

used Ag2CO3@UiO-66-NH2/GO membrane under flow

conditions for the removal of liquid-phase organic pollu-

tants and the reduction of heavy metal Cr. The study

showed that the composite material could completely

remove MB, RB and MR under the condition of

Fig. 13 a Schematic diagram of UiO-66-NH2(Zr/Hf) membrane preparation procedure; SEM images of b a-Al2O3 support, c seed
layer, d UiO-66-NH2(Zr) membrane surface and e reusability of UiO-66-NH2(Zr) membrane under simulated sunlight irradiation
(photocatalytic Cr(VI) reduction) and at dark conditions (adsorption toward Cr2O7

2-) for 20 successive cycles; f SEM image of UiO-66-
NH2(Zr) membrane surface after the 20th photocatalysis experiment. Reproduced with permission from Ref. [90]. Copyright 2019,
Elsevier
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50 L�m-2�h-1. In addition, after a long time experiment of

200 min, the AgCO@UiO/GO membrane maintained a

high removal rate for all dyes and Cr(VI) under light

conditions. Zhou et al. [101] prepared a series of UiO-66-

NH2/Ag2CO3 composite materials for the reduction of

heavy metal Cr and the oxidation of organic pollutants

(RhB, MO, CR and MB) using ion exchange method. The

authors pointed out that the composite material (marked as

UAC-100) had the optimal photocatalytic activity when the

mass ratio of UiO-66-NH2 to Ag2CO3 was 1:1. Cr can be

completely reduced in 50 min, 96% of MB and 81% of CR

can be degraded after 60 min, and 90% of MO and 85% of

RhB can be degraded after 90 min. In addition, after four

cycles, it still maintained a 99% removal rate for Cr

(Fig. 17).

Environmental pollution and energy consumption are

two major problems facing society. The simultaneous

removal of pollutants and energy generation has attracted

attention. Based on the redox properties of photo-generated

e--h? pairs, researchers have achieved simultaneous pol-

lutant degradation and hydrogen production. Zhao et al.

[102] prepared a series of NH2-UiO-66/ZnIn2S4 composite

materials using a hydrothermal method for the degradation

of MG and hydrogen production. Characterization results

showed that the II heterojunction formed by the composite

material broadened the spectral response range, promoted

the separation of charge carriers, and thereby increased the

lifetime of photo-generated charges. The activity results

showed that the composite material with 10% NH2-UiO-66

(10% NU66/ZIS) had a 98% MG removal rate and a

Fig. 14 Proposed mechanism for photocatalytic reduction uranium by 40%CdS/UiO-66-NH2 under visible-light illumination.
Reproduced with permission from Ref. [91]. Copyright 2022, Elsevier

Fig. 15 Evolution of a styrene and b formed CO2 during direct photocatalytic oxidation reaction by TiO2, NH2-UiO-66 and TiO2@NH2-
UiO-66 composites. Reproduced with permission from Ref. [93]. Copyright 2018, Elsevier
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hydrogen production rate of 2199 lmol�h-1�g-1 (Fig. 18).

The use of electron reduction of heavy metals/H2 produc-

tion and hole oxidation of organic pollutants can not only

avoid carrier recombination, but also realize economic

removal of pollutants. Therefore, photocatalysis can be

considered as a green pollutant removal technology with

high application potential.

Based on the above results, it can be seen that although

MOF has received extensive attention as a semiconductor

material, its weak electron–hole formation ability leads to

its poor catalytic activity. Therefore, researchers generally

use the introduction of electron-withdrawing groups,

electron-donating groups, or bonding with semiconductor

materials to improve photocatalytic activity. The large

Fig. 16 In-situ FTIR spectra of toluene oxidation a on 4TiO2@U, b, c at wavenumber range of 3800–3600 and 1800–1400 cm-1 from
Fig. 15a, and d on UiO-66 and 4TiO2@U at 60 min under UV light irradiation. Reproduced with permission from Ref. [95]. Copyright
2021, Wiley

Fig. 17 a Photocatalytic Cr(VI) reduction and MB degradation efficiencies in their single systems and in their matrix with UAC-100 as
photocatalyst; b reusability of UAC-100 under visible light conditions (photocatalytic reduction of Cr(VI)) and dark conditions
(adsorption of Cr2O7

2-). Reproduced with permission from Ref. [101]. Copyright 2019, Elsevier
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surface area of the composite material is conducive to the

dispersion of active sites, which in turn facilitates the

contact between the photoexcited active sites and the pol-

lutants, achieving efficient degradation of pollutants.

