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Abstract Van der Waals coupling with different stacking

configurations can significantly affect the optical and

electronic properties of ultrathin two-dimensional (2D)

materials, which is an effective way to tune device per-

formance. Herein, we report a salt-assisted chemical vapor

deposition method for the synthesis of bilayer V-doped

MoS2 with 2H and 3R phases, which are demonstrated by

the second harmonic generation and scanning transmission

electron microscopy. Notably, the mobility of the 3R phase

V-doped MoS2 is 6.2% higher than that of the 2H phase.

Through first-principles calculations, we further reveal that

this particular behavior is attributed to the stronger inter-

layer coupling of 3R compared to the 2H stacking con-

figuration. This research can be further generalized to other

transition metal chalcogenides and will contribute to the

development of electronic devices based on 2D materials in

the future.

Keywords Chemical vapor deposition; Synthesis; First-

principles calculations; 2H; 3R

1 Introduction

Two-dimensional (2D) transition metal disulfides (TMDs)

have obtained extensive attention due to their atomically

thin thickness, wide tunable band gap and high carrier

mobility [1–5]. Among them, Mo- and W-based TMDs are

ideal candidates for the next generation photoelectric

devices for their excellent physical properties, such as high

Young’s modulus, superconductivity and nonlinear Hall

effect [6–8]. Specifically, the physical properties of

monolayer MoS2 with direct gap have been thoroughly

investigated [9–11]. Compared with monolayer MoS2,

bilayer MoS2 displays higher density states and carrier

mobility, which has great potential in the realization of

high-performance electronic devices [12–15].

However, the electronic structure of bilayer MoS2 is

sensitive to the stacking configuration between adjacent

layers [11]. The most stable stacking configurations for

MoS2 are hexagonal 2H and rhombohedral 3R due to their

favorable energy, which can be directly realized by chemical

vapor deposition (CVD) process [16, 17]. For the 2H MoS2,

theMo atoms are arranged vertically with the sulfur atoms in

the adjacent layers, with an AB stacking order, resulting
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centrosymmetry (non-centrosymmetry) in the even (odd)

layers [18, 19]. In contrast, 3R type exhibits AA stacking

order of adjacent layers in same crystalline orientation, and

the second layer shows in-plane shift relative to the first layer

[20, 21]. Since there is no inverse symmetry, the 3R stacking

has parallel in-plane nonlinear dipoles [22]. Therefore, 3R

MoS2 always exhibits independent SHG signal of the layer

thickness.

Previous studies have shown that tuning the interlayer

interaction can bring about many exotic physical phe-

nomena, which may be inaccessible in monolayer TMDs

[22–27]. However, folding, high pressure, and twisting

methods are affected by complex manufacturing processes

and low yields, and it is difficult to meet the current device

requirements [28–30]. Different from the above methods,

substitution doping through CVD, as one of the most

effective and technologically mature methods in silica-

based manufacturing processes, has been widely applied to

tune the physical properties of TMDs [31–33]. Therefore,

this work reports the synthesis of bilayer V-doped MoS2
with 2H and 3R phase via salt-assisted CVD method. The

inverse symmetry of the bilayer 3R stacking V-doped

MoS2 is broken, showing a significant SHG signal. Addi-

tionally, combining electrical measurements and DFT

calculations, it is found that the 6.2% higher effective

mobility of 3R over the 2H stacking is attributed to the

stronger interlayer coupling. This work provides the way

for tuning the optical and electrical properties of 2D TMDs

through doping engineering and contribute to the future

research of optoelectronic devices.

2 Experimental

2.1 CVD synthesis of V-doped MoS2

V-doped MoS2 sheets were synthesized by atmospheric

pressure CVD method. MoO3 (Aladdin, 99.999%), V2O5

(Aldrich, 99.99%) and S powder (Aladdin, 99.95%) were

purchased as source precursors. A powder mixture of 1 mg

KI, 3 mg MoO3 and 3 mg V2O5 in an aluminium oxide boat

was placed in the center of the quartz tube. 100 mg S powder

was placed at the upstream side of the furnace. The SiO2/Si

substrate was placed face down on the boat with *1 cm

distance. The furnacewas heated to 800 �Cwith a ramp rate of

35 �C�min-1. The carrier gas was Ar:H2 = 95:5 ml�min-1.

After holding for 5 min at the growth temperature, the furnace

was decreased to room temperature naturally.

