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Abstract Initially defined high entropy alloys (HEAs)

usually exhibit a single-phase solid-solution structure.

However, two and/or more types of phases in HEAs pos-

sibly induce the desired microstructure features, which

contribute to improving the wear properties of HEAs. Here,

we prepare a series of (AlCoCrFeNi)100-xHfx (x = 0, 2, 4

and 6; at%) HEAs and concern their phase compositions,

microstructures and wear properties. Hf leads to the for-

mation of (Ni, Co)2Hf-type Laves phase and tailors the

microstructure from a body-centered cubic (BCC) single-

phase structure to a hypoeutectic structure. An increased

hardness from * HV 512.3 to * HV 734.1 is due to

solid-solution strengthening, grain refinement strengthen-

ing and precipitated phase strengthening. And a few oxides

(Al2O3 ? Cr2O3) caused by the wear heating contribute to

an 85.5% decrease in wear rate of the HEA system from

6.71 9 10-5 to 0.97 9 10-5 m3�N-1�m-1. In addition, Hf

addition changes the wear mechanism from abrasive wear,

mild oxidative wear and adhesive wear to oxidative wear

and adhesive wear.

Keywords High entropy alloy; Laves phase; Hardness;

Wear mechanism

1 Introduction

High entropy alloys (HEAs), which are regarded as one

kind of innovative materials, have received a lot of atten-

tion [1–5]. In general, HEAs consist of multiple elements

and are in a single-phase solid solution [6–8]. The solid-

solution structure can not only contribute to the solid-so-

lution hardening caused by the multi-element interactions

but also modify the ductility due to lacking interphase

boundaries [9]. Consequently, HEAs show many desired

properties, namely, high strength and hardness, suit-

able ductility, and excellent thermal stability, etc.

[8, 10–20]. For example, AlCoCrFeNi HEA possesses a

Vickers hardness higher than HV 520 and a compressive

yield strength between 1138 and 1702 MPa [11]. Based on

the Archard rule under dry wear conditions [21], there is an

inversely proportional relationship between wear rate and

material hardness (or strength). Therefore, HEAs are

expected to exhibit excellent anti-wear properties [22–30].

Investigations on wear-resistant HEA materials manifest

that the improved wear properties of these HEAs are

mainly associated with multiple phases in materials, and

precipitated phase strengthening plays an essential role in

different strengthening mechanisms [31–36]. For instance,

Chuang et al. [31] assessed the effects of Al and Ti con-

tents on phases, microstructures, and wear properties of

AlxCo1.5CrFeNi1.5Tiy HEAs. Al and Ti could tailor the

phase compositions of the HEAs, particularly in the vol-

ume fraction of hard g phase, thus improving their wear

resistance. Furthermore, the formation of a boride phase

[37] or TiC [38] ceramic–metal composite enhances the

HEA hardness, thus, the wear resistance.

Because of good overall performance of AlCoCrFeNi

containing A2 and B2 phases, it catches numerous attention

[39–43]. Many metallic elements, i.e., Nb [44] and Zr [45],
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are added into AlCoCrFeNi HEA to produce the hard

precipitated phase to modify the mechanical performance.

The atomic radius of Hf is almost the same as that of Zr but

larger than that of Nb [46]. Meanwhile, the mixing

enthalpies between Hf and other constituent elements in

AlCoCrFeNi HEA are a little more positive than those

between Zr and constituent elements and more negative

than those between Nb and constituent elements [47]. What

occurs when add Hf into AlCoCrFeNi HEA?

In this work, we design a group of (AlCoCrFr-

Ni)100-xHfx (x = 0, 2, 4 and 6; at%) HEAs. The effect of

Hf addition on phases and microstructures of the HEAs is

revealed. And the wear properties of (AlCoCrFr-

Ni)100-xHfx HEAs are studied. This work opens other

doors on the potential microstructure features that cause the

superior wear-resistant properties of AlCoCrFeNi HEA.

2 Experimental

The pure Al, Co, Cr, Fe, Ni and Hf particles with the purity

higher than 99.9% (DM Material Inc., Beijing, China) were

received as raw materials and compounded through arc

melting in an argon atmosphere. For getting the uniform

composition, each ingot (U45 mm 9 10 mm) was re-

melted at least six times. The crystal structures of HEAs

were determined by X-ray diffraction (XRD, Empyrean,

Netherland) with Cu Ka radiation scanning from 20� to

100� at a rate of 4 (�)�min-1. The microstructure mor-

phology of each HEA ingot was observed using scanning

electron microscopy (SEM, Merlin Compact, Zeiss, Ger-

many) operated at 20 kV. Transmission electron micro-

scopy (TEM) and EDS high-angle annular dark-field (EDS-

HAADF) analyses were carried out by using an FEI-Talos

F200X microscope operated at 200 kV.

