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Electrocatalysts with high activities are crucial for high-

energy-density Zn-air batteries. However, the sluggish

kinetics of oxygen evolution reaction (OER) and oxygen

reduction reaction (ORR) on the electrocatalysts hindered

the development of Zn-air batteries. Herein, a new class of

MOF-derived nitrogen-doped carbon nanotubes encapsu-

lated with bimetallic oxide (FeNiO@NCNT) through facile

pyrolysis strategy is reported. The FeNiO@NCNT exhibits

high catalytic activities for both OER and ORR. In

particular, lattice oxygen and OH- in FeNiO@NCNT

provide more active sites (except metal active sites) for

OER, making FeNiO@NCNT has more excellent OER

performance than other catalysts (Ej=10 = 205 mV). As an

OER and ORR bifunctional catalyst, the rechargeable Zn-

air batteries based on FeNiO@NCNT exhibit a higher

discharge power density of 124.29 mW�cm-2, along with

low charge–discharge polarization and superior cycling

stability of 440 h at 20 mA�cm-2 with no expand in

polarization. This work demonstrates FeNiO@NCNT as

promising potential catalyst for the practical application in

various integrated energy systems.

The development of efficient energy conversion and

storage technologies is one of the key steps to solve energy

shortages and improve human life style [1–6]. Given the

high theoretical energy density, high power, high safety

and low cost, metal–air batteries (such as Zn-air batteries)

have been considered as promising renewable and sus-

tainable energy sources [7–11]. The energy store devices

generate electrical energy through the oxygen reversible

reaction, reacting at metal part (anode) and air-breathing

cathode [12–18]. However, the sluggish kinetics of OER

and ORR lead to low-power density and poor stability of

these devices, which limits their large-scale practical

applications [19–23]. To date, the noble metal-based cat-

alysts (such as Pt/C, IrOx and RuOx) used in the cathodes of

metal–air batteries are not only rare and precious, but their

catalytic bifunctionality and stability are also in insufficient

[24–27]. Thus, the key requirement for successful imple-

mentation of metal-air batteries is to develop the bifunc-

tional electrocatalysts with low cost, efficient catalytic

activity and stability to boost the kinetics for both OER and

ORR [28–30].

Recently, nonprecious metal-based materials have

become potential candidates to replace noble metal-
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supported catalysts [31–33]. The transition metal (such as

Co, Fe and Ni)-based materials with low cost, abundant

reserves and fast kinetics have been attracted widespread

attention as promising electrocatalysts [34–38]. Especially,

bimetal-based electrocatalysts exhibit superior electrocat-

alytic activities for oxygen catalysis have been widely

reported [39–42]. In recent years, metal–organic frame-

works (MOFs), which assembled by metal moieties and

organic ligands, are potential precursors to develop carbon-

based electrocatalysts with bimetallic active sites [43–46].

The two metal units can not only synergistic to optimize

the electronic structure, but also increase the charge carrier

density of the catalyst [47, 48]. In addition, to improve the

conductivity of the material, lots of efforts have been

contributed to explore the MOF-based carbon materials

(e.g., nanoparticles, nanosheets and nanotubes) with large

specific surface area and intrinsic high conductivity

[49–54]. However, the weak catalytic performances of pure

carbon materials greatly reduce the utilization efficiency of

the catalysts. Thus, the modification can be added such as

heteroatom functionalization and defect engineering based

on superior modifiability of MOF precursors [55–57].

Although great progress has been made in MOF-derived

bimetallic electrocatalysts, it is essential for high-output air

batteries to synergistically optimize the relationship

between the active catalytic sites and the conductivity of

the electrocatalysts [58–61].