2.2 Characterization

Optical imaging was taken by ZEISS Primotech micro-

scope. Atomic force microscopy (AFM) experiments were

performed by Bruker Dimension Icon system. The element

composition was analyzed by X-ray photoelectron spec-

troscopy (XPS, Thermo Scientific K-Alpha). Raman and

SHG spectra/mapping characterizations were carried out

with WITEC alpha 300R Raman system. Scanning trans-

mission electron microscopy (STEM) imaging was per-

formed by FEI Themis system.

2.3 Device fabrication and measurements

The V-doped MoS2 devices were fabricated on the SiO2/Si

(285 nm) substrate via the standard electron-beam lithog-

raphy and lift-off process, and then the contact metal of Cr/

Au (5/50 nm) were deposited by thermal evaporation. The

electrical and photoelectric characteristics were measured

by using KEYSIGHT B1500A source-meter unit. The

photoresponse of the devices were performed under

532-nm light irradiation.

2.4 Theoretical calculations

DFT calculations were performed with the VASP suite. We

used projector augmented-wave pseudopotentials within

the Perdew–Burke–Ernzerhof approximation for the

exchange–correlation functional and the kinetic energy

cutoff was fixed to 450 eV. The 2H and 3R stacking bilayer

V-doped MoS2 geometry was relaxed until all forces less

than 0.1 eV�nm-1. For the electronic structure calculations,

the lattice constants of 2H stacking V-MoS2
(a = 0.3196 nm) and 3R stacking V-MoS2 (a = 0.3180

nm) were obtained through full relaxation with a total

energy tolerance of 1 9 10–6 eV and a C-centered k-grid

of 6 9 6 9 1. The above calculations are carried out in the

consideration of spin-dependent interactions.

3 Results and discussion

The bilayer V-doped MoS2 sheets were synthesized by the

salt-assisted CVD method, as displayed in Fig. 1a. Briefly,

the mixed MoO3, V2O5 and KI powder were served as

precursors in the center of the heating zone, while the S

precursor was placed in the upstream. More detailed

information can be found in the Experimental section. The

atomic configurations of 2H and 3R stacking V-doped

MoS2 crystal is schematically shown in the right side of

Fig. 1a. The 2H stacking (60�) displays vertically align-

ment, while 3R stacking (0�) shows a staggered arrange-

ment with an obvious in-plane shift. In order to confirm the

existence of V, XPS characterization of the 2D V-doped

MoS2 sheets were collected. The fine spectrum of V 2p, Mo

3d, S 2p state and full spectrum are shown in Fig. 1b–e,

respectively. As shown in Fig. 1b, two obvious
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characteristic peaks are located at about 523.7 eV (2p1/2)

and 515.9 eV (2p3/2), which is consistent with the chemical

state of V4?, demonstrating the successful replacement of

V atoms in MoS2 lattice. The experimental result presented

by lilac scatters is rough, indicating a low concentration of

V-doped MoS2 sheets. The peaks of Mo 3d core level state

are located at about 231.6 and 228.4 eV, corresponding to

Mo 3d3/2 and Mo 3d5/2, respectively. As for the spectra of S

2p core level binding energy, the two peaks are located at

161.7 and 160.5 eV, corresponding to S 2p1/2 and S 2p3/2,

respectively. Compared to the previously reported pure

MoS2, the bonding states of S and Mo elements in V-doped

MoS2 exhibit a small shift, which may be caused by V

doping in the MoS2. Furthermore, Raman spectroscopy

was used to study the V-doping effect of the MoS2 struc-

ture and electronic properties. Figure 1f shows Raman

spectra of monolayer and bilayer MoS2 (2H and 3R phases)

sheets with V doping (Fig. S1). Both the monolayer and

bilayer MoS2 display peaks at about 384 and 404 cm-1,

corresponding to the in-plane vibrations of Mo and S atoms

(E2g
1) and the out-of-plane vibrations of S atoms (A1g),

respectively. However, after doping with V, additional

peaks appear between 100 and 200 cm-1 in both mono-

layer and bilayer MoS2. The V-doped 2H and 3R-stacking

bilayer MoS2 exhibits a close Raman spectra. These new

Raman peaks may be associated with the reduction of the

host lattice symmetry since the V dopant can induce dis-

order in the pristine MoS2. Figure 1g-i shows Raman

mapping of bilayer 3R MoS2 with V doping corresponding

to the above peaks, which is further proved the successful

V doping of MoS2.

To precisely assess the crystalline quality, high-angle

annular dark-field scanning transmission electron micro-

scopy (HAADF-STEM) and selected area electron

diffraction (SAED) were employed to explore the atomic

structure of the as-synthesized V-doped MoS2 sample.

