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Abstract Direct methanol fuel cell technology recently

becomes the focus of both academic and engineering cir-

cles, which stimulates the exploitation and utilization of

advanced electrode catalysts with high activity and long

lifespan. Herein, we demonstrate a robust bottom-up

approach to the spatial construction of three-dimensional

(3D) spinel manganese-cobalt oxide-modified N-doped

graphene nanoarchitectures decorated with ultrasmall Pt

nanoparticles (Pt/MnCo2O4-NG) via a controllable self-

assembly process. The incorporation of MnCo2O4

nanocrystals provides abundant hydroxyl sources to pro-

mote the oxidative removal of CO-like byproducts on Pt

sites, while the existence of 3D porous N-doped graphene

networks facilitates the transportation of both ions and

electrons in the hybrid system, thus giving rise to

remarkable synergetic coupling effects during the methanol

oxidation process. Consequently, the optimized Pt/

MnCo2O4-NG nanoarchitecture expresses exceptional

electrocatalytic properties with a large electrochemically

active surface area of 99.5 m2�g-1, a high mass activity of

1508.3 mA�mg-1, strong toxicity resistance and reliable

long-term durability, which have obvious competitive

advantages over those of conventional Pt/carbon black,

Pt/carbon nanotube, Pt/graphene, and Pt/N-doped graphene

catalysts with the same Pt usage.

Keywords Platinum; MnCo2O4; 3D graphene;

Electrocatalysts; Methanol oxidation

1 Introduction

With the increasing threat of energy crisis and environ-

mental pollution, the sustainable development of human

society desperately needs to establish advanced energy-

production and -consumption system [1–6]. Within this

context, the design and usage of various green energy-

generation and -conversion devices have been proved to be

a critical way to achieve this objective [7–12]. As one of

the most efficient and clean energy-conversion systems,

fuel cells have become a hotspot of research in current

academic and engineering circles [13–16]. Among diverse

kinds of fuel cells, direct methanol fuel cell (DMFC) has

shown great potential for a wide range of applications in

aerospace, transportation, and portable electronics due to

its unique advantages, such as high energy-transfer rate,

low hazard emission, facile cell configuration, and fast

start-up at room temperature [17, 18]. However, the slug-

gish methanol oxidation kinetics usually renders a dissat-

isfactory output power of DMFC, which requires the

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s12598-
023-02418-6.

Q. Zhang, M.-M. Yan, W.-F. Du, C.-Y. Yin, L. Yang,

H.-Y. He*, H.-J. Huang*

College of Mechanics and Materials, Hohai University, Nanjing

210098, China

e-mail: he.haiyan@hhu.edu.cn

H.-J. Huang

e-mail: huanghuajie@hhu.edu.cn

J. Zhang

New Energy Technology Engineering Lab of Jiangsu Province,

College of Science, Nanjing University of Posts &

Telecommunications (NUPT), Nanjing 210023, China

Y.-Q. Kang

International Center for Materials Nanoarchitectonics (WPI-

MANA), National Institute for Materials Science, Tsukuba 305-

0044, Ibaraki, Japan

1

Rare Met. (2024) 43(1):186–197

https://doi.org/10.1007/s12598-023-02418-6 RARE METALS

http://orcid.org/0000-0001-5685-4994
https://doi.org/10.1007/s12598-023-02418-6
https://doi.org/10.1007/s12598-023-02418-6
https://doi.org/10.1007/s12598-023-02418-6
https://doi.org/10.1007/s12598-023-02418-6
https://doi.org/10.1007/s12598-023-02418-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s12598-023-02418-6&amp;domain=pdf


exploitation and use of highly-active and long-life elec-

trode catalysts to accelerate the anodic reaction [19, 20].

Currently, commercial anode catalysts of DMFC are

mainly based on the platinum/carbon black (Pt/C) materials

[21–23]. Because of the inherent microporous character-

istics and inadequacy of surface growth sites for carbon

black, it is difficult to ensure the uniform dispersion of Pt

particles as well as restrain their sizes, thus resulting in an

insufficient Pt utilization efficiency [24, 25]. In addition, it

is known that Pt atoms with d-band structure are easily

poisoned by the intermediate carbonaceous species (mainly

CO), which largely shortens the working life of Pt-based

catalysts and thus greatly hinders their large-scale indus-

trial application [26, 27]. Hence, tremendous efforts have

been made to explore alternative supports with optimized

architectural design in order to liberate more exposed Pt

sites and simultaneously strength the anti-toxicity ability

[28–30].