Herein, we present a scalable synthesis strategy based on

pyrolytic oxidation strategy to fabricate a new class of

nitrogen-doped carbon nanotubes encapsulated with

bimetallic oxide derived from metal–organic frameworks

as a bifunctional electrocatalytic catalyst for rechargeable

Zn–air batteries. In view of the synergistic effect through

the nanotube structure and bimetallic oxide doping effects,

the obtained electrocatalyst shows outstanding OER

activities with a large mass activity of 734.7 A�g-1 at an

overpotential of 300 mV. The FeNiO@NCNT-based Zn–

air battery presents impressive performance including the

high-power density of 129.24 mW�cm-1 and excellent

stability (maintain over 440 h without obvious capacity

degradation), suggesting its application potential in energy

conversion devices. Therefore, this work provides an

advanced oxygen catalyst and a new direction for the

reasonable exploration of cathode catalysts for zinc–air

batteries.

As illustrated in Scheme 1, the general strategy is used

for the fabrication of bifunctional FeNiO@NCNT catalyst,

which is based on a facile two-step pyrolysis process. The

precursors were synthesized through self-assembly of

metal ions and sodium dicyanamide with addition of uro-

tropine. The obtained rod-shaped single-metal and

bimetallic precursors were named Fe-MOF-1, Ni-MOF-1

and FeNi-MOF-1, respectively. SEM images and XRD

patterns of precursors both showed the similar results with

previously reported (Figs. S1, S2) [62, 63]. XRD results

show that FeNi-MOF-1 is a composite of Fe-MOF-1 and

Ni-MOF-1, which proves that the bimetallic FeNi-coordi-

nated MOF was successfully synthesized. Subsequently,

the M@NCNT (M = Fe, Ni or FeNi) was obtained through

pyrolysis at 800 �C under N2 atmosphere. Remarkable, the

FeNi alloy NPs that served as catalytic sites grew in NCNT

during the pyrolysis, since the undesired metal particles

were removed by acid leaching. To further enhance the

performance of electrocatalysis, the M@NCNT following

treated in air at 350 �C to oxidize some of alloy metals. As

a result, the MO@NCNT was successfully synthesized.

SEM and TEM images demonstrate a nanotube structure

of M@NCNT, which is formed during the pyrolysis with

the metal nanoparticles encapsulated in the carbon layer as

shown in Fig. S3. With increase in pyrolysis temperature,

dicyandiamide decomposed and converted to graphitic

carbon nitride, which is similar to the conversion of mel-

amine to C3N4 [64]. Subsequently, the N-doped nanotubes

were formed by circulating of NH3 decomposed from C3N4

in carbon. As shown in Fig. 1a–c, the nanotube structures

of MO@NCNT maintain pristine structures without col-

lapse after oxidation. Remarkably, the nanotube wall of

MO@NCNT was thickened significantly, as shown in

TEM images (Fig. 1d–f), which not only provided large

contact interface to improve the conductivity and increase

electron transfer rates, but also protected metal active

centers to enhance the catalytic efficiency. Meanwhile,

FeNiO@NCNT exhibited more densely and wrapped car-

bon nanotubes with metal nanoparticles (around 100 nm)

compared to FeO@NCNT and NiO@NCNT, which were

favorable for transferring of electrolyte and gas diffusion.

The lattice spacing of 0.207 nm is detected for the

selected area in high-resolution transmission electron

microscopy (HRTEM) image (inset in Fig. 1f), which is

consistent with the (111) crystal plane of FeNi alloy

[65, 66]. However, TEM elemental mapping shows that O

signal is uniformly distributed within nanoparticles apart

from Fe and Ni signals (Fig. 1g–j). The result suggests that

the metal nanoparticles in FeNiO@NCNT composed of

FeNi alloy and corresponding partial oxides. Some O sig-

nals are displayed on the carbon nanotubes, which is

attributed to the partial oxidation of the nanotubes. In

addition, uniform C and N signals were detected in the

carbon nanotubes in Fig. S4, indicating that the N element

was indeed doped into the carbon nanotubes. XRD patterns

of MO@NCNT were used to confirm the catalytic sites

embedded in nanotubes. As shown in Fig. S5, the diffrac-

tion peak at about 26� assigned to the (002) plane of gra-

phitic carbon (PDF No. 75-1621). However, the

MO@NCNT only shows the diffraction peak of iron–

nickel alloy or metal element (about 43� and 52�
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corresponding to the plane of (111) and (200), respectively

(PDF No. 47-1405)). Thus, metallic catalytic sites are

oxidized partially, which may be more favorable for oxy-

gen catalysis.