Figure 2a shows the atomic-scale HAADF-STEM image of

the monolayer V-doped MoS2. It is known that the inten-

sity in HAADF-STEM image is approximately propor-

tional to the atomic number Z value, thus the brightness of

V atoms is lower than that of Mo atoms. The intensity

profile of five metal sites highlighted by yellow rectangle is

clearly seen that the intensity of the third metal site is

weaker than that of other four sites, confirming the

Fig. 1 a Synthetic schematic diagram and atomic stacking configuration of V-doped MoS2; b–e XPS fine spectra of V 2p, Mo 3d, S 2p
orbitals and full spectrum, respectively; f Raman spectra of monolayer MoS2 and V-doped bilayer MoS2 (2H and 3R stacking) sheets
with V doping; g–i Raman intensity mapping images at 100–200, 384 and 404 cm-1, respectively, and (inset in g) corresponding
optical image
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successful substitution of V atom. SAED pattern (Fig. 2c)

exhibits hexagonally arranged diffraction spots, indicating

no lattice mismatch generation after the doping of V atoms

in MoS2. Furthermore, bilayer, 3R stacking and 2H

stacking V-doped MoS2 were also detected by HAADF-

STEM, as displayed in Fig. 2d–f. The stacking configura-

tion transition can be directly identified from the obvious

atomic contrast, which is consistent with corresponding

atomic model.

To distinguish the effect of V substitution and stacking

order, SHG of V-doped MoS2 is further explored. Fig-

ure 3a is a schematic diagram of SHG process under a

pump excitation (k = 1064 nm). The uniform sample with

monolayer and bilayer V-doped MoS2 was selected

(Fig. 3b), the SHG mapping intensity shows a sharp con-

trast between 2H and 3R stacking, as displayed in Fig. 3c.

The SHG mapping intensity of 3R stacking is increased,

while 2H stacking is decreased comparing with monolayer

sample (Fig. S2). The corresponding single SHG spectrum

all emerged at 532 nm with distinct intensity value

(Fig. 3d), which is consistent with the mapping image. It is

worth noting that the bilayer 2H V-doped MoS2 also gen-

erates a weak SHG signal, indicating a break of inverse

symmetry. This may be caused by slightly lattice strain

from V substitution. Additionally, the polarization angle-

dependent SHG was carried out to explore the crystal

structure. The bilayer 3R V-doped MoS2 under perpen-

dicular and parallel laser both present typical six-fold

symmetric patterns (Fig. 3e, f), illustrating the hexagonal

structure of V-doped MoS2.

We also fabricated field-effect transistors (FETs) to

demonstrate the performance of the 2H and 3R stacking

bilayer V-doped MoS2, as illustrated in Fig. 4a. The tran-

sistor consists of Cr/Au contact metal, 2H/3R bilayer

V-MoS2 channel material, and 285-nm SiO2 dielectric. The

channel width is 5 lm for all the FET devices. The output

curves of 2H and 3R stacking V-MoS2 are shown in

Fig. 4b. The 3R stacking V-MoS2 FET demonstrated a

significantly higher on-state current than 2H stacking. The

corresponding transfer curves of 2H and 3R stacking

V-MoS2 are shown in Fig. 4c. The mobility (l) was

obtained using the equation l = gmLch/WCoxVds, where gm,

Lch, W, Cox, and Vds are the transconductance, channel

length, channel width, gate oxide capacitance per unit area

of the dielectric layer, and drain voltage, respectively. The

calculated l values for the 2H and 3R bilayer V-MoS2
FETs were 25.6 and 31.8 cm2�V-1�s-1, respectively. The

photodetection performance of 2H and 3R stacking bilayer

V-doped MoS2 were further explored as shown in Fig. 4d,

e. The 3R stacking V-doped MoS2 exhibits a higher pho-

tocurrent than that of 2H stacking V-MoS2 under various

power density. The photocurrent (Iph) exhibits an

Fig. 2 a HAADF-STEM image of monolayer V-doped MoS2; b enlarged enlarged STEM image and corresponding atomic intensity
profile along highlighted yellow dashed region; c SAED pattern of monolayer V-doped MoS2; d–f HAADF-STEM images of bilayer, 3R
and 2H V-doped MoS2, respectively
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Fig. 3 a Schematic diagram of SHG; b optical image of V-doped MoS2 with 3R and 2H stacking; c SHG intensity mapping of V-doped
MoS2 with 3R and 2H stacking at 532 nm; d stacking configuration dependent SHG of monolayer, 3R and 2H V-doped MoS2; e, f
Angular-dependent SHG intensity of V-doped 3R MoS2