Meanwhile, the composite material inherits the porous

properties of the UiO-66 substrate, which promotes rapid

mass transfer of pollutants while realizing rapid separation

and transfer of charge carriers to active sites for pollutant

degradation. In addition, the close contact and synergistic

effect between the components of the composite material

promote the transfer of charge carriers and the generation

of a large number of active oxygen species, thereby com-

pletely mineralizing and oxidizing pollutants.

4 UiO-66 for photocatalytic H2 and CO2 reduction

As a practitioner of ecological civilization and an active

participant in global climate governance, China has pro-

posed the goal of ‘‘Peak Carbon Dioxide Emissions’’ and

‘‘Carbon Neutrality’’ as it embarks on the journey of the

14th Five-Year Plan. It explicitly requires all regions to

urgently develop action plans to peak carbon emissions

before 2030 and supports those with conditions to take the

lead in achieving this goal, incorporating it into the overall

layout of China’s ecological civilization construction. Solar

energy, as a clean and renewable energy source, can con-

vert solar energy into chemical energy, providing alterna-

tive solutions to environmental and natural resource

problems.

4.1 UiO-66 removing compound contamination

As an important material foundation for the development

of modern society, clean energy has a direct impact on

social and economic development and the survival of

human society. From the perspective of green chemistry,

photocatalytic hydrogen production technology is an ideal

strategy for supplying hydrogen energy and reducing the

energy consumption of the chemical industry, and the

development of efficient and stable photocatalysts is key to

the development of hydrogen production technology. Cao

Fig. 18 a Photocatalytic H2 evolution amount of pure ZIS, NU66 and NU66/ZIS composites; b cyclic H2 evolution curves of 10%
NU66/ZIS composite; c XRD patterns of 10% NU66/ZIS composite before and after cyclic H2 evolution curves; FESEM images of 10%
NU66/ZIS composite d before and e after cyclic H2 evolution curves. Reproduced with permission from Ref. [102]. Copyright 2019,
American Chemical Society
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et al. [103] used flower-like Pd@UiO-66-NH2@ZnIn2S4 to

produce hydrogen under visible light. The composite

material has good hydrogen production activity due to its

matched bandgap structure, wide spectral response range,

and rapid separation of charge carriers. 0.3% Pd@UiO-66-

NH2@ZnIn2S4 has the best hydrogen production rate

(5.26 mmol�g-1�h-1), which is 17 times and 3.8 times the

yield of pure ZnIn2S4 and UiO-66-NH2/ZnIn2S4, respec-

tively. At the same time, the quantum yields of 0.3%

Pd@UiO-66-NH2@ZnIn2S4 at 320 and 420 nm are 20.4%

and 3.2%, respectively. Wei et al. [104] synthesized n-p-n

type a-SnWO4/UiO-66(NH2)/g-C3N4 material by

solvothermal method for hydrogen production and

ibuprofen degradation. Due to the double heterojunction

promoting the separation of charge carriers and the syn-

ergistic effect between the components, the photocatalytic

hydrogen production efficiency of the composite material

is 2105 lmol�g-1�h-1, which is 21 times that of a-SW

(105 lmol�g-1�h-1) (Fig. 19). Shi et al. [105] prepared

UiO-66-NH2 composite material sensitized by auramine O

by hydrothermal method. Due to the bidentate coordination

between the components, the hydrogen production rate of

the hydrothermally sensitized material is 8 times that of the

room temperature sensitized material. At the same time, the

apparent quantum efficiency of the material at 500 nm is

17.6%. Tian et al. [106] constructed Ti3C2/TiO2/UiO-66-

NH2 for photocatalytic hydrogen production for the first

time. Due to the synergistic effect between the compo-

nents, the separation rate of charge carriers is increased. In

addition, due to the excellent conductivity of Ti3C2 and the

good dispersibility of UiO-66-NH2 in the composite

material, more active sites are exposed, resulting in a

hydrogen production rate that is 2.1 times that of UiO-66-

NH2. Sun et al. [107] first encapsulated single-dispersed,

small particle size, and non-noble metal phosphides

(TMPs, such as Ni2P and Ni12P5) inside UiO-66-NH2 for

photocatalytic hydrogen production. Compared with pure

UiO-66-NH2 and physically mixed composite materials,

the phosphide-encapsulated material (TMPs@MOF) has

the best hydrogen production activity. At the same time,

kinetics and thermodynamics show that TMPs and Pt have

similar properties, which is conducive to the separation of

charge carriers and the reduction of the activation energy

for H2 generation.