XPS was further conducted to investigate the elemental

compositions and chemical states of MO@NCNT. Figure 2

shows the high-resolution Fe 2p and Ni 2p spectra of

FeNiO@NCNT, respectively, indicating the presence of

Scheme 1 Synthetic process of FeNiO@NCNT

Fig. 1 a–c SEM images of FeO@NCNT, NiO@NCNT and FeNiO@NCNT, respectively; d–f TEM images of FeO@NCNT,
NiO@NCNT and FeNiO@NCNT, respectively (high-resolution TEM image of FeNiO@NCNT); g–j elemental mappings of
FeNiO@NCNT
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the metals in oxidized state on the surface of

FeNiO@NCNT. The typical characteristic peaks at about

706 and 852.7 eV in Fe 2p3/2 and Ni 2p3/2, respectively,

can be assigned to metallic alloy [67, 68]. The peaks of

Fe2? and Fe3? (about 710.9 and 724.8 eV) could be fitted,

indicating the partly oxidized surface of metallic Fe

(Fig. 2a) [69, 70]; meanwhile, the peaks of Ni2? also can

be detected at about 853.7 and 872 eV at Ni2? 2p3/2 and

Ni2? 2p1/2 (Fig. 2b) [71, 72], respectively, which is

attributed to the partial oxidation of metallic Ni. The

presence of partially oxidized metal particles may provide

more active sites, which have a significant effect on the

activity of the catalyst. As shown in Fig. 2c, the high-res-

olution N 1s spectra disclose four N species, including M–

N (* 397.4 eV), pyridinic-N (* 398.4 eV), pyrrolic-N

(* 399.7 eV) and graphitic-N (* 401.2 eV), respectively

[73, 74]. Remarkable, FeNiO@NCNT exhibits the highest

content of pyridinic-N, which plays an important role for

OER and ORR [75, 76]. Furthermore, the O 1s spectrum

presents three types O peaks at around 528.5, 530.5 and

531.5 eV, which correspond to lattice oxygen, surface

oxygen and OH- species, respectively (Fig. 2d) [77].

Compared to FeO@NCNT and NiO@NCNT, the higher

concentration of OH- species in FeNiO@NCNT demon-

strates that bimetallic ions are favorable to the generation

of high-density extra oxygen vacancies, which may lead to

the faster reaction rate of FeNiO@NCNT in the oxygen

electrode reactions [78].

Raman spectroscopy was applied to study structural

defects and graphitization levels of the prepared catalysts

based on the intensity ratio IG/ID of defect (D-band) and

graphitic (G-band) carbon around 1350 and 1590 cm-1 [79].

As shown in Fig. S6, bimetallic NCNT showed higher IG/ID
for both M@NCNT and MO@NCNT compared to single-

metal NCNT, suggesting higher degree of graphitization for

bimetallic NCNT. Remarkably, the value of IG/ID for

FeNiO@NCNT is 2.78, which is the highest among all

samples, demonstrated that the superior conductivity for

FeNiO@NCNT is due to its highly graphitized carbon

nanotubes with less defects. This result is consistent with the

observations in SEM and TEM images, in which the nan-

otubes of FeNiO@NCNT are tidier, while the nanotubes in

FeO@NCNT and NiO@NCNT have many particles coex-

isting. Furthermore, FeNiO@NCNT has lower IG/ID values

than most carbon materials, indicating that a large number of

defects in the catalyst were formed due to nitrogen doping.

These defect centers provide active sites for the OER and

ORR process to ensure better electrocatalytic performance.