In this aspect, graphene-based materials are catching

considerable and persistent attention from a growing

number of researchers [31, 32]. Specially, three-dimen-

sional (3D) graphene aerogel constructed from two-di-

mensional (2D) graphene nanosheets has been regarded as

an ideal matrix owing to its unique physicochemical

properties, such as 3D pore-rich crosslinked networks,

separated thin carbon layers, large specific surface area,

and excellent electrical conductivity [33–35]. Nevertheless,

it should be noted that pristine graphene nanosheets lack

enough anchoring sites to immobilize Pt nanoparticles,

which commonly induces the formation of large Pt clusters

[36–38]. To circumvent this issue, nitrogen doping has

been demonstrated to be an effective solution to optimize

both the electronic structure and chemical activity of gra-

phene, and meanwhile enhance its binding ability with Pt

because of the ameliorative electron-donating character,

thereby generating remarkable synergistic coupling effects

during the electrocatalytic process [39, 40].

On the other hand, recent theoretical and experimental

studies have testified that transition metal oxide (e.g.,

RuO2, MnO2, Co3O4) can serve as efficient catalytic pro-

moters for methanol electrooxidation, which reduce the

usage of metallic Pt and simultaneously create extra cat-

alytically active sites [41, 42]. Compared with single

transition metal oxides, spinel bimetal oxides commonly

exhibit higher electrochemical activity owing to their

structural flexibility and mixed valence states [43, 44].

Especially, spinel manganese-cobalt oxide (MnCo2O4)

possesses a series of favorable textural features, including

low cost, environmental friendliness, abundant active sites,

and good chemical stability, thus holding great potential of

application in the electrocatalysis field [45, 46]. Moreover,

MnCo2O4 nanocrystals are also capable to offer a plenty of

OH species in the catalytic system, which are very helpful

to facilitate the oxidative removal of CO intermediates on

Pt surface in the methanol oxidation process [47, 48].

Therefore, it is a feasible way to enhance the catalytic

performance through the rational integration of Pt

nanoparticles, MnCo2O4 nanocrystals, and N-doped gra-

phene nanosheets into a 3D ternary nanoarchitecture.

However, until now, the growth and assembling of small-

sized Pt nanoparticles on MnCo2O4–modified N-doped

graphene surface remains challenging in this area.

In this work, we propose a convenient and robust bot-

tom-up strategy to the spatial construction of 3D

MnCo2O4-modified N-doped graphene nanoarchitectures

decorated with ultrasmall Pt nanoparticles (Pt/MnCo2O4-

NG) via a controllable self-assembly process. Figures 1, S1

illustrate the overall synthesis process for the 3D Pt/

MnCo2O4-NG nanoarchitectures, which mainly includes:

(1) the fabrication of graphene oxide (GO) nanosheets by

oxidation of natural graphite powder based on an improved

Hummers’ approach; (2) spatial construction of 3D inter-

connected porous N-doped graphene aerogel via a

hydrothermal self-assembly reaction, followed by the

modification of MnCo2O4 nanocrystals onto the N-doped

graphene layers; (3) in-situ growth of Pt nanoparticles onto

the surface of 3D MnCo2O4-NG hybrid aerogel in a water-

ethylene glycol mixed medium. Such a 3D sophisticated

architectural design not only effectively avoids the longi-

tudinal stacking of graphene nanosheets, but also offers

high-quality multidimensional platforms for the homoge-

neous deposition of Pt and MnCo2O4 nanoparticles, which

are favorable for the fast transportation of reactants and

exposure of active sites to boost the electrocatalytic effi-

ciency. Consequently, the newly-developed Pt/MnCo2O4-

NG catalysts exhibit superior methanol oxidation perfor-

mance, significantly surpassing that of the conventional

Pt/carbon black (Pt/C), Pt/carbon nanotube (Pt/CNT),

Pt/graphene (Pt/G), and Pt/N-doped graphene (Pt/NG)

catalysts with the identical testing condition.