Fig. 19 a C/C0 of IPF solution changes with time in various samples; b photodegradation kinetics of IPF by means of plotting ln(C0/
C) versus time; c TOC removal rate, and d recycle experiments of photodegrading IPF over a-SW75/UNCN; e fluctuation of
photocatalytic degradation reaction process at different time. Reproduced with permission from Ref. [103]. Copyright 2021, Elsevier
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4.2 Photocatalytic CO2 reduction

Due to the combustion of fossil fuels, CO2 content in the

atmosphere has significantly increased. The problems of

ocean acidification and global warming caused by CO2 have

attracted widespread attention from society. Currently, vari-

ous strategies are being used for CO2 separation and capture,

such as wet scrubbing and dry adsorption [108]. CO2, as a

source material rich inC1, can be converted into various high-

value-added products. From a green and sustainable per-

spective, using clean solar energy to catalyze the resource

utilization of CO2 is an ideal CO2 management technology,

which not only solves environmental problems but also pro-

duces energy materials [109, 110]. Wang et al. [110–112]

used Cu atomic composite Cu SAs/UiO-66-NH2 for CO2

reduction. Due to the promotion of Cu SAs in the conversion

of CO2 to intermediate species CHO* and CO*, the material

has high methanol and ethanol yields of 5.33 and

4.22 lmol�h-1�g-1, respectively. Wan et al. [111] used

CsPbBr3 quantum dots and UiO-66-NH2 composites for CO2

reduction. Due to the material’s large specific surface area,

good visible light adsorption capacity, and rapid separation

andtransferofcarriers, ithasaCOyieldof98.57 lmol�g-1. In

addition, CO and CH4 can be detected simultaneously by gas

chromatography, but H2 cannot be detected. Furthermore, the

material has good cycling stability and thermal stability

(Fig. 20). Wang et al. [112] used Au nanoparticles (Au-NPs)

and reduced graphene oxide (GR) co-modified UiO-66-NH2

for CO2 reduction. Based on the plasmonic effect of Au-NPs

andtheconductivityandlargespecificsurfaceareaofGR,Au/

UiO-66-NH2/GR material has high photocatalytic activity

(49.9 lmol) andselectivity (80.9%).Zhaoet al. [113]pointed

out that UiO-66-NH2/RGO with covalent bonds had a good

CO yield, mainly because covalent bonds facilitate the rapid

separation of carriers, which are used for CO2 adsorption on

the surface of RGO. Hu et al. [114] used NaBH4 reduction

method to prepare UiO-66-NH2 composite material with

active center Co for CO2 reduction. Co not only promotes

electron transfer but also acts as an active center, making its

CO yield 10.2 times that of UiO-66-NH2. Wang et al. [112]

synthesized UIO-66-NH2/CNTs for CO2 photocatalytic

reduction by hydrothermal method. Carbon nanotubes

(CNTs) can promote the conductivity of the material and the

dispersion of UiO-66-NH2, exposing more active sites of the

material and promoting CO2 adsorption and selective gener-

ation of HCOOH (63.1%).

5 Hazards of environmental pollutants to humans

With the rapid development of the economy, people’s

demands for the surrounding living environment and their

own living conditions are increasingly high. Therefore,

various decoration materials are used for environmental

beautification and a variety of clothing and dyes are used

for daily life. Research has shown that humans spend about

80% of their time indoors, especially the elderly and

children. Pollutants such as benzene and aldehydes

released from indoor decoration materials seriously

endanger human health and cause harm such as childhood

asthma, neurological diseases, and blood diseases

[109, 115, 116]. Regarding substances such as clothing and

dyes, they not only cause chemical pollution of water

bodies by dyes and other chemicals but also cause serious

problems such as allergies, miscarriages, and premature

births in pregnant women [117]. At present, researchers in

the medical and environmental fields are concerned about

these pollutants from the aspects of harm to the human

body and purification. Environmental researchers typically

use a variety of methods to prepare different materials for

contaminant removal (the concentration of pollutants in the

simulated experiment is much higher than that in the real

environment). After adsorption or catalysis, 88.5%–99.6%

of pollutants can be removed [57, 79–82, 88, 93–95].