The catalyst-specific surface area is critical to the cat-

alytic activity, for which all samples were Brunauer–

Emmett–Teller (BET) explored. The specific surface area

and porosity of M@NCNT and MO@NCNT were

explored by N2 adsorption–desorption isotherm shown in

Figs. S7 and S8. BET results of FeNiO@NCNT are shown

in Fig. 3a. All samples showed a type-IV isotherm with

obvious hysteresis. In particular, the bimetallic FeNi-

Fig. 2 XPS spectra of MO@NCNT: a Fe 2p and b Ni 2p spectra of FeNiO@NCNT, c N 1s and d O 1s spectra of MO@NCNT
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coordinated catalyst shows an excellent specific surface

area, which also proves its better performance than other

samples. Among them, the specific surface areas of FeNi

and FeNiO are 218.9 and 212.6 m2�g-1, respectively. The

slight reduction of the specific surface area of FeNi in the

process of oxidation to FeNiO is attributed to the inter-

vention of O to occupy a certain coordination. The thick-

ening of carbon nanotubes during the oxidation process is

also directly related to the reduction of specific surface

area, which is consistent with the results of SEM and TEM.

The BET results for all catalysts are listed in Table S1.

After oxidation, the specific surface area of FeNiO@NCNT

without any changed while that of FeO@NCNT and

NiO@NCNT decreased. Such rich porous structures enable

the diffusion of ions in electrolyte and efficient transport of

reaction species to enhance electrocatalysis.

The oxygen catalytic activity of M@NCNT and

MO@NCNT was analyzed by OER and ORR tests. In OER

region, the electrocatalytic performance was evaluated in

conventional three-electrode system in 1 mol�L-1 KOH

solution. M@NCNT and MO@NCNT were deposited onto

Ni foam (NF) electrode. The linear sweep voltammetry

(LSV) polarization curves of MO@NCNT on NF are

shown in Fig. 3b, where FeNiO@NCNT exhibits out-

standing performance. FeNiO@NCNT only needs over-

potential of 205 mV to achieve current densities of

10 mA�cm-2 (Fig. S9). Its OER activity is significantly

higher than RuO2 (240 mV at 10 mA�cm-2). At high

Fig. 3 a Nitrogen sorption isotherm of FeNiO@NCNT, b LSV polarization curves on NF, c corresponding Tafel plots of MO@NCNT
samples and RuO2 in 1.0 mol�L-1 KOH solution, d iR compensation of MO@NCNT, e chronoamperometric response of
FeNiO@NCNT, f LSV curves of FeNi@NCNT and FeNiO@NCNT in O2-saturated 0.1 mol�L-1 KOH solution at 1600 r�min-1, g LSV
curves of FeNiO@NCNT in O2-saturated 0.1 mol�L-1 KOH solution at various rotation rates, h Tafel slopes from LSV curves at 1600
r�min-1 and i values of DE (DE = Ej=10-E1/2) of FeNiO@NCNT and other control samples
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current densities, the OER activity of FeNiO@NCNT

(305 mV at 50 mA�cm-2 and 332 mV at 100 mA�cm-2) is

not only higher than that of RuO2 (368 mV at 50 mA�cm-2

and 494 mV at 100 mA�cm-2), but also higher than that of

FeNi@NCNT (337 mV at 50 mA�cm-2 and 406 mV at

100 mA�cm-2) (Fig. S10a). OER performance of all cata-

lysts is shown in Table S2. In particular, the current density

of FeNiO@NCNT can reach 500 mA�cm-2, which is much

higher than other catalysts, including RuO2 and

FeNi@NCNT. The loading of all catalysts on NF was

0.03 mg�cm-2. When the overpotential is 300 mV,

FeNiO@NCNT shows great potential to achieve a high-

quality current ratio of 734.7 A�g-1.

Metal centers are traditionally considered to be the main

active sites of metal oxides. However, the contribution of

lattice oxygen and OH- to OER is neglected. In fact, lattice

oxygen and OH- also participate in the catalytic reaction

and can significantly reduce the overpotential of OER [80].