2 Experimental

2.1 Synthesis of 3D Pt/MnCo2O4-NG
nanoarchitectures

GO was firstly prepared from commercial graphite powders

by an optimized Hummers’ method [49]. The obtained GO

nanosheets were then suspended in deionized water to

achieve a concentration of 2 mg�ml-1. The 3D Pt/

MnCo2O4-NG nanoarchitectures with different MnCo2O4/

NG ratios were constructed via this bottom-up synthetic

method. Typically, taking the MnCo2O4/NG ratio of 2:1 as

an example, the specific synthesis process is as follows:

5 ml GO dispersion (2 mg�ml-1) was put into a reaction
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beaker, and then mixed with 0.28 ml Co(Ac)2 solution

(0.6 mol�L-1), 0.14 ml MnCl2 solution (0.6 mol�L-1), and

30 ml water with magnetic stirring. Subsequently, 1 ml

ammonia was introduced into the above solution in the

fume hood, sealed and stirred continuously at 80 �C for

10 h. After that, the reacted solution was moved to a Teflon

autoclave and reacted at 180 �C for 24 h. During the

solvothermal reaction, the plentiful oxygen-containing

groups on GO nanoflakes would interconnect to generate a

3D monolithic hydrogel [50, 51], while the N atoms could

enter the carbon skeletons and meanwhile MnCo2O4

nanocrystals were immobilized on the doped graphene

surface. In order to maintain the 3D porous structure of the

sample and prevent graphene sheet from re-packing, the

above hydrogel was converted into a MnCo2O4-NG aero-

gel by freeze-drying. Subsequently, the as-obtained 10 mg

MnCo2O4-NG aerogel was placed in an ethylene glycol

solution containing 0.128 ml K2PtCl4 (0.1 mol�L-1, Alfa

Aesar) and stirred for 15 min, and further heated at 120 �C
for 12 h to form the desired Pt/MnCo2O4-NG hybrid. The

components of the Pt/MnCo2O4-NG catalysts can be con-

veniently controlled by changing the feeding ratio of

MnCo2O4 to NG during the above synthesis process. In this

work, we used four different MnCo2O4/NG ratios,

including 4:1, 2:1, 1:1 and 1:2, and the four prepared cat-

alysts were abbreviated as Pt/(MnCo2O4)4-(NG)1,

Pt/(MnCo2O4)2-(NG)1, Pt/(MnCo2O4)1-(NG)1, and

Pt/(MnCo2O4)1-(NG)2, respectively. In addition, we also

prepared the conventional carbon black (Vulcan XC-72R),

carbon nanotube (CAS Chengdu Organic Chemistry Co.,

Ltd), graphene, and N-doped graphene supported Pt

samples as reference catalysts by the similar synthesis steps

except for the use of different supporting materials. The

actual Pt, Mn, and Co contents in the Pt/(MnCo2O4)2-

(NG)1 catalyst were measured as 18.6 wt%, 10.3 wt% and

25.7 wt% by inductively couples plasma mass spectrometer

(ICP-MS), respectively, which are close to their theoretical

contents.

2.2 Characterization

The 3D porous structure and micromorphology of the 3D

porous Pt/MnCo2O4-NG nanoarchitectures were observed

and analyzed using field-emission scanning electron

microscopy (FESEM, Zeiss Sigma) and high-resolution

transmission electron microscopy (HRTEM, JEOL JEM-

2100F). The crystal structure, elemental composition and

valence states of the Pt/MnCo2O4-NG nanostructure were

investigated using powder X-ray diffraction (XRD, Bruker

D8 Advance), Raman microscopy (Renishaw) and X-ray

photoelectron spectroscopy (XPS, PHI Quantera with Al

Ka radiation). The Micromeritics ASAP 2020 Plus system

was employed to measure the specific surface area and

porous properties of the Pt/MnCo2O4-NG nanoarchitec-

tures. The detailed contents of various metallic species

were tested by a PerkinElmer ELAN9000 ICP-MS.