Medical researchers are mainly concerned with the damage

to the environment and the human body caused by low

concentrations of pollutants in the real environment.

Although both have made some research progress and

achieved a series of significant research results, there is no

substantial mutual guidance between the two fields, such as

the selection of pollutant concentration in the environ-

mental field, the cycle of self-degradation of pollutants, the

harm of multi-component pollutants, the difficulty of

degradation of multi-component pollutants, and the influ-

encing factors of degradation of low-concentration pollu-

tants. In view of this, based on the research results in the

field of environment, this section examines the damage to

the environment and human body caused by unremoved

12%–1% pollutants in the environment

[57, 79–82, 88, 93–95].

5.1 Effects of water pollution on human health

Water is a vital and limited resource for the survival of

living organisms, so ensuring the safety of water bodies is

crucial. Studies have shown that dozens of antibiotic

organic pollutants exist in the seven major river basins in

China, including the Yellow River, Yangtze River, Haihe

River, Songhua River and Pearl River. In addition, differ-

ent concentrations of antibiotic substances have been

detected in urban sewage discharge [118–120]. These

antibiotic pollutants enter water bodies mainly through the

production and consumption process, which not only cause

malformation of embryos or young children, but also some

substances have carcinogenic, teratogenic and mutagenic

effects, seriously endangering human health [121–123].
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Research has shown that antibiotics accumulate in aquatic

organisms such as fish, shrimp, and crabs, and their

antibiotic-resistant bacteria and resistance genes can pose a

potential threat to human health [124] (Fig. 21). Organic

dyes can not only accumulate in fish and cause carcino-

genic, teratogenic and mutagenic effects in organisms, but

can also lead to significantly higher levels of heavy metals

in algae in dye wastewater [125]. About 60% of water is

used for crop irrigation, leading to a significant increase in

the concentration of pollutants in surface water/ground-

water or soil moisture layers. Therefore, the quality of

irrigation water is crucial for living organisms [126].

Muhammad et al. [127] pointed out that wastewater as an

irrigation source was 180 times more harmful to plants than

groundwater irrigation, and there were a large number of

heavy metals and organic substances in water bodies,

which were significantly more carcinogenic to humans than

groundwater.

5.2 Atmospheric pollution and human health

VOCs as precursors of ozone PM2.5 are not only a serious

hazard to the natural ecosystem, but also to the human

reproductive, respiratory and blood systems. In addition,

atmospheric VOCs are complex and diverse, and in par-

ticular, the toxicity of multi-component VOCs coexisting

in a system is significantly higher than that of single VOCs

[128]. Studies have shown that exposure to VOCs can

significantly increase the risk of respiratory disease, asthma

and neurological disorders [129]; children living in indus-

trial areas and around cities have a significantly increased

risk of leukemia due to exposure to metal industries, haz-

ardous waste and displays treated with organic solvents

[130]; and carpeting in cars is a significant source of cancer

risk for people who drive for long periods of time [131].

Shuai et al. [132] noted that the concentration of dyeing

and finishing industries in the industrial park in Daegu,

Korea, led to frequent exposure to volatile organic

Fig. 20 a Photocatalytic CO2 reduction into chemical fuels under 300-W Xe lamp for 15%-CsPbBr3 QDs/UiO-66(NH2); b photocat-
alytic CO2 reduction performance for CsPbBr3 QDs (I) and x%-CsPbBr3 QDs/UiO-66(NH2) nanocomposite (II–VI, x = 0, 5, 10, 15, 30);
c reusability of 15%-CsPbBr3 QDs/UiO-66 (NH2) nanocomposite; d TGA curves of CsPbBr3 QDs, UiO-66 (NH2) and 15%-CsPbBr3
QDs/UiO-66(NH2) nanocomposite. Reproduced with permission from Ref. [29]. Copyright 2019, Elsevier
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compounds in the vicinity of the industrial park, which

resulted in a significantly higher incidence of respiratory

diseases, allergic diseases and cardioembolic diseases in

the vicinity of the industrial park than in the control area.

Fang et al. [133] pointed out that the levels of formalde-

hyde, acetaldehyde, and benzene in many households

exceed non-cancer risk thresholds, which could harm the

respiratory and immune systems, and exacerbate asthma.