In an alkaline environment, lattice oxygen and OH- on the

surface of the catalyst can directly participate in OER and

react with hydroxide ions adsorbed on the metal center to

form H2O2 [81]. Owing to the participation of lattice

hydroxide species, high surface OH- coverage is not

required to achieve low OER overpotential. Moreover,

during the oxygen release process, the formed oxygen

vacancies can be replenished by another OH- produced by

the decomposition of H2O2. The excellent OER perfor-

mance of FeNiO@NCNT is partly attributed to the syner-

gistic catalysis of the bimetallic FeNi alloy. The other part

is attributed to the large amount of lattice oxygen and OH-

in the oxides participating in the catalytic reaction.

The Tafer slope is shown in Figs. 3c, S10b. It can be

clearly seen that FeNiO@NCNT (82 mV�dec-1) is only

worse than RuO2 (78 mV�dec-1), which is significantly

better than other catalysts. The electrochemical impedance

spectroscopy (EIS) in Fig. 3d shows that FeNiO@NCNT

(26.5 X) and RuO2 (54 X) provide lower charge transfer

resistance (Rct) than other samples. The reaction resistance

of FeNiO@NCNT (26.5 X) is smaller than FeNi@NCNT

(30 X) (Fig. S10c). It fully demonstrates that the syner-

gistic effect of the bimetallic-doped oxides, while the

participation of oxygen further optimizes the electronic

structure, promotes the transfer of electrons and improves

the electrochemical activity. In order to investigate the

stability of the catalyst FeNiO@NCNT, it was measured

using a chronoamperometry method. As shown in Fig. 3e,

the catalyst remained stable (85%) after 90,000 s of con-

tinuous operation. After a long period of work, the

FeNiO@NCNT has not been decomposed, and its shape

remains intact (Fig. S11). It is shown that the metal oxide

can maintain high-efficiency activity for a long time in an

alkaline solution (1 mol�L-1 KOH). The protection of the

carbon layer is an important reason for the stability of the

metal oxide. It shows that while maintaining high activity

of oxide, it overcomes the disadvantage of poor stability.

The electrochemically active surface area (ECSA) and

double layer capacitor capacitance Cdl calculation results

of MO@NCNT are shown in Figs. S12–S14, and the

detailed calculation process of ECSA is reflected in the

supporting information. FeNiO@NCNT has the highest Cdl

value and the highest ECSA (17.17), superior to other

catalysts, which is consistent with its superior performance.

In ORR region, CV and LSV tests were performed to evaluate

the ORRperformance of the prepared electrocatalysts on rotating

disk electrodes in O2-saturated 0.1 mol�L-1 KOH solution. As

shown in Fig. S15, FeNiO@NCNT has a significant oxygen

reduction peak potential at 0.8 V (vs. RHE), which is more

positive than FeNi@NCNT (0.78 V). Within the LSV curve at

1600 r�min-1 (Fig. 3f), FeNiO@NCNT provides an onset

potential (Eonset) of 0.9 V and a half-wave potential (E1/2) of

0.75 V. The electron transfer number (n) of FeNiO@NCNT is

calculated as 3.90, which is larger than that of the comparative

catalysts (Fig. 3g), indicating that the 4e- ORR route is required

for the catalytic process. The electrocatalyst has a K-L curve with

good linear parallelism indicating a first-order reaction of cat-

alytic oxygen (Fig. S16). The outstanding ORR activity of

FeNiO@NCNT was evaluated by its lowest Tafel slope

(52.8 mV�dec-1) compared to FeNi@NCNT (65.3 mV�dec-1),

further highlighting its superior ORR kinetics (Fig. 3h).