2.3 Electrocatalytic measurements

A CHI 760E electrochemical workstation was used to

investigate the electrocatalytic properties of the 3D Pt/

MnCo2O4-NG nanoarchitectures towards the methanol

Fig.1 Overall synthesis process for 3D Pt/MnCo2O4-NG nanoarchitectures: (1) fabrication of GO nanosheets by oxidation of graphite
powder; (2) construction of 3D N-doped graphene aerogel modified with MnCo2O4 nanocrystals; (3) in-situ growth of small-sized Pt
onto surface of 3D MnCo2O4-NG aerogel
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electrooxidation. The three-electrode testing system con-

sists of a catalyst-coated glassy carbon (GC) disk as the

working electrode, a Pt wire as the counter electrode, and a

saturated calomel electrode as the reference electrode. To

prepare the working electrode, the as-fabricated catalyst

sample was put into an agate mortar and then subjected to a

fine grinding to achieve a homogeneous silty state. 2 mg

obtained fine powder was next dispersed in a mixed solu-

tion (475 ll water, 475 ll ethanol and 50 ll 5% Nafion

117 solution) by the mild sonication for 10 min. After-

wards, 5 ll catalyst suspension was transferred onto the

GC surface and dried in air. Thus, the overall loading

density of Pt on the GC electrode was kept at

0.028 mg�cm-2.

The electrochemically active surface area (ECSA) value

of the catalyst was estimated based on the H adsorption

peak area by the following formula:

ECSA ¼ QH= Pt½ � � 0:21ð Þ ð1Þ

where [Pt] represents the platinum loading (g) on the

electrode, QH is the charge for hydrogen adsorption (mC),

and 0.21 represents the charge required to oxidize a

monolayer of H2 on bright Pt (mC�cm-2). The mass

activity (MA) of the catalyst for methanol electrooxidation

was obtained with the use of the following formula:

MA ¼ IF=½Pt� ð2Þ

where IF is positive sweep peak current density of cyclic

voltammetry curve (mA). Meanwhile, the specific activity

(SA) was calculated through the following formula:

SA ¼ MA=ECSA ð3Þ

3 Results and discussion

The 3D porous characteristics and microscopic morphol-

ogy of the Pt/MnCo2O4-NG nanoarchitecture were care-

fully studied by FESEM and TEM techniques. As

presented in Fig. 2a, the representative FESEM image of

Pt/MnCo2O4-NG clearly shows a well-defined 3D inter-

connected graphene network with continuously distributed

macropores in the range from hundreds of nanometers to

several microns. High-magnification FESEM observation

reveals that a plenty of small-sized nanoparticles are clo-

sely attached to the N-doped graphene nanosheets without

obvious agglomeration (Fig. 2b). TEM analysis further

confirms that the ultrathin N-doped graphene sheets are

decorated uniformly with both MnCo2O4 nanocrystals and

Pt nanoparticles (Fig. 2c, d). According to the statistical

data, the average particle diameter is estimated to be

only * 3.8 nm, which is comparable to or even smaller

Fig. 2 Morphological analysis of 3D Pt/MnCo2O4-NG nanoarchitecture: typical a, b FESEM, c, d TEM and e, f HRTEM images
showing a large number of ultrafine Pt nanoparticles grown on 3D MnCo2O4-NG network, and (inset in d) size distribution of Pt
nanocrystals; g HAADF-STEM and elemental mapping images of h C, i N, j O, k Co, l Mn and m Pt
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than that of previously reported nanocarbon-supported Pt