Fig. 4 a Schematic illustration of bilayer V-doped MoS2 FETs; b output curves of 2H and 3R stacking bilayer V-doped MoS2 FETs;
c transfer curves of 2H and 3R stacking bilayer V-doped MoS2 FETs; d, e output curves of 2H and 3R stacking bilayer V-doped MoS2

FETs at different power densities; f responsivity (2H and 3R stacking bilayer V-doped MoS2 FETs) as a function of different power
densities under zero bias
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exponential dependence on the incident power density (P),

Iph = Pa (a is fitted exponent), which is 0.15 for 2H and 0.4

for 3R stacking V-doped MoS2. Furthermore, the key

performance metrics for photodetector were evaluated,

including responsivity (R), detectivity (D*), and external

quantum efficiency (EQE). R is defined as R = Iph/(P 9 A),

where Iph is the photocurrent, P is the power density, and

A is the channel area. The relationship between R and P for

2H and 3R stacking V-MoS2 is shown in Fig. 4f. The R

values are 52.4 and 366 A�W-1 for 2H and 3R stacking

V-MoS2 at 1.28 mW�cm-2, respectively. The correspond-

ing D* and EQE of 2H and 3R stacking V-MoS2 are dis-

played in Fig. S3. The highest D* value of 2H and 3R

stacking V-doped MoS2 reaches 3.7 9 107 and

2.53 9 108 J, respectively. The EQE values for 2H and 3R

stacking V-MoS2 are 125.7 and 866.4, respectively. The

above results indicate that 3R stacking V-doped MoS2
exhibits better conductance and carrier mobility than that

of 2H stacking V-doped MoS2, which substantially

enhances the electrical and photodetector performance.

To precisely understanding the physical mechanism of

interlayer coupling enhanced by V-doped MoS2, DFT

calculations were performed on 2H and 3R stacking bilayer

V-doped MoS2. The projected band structure and density

of states (DOS) for these systems are shown in Fig. 5a, b,

where Fermi level is defined as the zero energy level. For

both 2H and 3R stacking bilayer V-doped MoS2, the total

DOS at the Fermi level is non-zero with four energy bands

crossing the Fermi level, which is attributed to the contri-

bution from the doped V atoms. The band gaps of 2H and

3R stacking bilayer V-MoS2 are much smaller than the

reported band gap values of pure MoS2 and monolayer

V-MoS2 (Fig. S4). This is consistent with the metal-like

behavior in the previous electrical properties. Additionally,

the DOS of 2H and 3R stacking bilayer V-doped MoS2 can

be divided into two parts from - 1 to 2 eV. The V 3d

orbital electrons mainly contribute to the part beside con-

duction band minimum, while both V 3d and Mo 4d orbital

electrons primarily contribute to the part beside the valence

band maximum. The detailed DOS information of 2H and

3R stacking bilayer V-doped MoS2 is shown in Fig. S5.

The synergistically interaction mechanism of doping

and stacking configuration of 2H and 3R stacking bilayer

V-doped MoS2 was further explored through differential

charge density. The differential charge density from middle

to upper surface of the stacking layer was plotted, as shown

in Fig. 5c, d. Compared to 2H stacking, 3R stacking

exhibits a richer distribution of interlayer charge density.

Additionally, the charge density changes along the per-

pendicular direction are displayed in Fig. 5e, f. The 3R

stacking bilayer V-doped MoS2 electron clouds tend to

overlap with adjacent layers, indicating stronger coupling,

while there is almost no electron accumulation between 2H

stacking bilayer V-doped MoS2. This phenomenon is

Fig. 5 a, b DFT calculations for projected band energy of 2H and 3R stacking bilayer V-doped MoS2; c, e planar-average charge
density difference of 2H and 3R stacking bilayer V-doped MoS2 along c-axis, and (insets) charge density distribution diagrams in
middle interlayer of 2H and 3R stacking bilayer V-doped MoS2; d, f schematic diagram of differential charge density for 2H and 3R
stacking bilayer V-doped MoS2, where purple area represents gained electrons, and blue area represents lost electrons
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attributed to the symmetry difference between 2H and 3R-

configuration, which is consistent with the SHG results.

4 Conclusion

In summary, we have implemented a comprehensive

experimental and theoretical investigation of the optical

and electrical properties of CVD grown 2H and 3R

stacking bilayer V-doped MoS2. The 3R stacking of

V-doped MoS2 displays higher carrier mobility due to a

stronger interlayer coupling compared to the 2H stacking

configuration, which agrees with the DFT calculations. Our

work shows that the synergistic regulation strategy of

doping and different stacking configurations not only offers

the possibility to extend second-order nonlinear optical

materials, but also provides a promising way to achieve

high-performance photodetectors.
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