With comprehensive comparison of OER and ORR

performance, the performance of bimetallic catalysts is

much better than that of single-metal catalysts. To further

evaluate the activity of the bifunctional catalyst, it was

further evaluated by the potential difference (DE) between

Ej=10 of OER and E1/2 of ORR. DE is obtained from

equation DE = Ej=10–E1/2. Smaller DE corresponds to bet-

ter overall oxygen catalytic activity. The OER potential

(Ej=10) of FeNi@NCNT is 1.54 V, and the half-wave

potential (E1/2) of ORR is 0.72 V. The comprehensive

calculation is: DE(FeNi@NCNT) = Ej=10–E1/2 = 0.820 V. The

OER potential (Ej=10) of FeNiO@NCNT is 1.435 V, and

the E1/2 of ORR is 0.75 V. The comprehensive calculation

is: DE(FeNiO@NCNT) = Ej=10–E1/2 = 0.685 V.

To further evaluate the performance of FeNiO@NCNT,

it was compared with recently reported bimetallic FeNi

catalysts (Fig. 3i). The results show that glu-NiFe (DE =

0.82 V) [82], FeNi/N–C-800 (DE = 0.755 V) [83], FeNi/

N-CNT (DE = 0.757 V) [84] and FNSNC73-800 (DE =

0.82 V) [85] have larger DE than FeNiO@NCNT.

Although the ORR performance of FeNiO@NCNT is

worse than that of other samples, the extremely excellent

OER performance makes its DE value much smaller than

that of other samples, so the subsequent Zn–air battery test

was carried out for evaluation.

Collecting the above results helps us to identify the

excellent bifunctional electrocatalytic performance of
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FeNiO@NCNT: First, the thicker and higher surface area

of carbon nanotubes provides abundant and highly dis-

persed FeNiO active sites during OER/ORR process and

promotes the mass diffusion and transport. Second, a

higher proportion of pyridine nitrogen exists in

FeNiO@NCNT, which is beneficial to increase the onset

potential and limit the diffusion current. Third, the positive

synergistic effect of bimetallic oxides and carbon nan-

otubes can improve electrical conductivity and ensure fast

electron transport. Finally, the oxides of Fe and Ni

encapsulated by carbon nanotubes endow the catalyst with

better resistance to aggregation and dissolution.

To further evaluate the outstanding performance of the

bifunctional catalyst FeNiO@NCNT, the liquid recharge-

able Zn–air batteries were constructed, in which

FeNiO@NCNT as air–cathode without external current

corrector, polished zinc plate as the anode, and 6 mol�L-1

KOH with 0.2 mol�L-1 zinc acetate is used as the elec-

trolyte (Fig. 4a). For comparison, the rechargeable Zn–air

battery composed of same quality mixture of Pt/C and IrO2

(1:1) was fabricated and investigated. As shown in Fig. 4b,

c, the FeNiO@NCNT-based battery displays an open-cir-

cuit voltage of 1.38 V (close to that of Pt/IrO2) and smaller

discharge/charge gap than that of Pt/IrO2 in the polariza-

tion curves. The FeNiO@NCNT-based Zn–air battery

displays a higher discharge power density of 124.29

mW�cm-2, which is 89.4 mW�cm-2 higher than that of the

Pt/C ? IrO2-based battery (Fig. 4d). Moreover, the

FeNiO@NCNT-based battery delivers a high specific

capacity (per g of Zn) of 770.4 mAh�gZn
-1 (Fig. S17). The

recharge ability and cyclic stability that presented by

charge–discharge cycle curves are shown in Fig. 4e, the

charge and discharge voltages of FeNiO@NCNT-based

battery without significant drop of the overpotential for

more than 440 h. This shows that FeNiO@NCNT main-

tains a long-term stability with outstanding performance

and is a very promising new catalyst. In particular,

Table S3 shows the performance of FeNiO@NCNT com-

pared with other Zn–air battery catalysts, which further

confirms the excellent performance of FeNiO@NCNT.