catalysts [52, 53]. Taking into consideration that the sizes

of MnCo2O4 nanocrystals are commonly larger than those

of Pt nanoparticles [54, 55], the actual Pt average size for

the Pt/MnCo2O4-NG nanoarchitecture should be even

smaller than the above value. Furthermore, in order to

clarify the compositions of these nanoparticles on N-doped

graphene surface, we thoroughly analyzed the crystallo-

graphic textures with the assistance of HRTEM. Figure 2e,

f discloses distinct lattice stripes with measured interplanar

crystal spacings of 0.286, 0.224, and 0.196 nm, which

correspond to the (220) crystal plane of spinel phase

MnCo2O4, as well as the (111) and (200) crystal planes of

Pt with face-centered cubic (fcc) structure, respectively,

indicating that both Pt and MnCo2O4 nanoparticles have

been successfully loaded onto the 3D N-doped graphene

frameworks. Besides, the high-angle annular dark-field-

scanning TEM (HAADF-TEM) and corresponding ele-

mental mapping images confirm that the Pt/MnCo2O4-NG

nanoarchitecture is composed of C, O, N, Co, Mn, and Pt,

and all these six components are homogeneously dis-

tributed across the whole nanosheets (Fig. 2h–m).

The crystalline phase and chemical structure informa-

tion of the Pt/MnCo2O4-NG nanoarchitecture was then

analyzed by powder XRD and Raman spectroscopy. In

Fig. 3a, the typical XRD pattern of GO shows an obvious

carbon (002) diffraction peak at around 2h = 10.0�, which
is shifted to 2h = 24.5� in the Pt/G pattern, implying that

the GO nanosheets have been reduced to graphene during

the solvothermal self-assembled reaction. In sharp contrast,

this carbon (002) characteristic peak almost disappears in

the case of Pt/MnCo2O4-NG. This proves that the forma-

tion of 3D crosslinked graphene networks can well separate

the neighbouring graphene nanolayers from each other to

restrain their longitudinal stacking. In addition, a series

characteristic peaks are found at 2h = 18.5� and 31.4�,
corresponding to the (111) and (220) crystal planes of the

tetragonal MnCo2O4 nanocrystals, respectively (JCPDS

No. 23–1237). Meanwhile, other three prominent charac-

teristic peaks at 2h = 39.8�, 46.2�, and 67.5� are indexed to

the (111), (200) and (220) planes of the cubic Pt structure,

respectively (JCPDS No. 87–0646). Moreover, the average

diameter of Pt nanoparticles in the Pt/MnCo2O4-NG cata-

lyst is determined to be * 3.5 nm based on the (200) plane

Fig. 3 Structural characterizations of Pt/MnCo2O4-NG nanoarchitecture: a XRD patterns and b Raman spectra of Pt/MnCo2O4-NG,
Pt/G, and GO samples; c N2 adsorption–desorption isotherms and d pore size distribution of Pt/MnCo2O4-NG and GO samples
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through the Scherrer formula, which is slightly smaller than

aforementioned TEM result. Figure 3b depicts the Raman

spectra of the Pt/MnCo2O4-NG, Pt/G, and GO samples.

Apparently, all these recorded spectra have two scattering

signals centered at 1354 and 1595 cm-1, belonging to the

well-known D and G bands related to the disordered and

ordered carbon atoms in graphitic carbon materials,

respectively [56]. It is found that the D/G intensity ratio

(ID/IG) of the Pt/MnCo2O4-NG material (1.09) is higher

than that of Pt/G (0.88) and GO (0.75), which reflects an

increased defect density induced by the incorporation of N

atoms in the graphene skeleton. In addition, the charac-

teristic A1g signals of MnCo2O4 appearing at

660–670 cm-1 are also detected, suggesting the existence

of MnCo2O4 nanocrystals on the N-doped graphene

nanolayers [57]. Furthermore, the N2 adsorption–desorp-

tion curve of the Pt/MnCo2O4-NG nanoarchitecture

demonstrates its meso- and macroporous features with a

Brunauer –Emmett –Teller (BET) surface area of up to

218.2 m2�g-1 (Fig. 3c, d), which is much larger than that of

GO (11.2 m2�g-1) and close to that of previously-reported

high-quality 3D graphene nanomaterials [50, 51].