Hairdressers and beauticians have been reported [134] to

have a higher risk of reproductive system disorders, such as

infertility, fetal death and preterm birth, than the general

population due to their frequent exposure to organic sub-

stances such as hair dyes, hairsprays and moisturizers.

Researchers have noted that occupational exposure to

volatile organic solvents interferes with male reproductive

hormones, has toxic effects on male sex steroids, and

directly affects testicular function, especially in workers

who have been exposed for many years [135]. Zhang et al.

[136] explored the effects of kitchen oils (soybean oil,

vegetable oil, lard, rapeseed oil, peanut oil and corn oil) on

human health (Fig. 22). The study noted that the six oils

emitted similar types of VOCs, with vegetable oils emitting

more VOCs due to their higher content of unsaturated fatty

acids and thus more VOCs. In addition, oil pans would

emit higher levels of VOCs as the oil/water ratio increased,

and of these VOCs, aldehydes were the most abundant. The

risk assessment showed that aldehydes were correlated

with the development of lung cancer.

As can be seen from the above, heavy metals and

organic pollutants enter the human body through food

enrichment, contact or respiratory action, endangering the

health of living organisms and even causing carcinogenic,

teratogenic and mutagenic effects. Therefore, removing or

degrading pollutants through appropriate means not only

solves the problem of environmental pollution, but also

avoids harm to human health.

6 Conclusion and perspective

The presence of pollutants in water bodies and the atmo-

sphere can lead to environmental problems such as atmo-

spheric photochemical smog, acid rain, haze and

eutrophication of water bodies, and can also harm the

health of living organisms through respiration or diet, and

even produce carcinogenic, teratogenic and mutagenic

effects. The UiO-66 series of MOFs are widely used for the

adsorption and catalysis of pollutants due to their high

specific surface area, rich pore structure, excellent struc-

tural stability and semiconductor-like properties. Based on

the above properties, the use of UiO-66 and its composites

for the adsorption, catalysis or resource recovery of typical

pollutants in the environment not only solves the envi-

ronmental pollution problem, but also enables the resource

recovery of pollutants. This review has drawn the follow-

ing conclusions from the recent research progress of UiO-

66 and its composites in environmental purification and

resource recovery: the pore structure of the material is

adjusted to promote the adsorption and enrichment of

pollutants; hydrophobization reduces the competition

Fig. 21 Pollution and transport of antibiotics in Dongting Lake. Reproduced with permission from Ref. [124]. Copyright 2018, Springer
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between organic pollutants and water molecules for

adsorption; the large specific surface area facilitates not

only the dispersion of active sites but also the adsorption of

pollutants to achieve effective adsorption of pollutants and

complete catalytic oxidation by the active sites. The large

specific surface area not only facilitates the dispersion of

active sites but also enhances the adsorption of pollutants

to achieve effective adsorption and complete catalytic

oxidation of pollutants by the active sites.

Although efficient targeted removal or resource utiliza-

tion of pollutants can be achieved by changing the surface

electrical properties, heterojunction composite, or surface

modification of materials, there are still some scientific

issues that need to be addressed. Firstly, the pH value of

actual wastewater varies greatly, and excessively high or

low pH values can destroy the structural stability of UiO-

66-based materials, which has been rarely studied by

researchers. Secondly, the e--h? recombination of UiO-66-

based materials is easy to occur, resulting in poor photo-

catalytic activity, which is mainly improved through dop-

ing, modification, and composite methods. Thirdly, there

are many types of pollutants with significant differences in

structure and properties, but current research mainly

focuses on the removal of single pollutants, and little

attention is paid to the simultaneous and efficient removal

of multiple components.

Therefore, the future research and development direc-

tions of UiO-66-based materials in adsorption, photo-

catalysis, and resource utilization are as follows: (1)

preparing structurally stable MOFs materials to facilitate

their long-term application in actual environments; (2)

preparing composite materials to break through the selec-

tive adsorption of single pollutants by MOFs materials,

especially by developing integrated materials that are easy

for solid–liquid separation; (3) constructing directional

active and adsorption sites to obtain composite materials

with integrated adsorption and catalysis, realizing the

synergistic mineralization of pollutants; (4) establishing the

concept of constructing UiO-66-based materials with sin-

gle-atom active sites, increasing the catalytic activity of

materials while improving their carrier separation.
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