In summary, MOF-derived MO@NCNT with N-doped

nanotubes was successfully prepared as a highly active

electrocatalyst, which possessed desirable merits such as

superior conductivity, multiple active sites and large

specific surface areas. The as-prepared FeNiO@NCNT

exhibited more efficiently catalytic activities and improved

durability toward both OER and ORR, which can be

attributed to the nanotube structures with and the apical

dominance of FeNi semi-oxidized metal particles encap-

sulated in the tip of the NCNT. In particular, the current

density of 10 mA�cm-2 can be achieved with only 205 mV

overpotential for OER, which is superior to most catalysts.

The Zn–air batteries with both aqueous and solid elec-

trolytes based on FeNiO@NCNT bifunctional air–cathode

displayed low charging/discharging overpotential, high

specific capacity and high-energy density. In addition, the

battery exhibited excellent stability and durability further

entitle FeNiO@NCNT as a desirable air–cathode catalyst,

Fig. 4 Zn–air battery performance of FeNiO@NCNT compared with Pt/C@RuO2 catalyst. a Schematic illustration of Zn–air battery,
b open-circuit plots, c charge/discharge polarization curves, d polarization and power density curves and e long-term cycling
performance at current density of 20 mA�cm-2 for 440 h
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which provides a low-cost strategy and efficient bifunc-

tional catalysts toward energy conversion devices.

Acknowledgements This work was financially supported by

Zhejiang Provincial Natural Science Foundation of China (No.

LY20E020001) and the Fundamental Research Funds of Zhejiang

Sci-Tech University (No. 22212290-Y).

Declarations

Conflict of interests The authors declare that they have no conflict

of interest.

References

[1] Zhu J, Chen XY, Thang AQ, Li FL, Chen D, Geng HB, Rui XH,

Yan QY. Vanadiumbased metal-organic frameworks and their

derivatives for electrochemical energy conversion and storage.

SmartMat. 2022;3(3):384. https://doi.org/10.1002/smm2.1091.

[2] He B, Zhang QC, Pan ZH, Li L, Li CW, Ling Y, Wang ZX,

Chen MX, Wang Z, Yao YG, Li QW, Sun LT, Wang J, Wei L.

Freestanding metal-organic frameworks and their derivatives: an

emerging platform for electrochemical energy storage and

conversion. Chem Rev. 2022;122(11):10087. https://doi.org/10.

1021/acs.chemrev.1c00978.

[3] Xu GY, Zhu CY, Gao G. Recent progress of advanced con-

ductive metal-organic frameworks: precise synthesis, electro-

chemical energy storage applications, and future challenges.

Small. 2022;18(44):2203140. https://doi.org/10.1002/smll.

202203140.

[4] Zheng SB, Shi DJ, Yan D, Wang QR, Sun TJ, Ma T, Li L, He D,

Tao ZL, Chen J. Orthoquinone-based covalent organic frame-

works with ordered channel structures for ultrahigh performance

aqueous zinc-organic batteries. Angew Chem Int Ed. 2022;

61(12):17511. https://doi.org/10.1002/anie.202117511.

[5] Fan C, Wang X, Wu XR, Chen YS, Wang ZX, Li M, Sun DM,

Tang YW, Fu GT. Neodymium-evoked valence electronic

modulation to balance reversible oxygen electrocatalysis. Adv

Energy Mater. 2022;13(2):2203244. https://doi.org/10.1002/

aenm.202203244.

[6] Cai YL, Chen HW, Liu PX, Chen JZ, Xu H, Alshahrani T, Li

LB, Chen BL, Gao JK. Robust microporous hydrogen-bonded

organic framework for highly selective purification of methane

from natural gas. Micropor Mesopor Mater. 2023;352:112495.

https://doi.org/10.1016/j.micromeso.2023.112495.

[7] Yu DS, Ma YC, Hu F, Lin CC, Li LL, Chen HY, Han XP, Peng

SJ. Dual-sites coordination engineering of single atom catalysts

for flexible metal-air batteries. Adv Energy Mater. 2021;11(30):

2101242. https://doi.org/10.1002/aenm.202101242.
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