XPS measurements were next performed to determine

the elemental compositions and valence states of the Pt/

MnCo2O4-NG nanoarchitecture. Figure 4a shows XPS

survey spectrum of the Pt/MnCo2O4-NG nanoarchitecture,

from which the C 1s, O 1s, N 1s, Co 2p, Mn 2p, and Pt 4f

energy peaks were clearly observed, consistent with EDX

result (Fig. S2). Moreover, the C 1s spectrum can be

divided into four peaks at 284.7, 285.5, 286.3 and 288.5 eV

(Fig. 4b), corresponding to the sp2 C–C, C–N, C–OH and

C=O groups, respectively. According to the integral peak

areas, the proportion of oxygen containing groups for Pt/

MnCo2O4-NG is much lower than that for GO (Fig. S3),

indicative of the efficient reduction from GO to graphene.

Meanwhile, the N 1s spectrum (Fig. 4c) consists of three

energy peaks at 398.4, 400.0, and 401.8 eV, validating that

there are three types of nitrogen species including pyridine

N (N1), pyrrole N (N2) and graphite N (N3) in the Pt/

MnCo2O4-NG catalyst, respectively. It has been proved

that both N1 and N2 configurations have fixation effects for

Pt nanoparticles, thus a large amount of N1 and N2 in Pt/

MnCo2O4-NG plays a great role in maintaining the small

sizes of Pt nanoparticles. Figure 4d shows complex Mn 2p

spectrum of Pt/MnCo2O4-NG, which contains two pairs of

double peaks: the two intensive peaks at 641.5 and

653.5 eV are due to Mn2?, and the other cleavage peaks at

643.3 and 655.1 eV are ascribed to Mn3? [55]. The

Fig. 4 XPS analysis of Pt/MnCo2O4-NG nanoarchitecture: a XPS survey spectrum showing presence of C, N, Mn, Co, O and Pt
components; high-resolution b C 1s, c N 1s, d Mn 2p, e Co 2p and f Pt 4f spectra indicating co-existence metallic Pt, MnCo2O4 and
N-doped graphene in hybrid nanostructure
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deconvolution of Co 2p spectrum also generates Co2? at

781.9, 785.3, 797.7 and 802.1 eV (Fig. 4e), while Co3? at

780.7, 787.7, 796.5 and 803.8 eV, further attesting a mix-

ture of multiple valence states [58]. Figure 4f shows the

peak fitting of Pt 4f spectrum, where the intensive doublet

at lower binding energies of 71.2 and 74.5 eV arise from

metallic Pt, while the weak doublet at 72.1 and 75.3 eV are

assigned to Pt2?.

To make use of the intriguing architectural features, the

Pt/MnCo2O4-NG nanoarchitectures were loaded on the

surface of glassy carbon electrode and investigated their

catalytic methanol oxidation performance under the acidic

condition. First, the cyclic voltammetry (CV) curves of the

Pt/MnCo2O4-NG catalysts with diverse MnCo2O4/NG

ratios were recorded in 0.5 mol�L-1 H2SO4 solution. As

shown in Fig. 5a, the typical hydrogen adsorption–des-

orption peaks are clearly observed in all CV curves of these

four Pt/MnCo2O4-NG catalysts, which can be employed to

assess their ECSAs. As calculated, the Pt/(MnCo2O4)2-

(NG)1 catalyst is found to have the largest ECSA value of

99.5 m2�g-1, followed by the Pt/(MnCo2O4)1-(NG)1 (80.9

m2�g-1), Pt/(MnCo2O4)1-(NG)2 (69.0 m2�g-1), and Pt/

(MnCo2O4)4-(NG)1 (66.7 m2�g-1). Notably, an optimal

MnCo2O4/NG ratio (2:1) is not only capable to offer a large

number of reachable active sites, but also to maintain a low

charge transfer resistance in the catalytic system, thus

giving full play to the synergistic effects. Meanwhile, the

ECSA value of the selected Pt/(MnCo2O4)2-(NG)1 catalyst

is 2.2, 3.1, 3.3 and 4.5 times larger than that of Pt/NG, Pt/

G, Pt/CNT and Pt/C catalysts, respectively (Fig. 5b, c),

which is attributed not only to the 3D crosslinked N-doped

carbon networks, but also to the synergetic catalytic effects

between MnCo2O4 nanocrystals and Pt nanoparticles.

Moreover, the methanol oxidation mass activities of the Pt

catalysts supported by different matrixes were then tested

in a mixed solution of 0.5 mol�L-1 H2SO4 and 1 mol�L-1

CH3OH by CV. As can be seen from Fig. 5d–f and

Table S1, among the four catalysts with different MnCo2O4

loadings, the Pt/(MnCo2O4)2-(NG)1 catalyst possesses the

highest methanol oxidation performance with an impres-

sive mass activity value of up to 1508.3 mA�mg-1, while

the reference Pt/NG, Pt/G, Pt/CNT and Pt/C catalysts only

have limited mass activities of 210.2–411.0 mA�mg-1,

which should be ascribed to their insufficient active sites or

Fig. 5 Electrocatalytic performance of 3D Pt/MnCo2O4-NG catalysts for methanol electrooxidation: CV curves of a different Pt/
MnCo2O4-NG electrodes and b Pt/(MnCo2O4)2-(NG)1, Pt/NG, Pt/G, Pt/CNT and Pt/C electrodes at 50 mV�s-1 in 0.5 mol�L-1 H2SO4

solution; c specific ECSA values for these studied electrodes; d CV curves of different Pt/MnCo2O4-NG electrodes and e Pt/
(MnCo2O4)2-(NG)1, Pt/NG, Pt/G, Pt/CNT and Pt/C electrodes at 50 mV�s-1 in 0.5 mol�L-1 H2SO4 and 1 mol�L-1 CH3OH mixture;
f mass and specific activities of these studied electrodes
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less porous nature. In addition, the ECSA-normalized

specific activity of Pt/(MnCo2O4)2-(NG)1 (1.51 mA�cm-2)

manifests 26%–129% increments in comparison with the

reference catalysts (Fig. S4), unraveling that the use of the

(MnCo2O4)2-(NG)1 matrix can enhance the intrinsic cat-

alytic activity of Pt component. Besides, as listed in

Table S2, the overall methanol oxidation properties of the

Pt/(MnCo2O4)2-(NG)1 catalyst are also superior to those of

recent state-of-the-art Pt-based nanostructures, such as

Pt/porous carbon [59, 60], Pt/modified CNTs [61, 62], Pt/

heteroatom-doped graphene [63, 64], Pt-based nanoden-

drites [65, 66] and Pt-based nanowires [67, 68], further

verifying the optimized Pt/(MnCo2O4)2-(NG)1 nanoarchi-

tecture has extensive application prospect in the field of

fuel cells.

To gain more insights into the electrocatalytic kinetics

of the Pt/(MnCo2O4)2-(NG)1 and contrast catalysts, the

linear sweep voltammetry (LSV) measurements and cor-

responding Tafel slope analysis were carried out. As dis-

played in Figs. 6a, S5, to derive a given methanol oxidation

current, the Pt/(MnCo2O4)2-(NG)1 catalyst requires a

remarkably lower electrode potential when compared with

other catalysts, suggesting that the catalytic reaction is

much easier to take place on the Pt/(MnCo2O4)2-(NG)1
electrode surface. Based on the above LSV data, the Tafel

slope of the Pt/(MnCo2O4)2-(NG)1 catalyst is determined to

be only 127 mV�dec-1, which is obviously smaller than

that of Pt/NG (164 mV�dec-1), Pt/G (175 mV�dec-1), Pt/

CNT (261 mV�dec-1) and Pt/C (217 mV�dec-1) (Fig. 6b).

This result convincingly testifies the use of the Pt/

(MnCo2O4)2-(NG)1 catalyst can significantly speed up the

electrocatalytic methanol oxidation kinetics, thereby

achieving a much-improved Pt utilization efficiency.

The electrocatalytic durability is another essential per-

formance indicator for the methanol oxidation catalyst,

which plays a critical role in its commercialization process.

To investigate the long-range stability of the Pt/MnCo2O4-

NG catalyst, the current variation of the electrode at a

given potential was investigated by using the chronoam-

perometry method. As clearly seen from Fig. 6c, at the

early stage, the methanol oxidation currents on all elec-

trodes are found to rapidly decrease with increasing the

testing time, mainly due to the accumulation of CO-like

byproducts on the Pt sites and the structural evolution of

the catalysts. Afterwards, the current decay rate gradually

drops and a pseudo-stable current platform is observed.

Impressively, the Pt/(MnCo2O4)2-(NG)1 catalyst still

retains a considerable oxidation current after 2000s, much

better than the Pt/G, Pt/CNT and Pt/C catalysts. The dis-

tinctly improved poison tolerance and enhanced stability of

Fig. 6 a LSV curves, b Tafel plots, c chronoamperometric and d chronopotentiometry responses of Pt/(MnCo2O4)2-(NG)1, Pt/NG, Pt/
G, Pt/CNT and Pt/C electrodes measured in 0.5 mol�L-1 H2SO4 and 1 mol�L-1 CH3OH mixture, where current used for
chronopotentiometric tests was acquired from forward scan of respective CV curve at 0.5 V; e, f AC impedance spectra of Pt/
(MnCo2O4)2-(NG)1, Pt/G, Pt/CNTand Pt/C electrodes measured at their respective open circuit potential with an amplitude of 10 mV in
0.5 mol�L-1 H2SO4 and 1 mol�L-1 CH3OH mixture
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the Pt/MnCo2O4-NG catalyst should be linked to the fol-

lowing two reasons: on one hand, the introduction of

MnCo2O4 nanocrystals offers a large number of hydroxyl

sources to promote the oxidative elimination of CO on Pt

sites; on the other hand, the large presence of N atoms in

3D graphene frameworks can immobilize Pt nanoparticles,

which effectively prevents their agglomeration, dissolution,

and Ostwald ripening phenomena.

Furthermore, chronopotentiometric tests were conducted

to evaluate the anti-toxicity abilities of the Pt/MnCo2O4-

NG and reference catalysts. As depicted in Fig. 6d, the

anti-poisoning abilities of these catalysts are significantly

different. Noticeably, the Pt/(MnCo2O4)2-(NG)1 electrode

could last up to a maximum of 710 s at a low potential

level, far outperforming the reference Pt/NG (220 s), Pt/G

(65 s), Pt/CNT (60 s) and Pt/C (55 s) electrodes, which

further demonstrates the high poison resistance of the Pt/

(MnCo2O4)2-(NG)1 catalyst. Figure 6e, f presents the

electrochemical alternating-current (AC) impedance spec-

tra of various catalysts, where the high-frequency semi-

circle part can be employed to compare their electrical

conductivity. According to the fitting results based on a

standard equivalent circuit (Fig. S6), the charge transfer

resistance (Rct) value of the Pt/(MnCo2O4)2-(NG)1 catalyst

is only 6.1 X, which is smaller than that of Pt/G (7.9 X), Pt/
CNT (11.2 X), and Pt/C (1260.0 X) catalysts. The excellent
electrical conductivity is expected to endow the Pt/

(MnCo2O4)2-(NG)1 catalyst with abundant three-phase

reaction boundaries, which enables fast electrochemical

kinetics of the methanol oxidation reaction.

4 Conclusion

In summary, a facile and robust bottom-up method has

been developed to the spatial construction of ultrasmall Pt-

decorated 3D MnCo2O4-modified N-doped graphene

nanoarchitectures through a controllable hydrothermal

assembly reaction. Thanks to the 3D crosslinked porosity

feature, high specific surface area, numerous N species,

homogeneous Pt dispersion, and good electrical conduc-

tivity, the resulting Pt/MnCo2O4-NG catalyst with a proper

MnCo2O4/NG ratio exhibits unusual electrocatalytic

methanol oxidation performance with a large ECSA value

of 99.5 m2�g-1, high mass/specific activity

(1508.3 mA�mg-1/1.51 mA�cm-2), favorable poison tol-

erance, and excellent long-range stability, which are more

competitive than the conventional Pt/C, Pt/CNT, Pt/G, and

Pt/NG catalysts. We believe that such a design concept is

also suitable for the bottom-up construction of other 3D

graphene catalysts decorated with diverse spinel oxides

(e.g., CuCo2O4, CoFe2O4, NiCo2O4) and noble metals

(e.g., Pd, Au, Rh), which can serve as promising electrode

materials for the next-generation fuel cell devices.
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