The Vickers hardness (HV-1000, Shanghai Lianer

Testing Equipment Co., China) was recorded at a load of

300 g for 10 s. For dry wear tests, the specimens with

dimensions of U25 mm 9 3 mm were fabricated by wire

cutting from the as-cast ingots. Prior to the wear test, all

specimens were firstly ground against 400-, 800-, 1200-

and 2000-grit sandpaper and then mechanically polished

with diamond paste (W1.5). The surface roughness (Ra)

values determined by atomic force microscopy (AFM,

Dimension Fastscan, Bruker, Germany) for Hf-0, Hf-2,

Hf-4 and Hf-6 HEAs are around 4.34, 2.59, 4.62 and

5.10 nm, respectively. The dry wear test parameters

(MS-T3000, Lanzhou Huafeng Technology Co., Ltd.

China) were load of 5 N, sliding speed of 300 r�min-1,

track radius of 6 mm, sliding time of 30 min and Si3N4

ball (U6 mm), at room temperature. The three-dimen-

sional morphologies and profiles of (AlCoCrFr-

Ni)100-xHfx HEAs after dry wear tests were obtained by

white light interferometer (Contour GT-X3, Bruker,

Tucson, AZ, USA).

3 Results and discussion

3.1 Phase composition and microstructures

Figure 1a presents XRD patterns of (AlCoCrFrNi)100-xHfx
HEAs. A2 and B2 body-centered cubic (BCC) phases are

found in each HEA. And some new diffraction peaks

originating from (Ni, Co)2Hf-type Laves phase appear in

three Hf-doped HEAs. By adding Hf, the peak intensity of

Laves phase increases, manifesting that the volume fraction

of Laves phase increases. Besides, the (110)BCC diffraction

peak shifts towards a lower reflection angle, as learnt from

Fig. 1b. This suggests that the dissolution of Hf atom in

BCC phase can induce a more serious lattice distortion

compared with Hf-0 HEA.

For SEM observation of Hf-0 HEA, Fig. 1c illustrates

the single-phase morphology. When Hf is introduced

(Fig. 1d–f), i.e., Hf-2, -4 and -6 HEAs, the hypoeutectic

structure composed of BCC phase and eutectic phase is

obtained. The eutectic phase is composed of alternating

BCC phase and Laves phase. More Hf addition causes a

higher volume fraction of Laves phase, according well with

XRD results.

Figure 1g shows the chemical distribution maps of Hf-6

HEA. In the primary BCC phase, the dendrite core (DR)

region has (Ni, Al)-rich composition, whereas the inter-

dendrite (ID) region displays (Fe, Cr)-rich composition. In

Laves phase region, Ni, Co and Hf segregate. Table 1

shows the chemical compositions of various regions in Hf-

6 HEA. The primary BCC phase (Zone 1) is enriched with

Fe, Cr and Al but depleted of Ni, Co and Hf, which is

opposite to the Laves phase (Point 3). In general, the

chemical composition of each element in Zone 2 is almost

half of the sum of these in Zone 1 and Point 3. This proves

that the eutectic phase consists of the BCC phase and Laves

phase. The higher contents of Ni, Co and Hf in Laves phase

are due to the negative mixing enthalpies (Table 2 [46, 47])

and large electronegativity (Table 3 [48]) of Ni–Hf and

Co–Hf atomic pairs.

Figures 2, 3 show TEM morphologies, SAED patterns

and chemical composition maps of Hf-0 and Hf-2 HEAs.

As learnt from Fig. 2a, b, d, e, the cubic or rod-like A2

precipitates (disordered phase) and continuous B2 matrix

(ordered phase) are found. A difference in nm-sized mor-

phologies of DR and ID regions is ascribed to the type of

order of the domains and strain [49]. Figure 2c, f reveals

the elemental distribution maps of Hf-0 HEA. The A2

phase is enriched with Fe and Cr but depleted of Ni and Al,

which is opposite to the B2 phase. The Co is uniformly
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distributed. Figure 3a–c shows TEM images of Hf-2 HEA.

In the eutectic region, the alternately grown BCC and

Laves phases are further testified by SAEDs (Fig. 3d1–d3).

Fig. 1 a, b XRD patterns and c–f SEM images of HEAs as well as g elemental distribution maps of Hf-6 HEA

Table 1 Chemical distribution of various regions in Hf-6 HEA (at%)

Zone Al Co Cr Fe Ni Hf

Nominal 18.80 18.80 18.80 18.80 18.80 6.00

BCC primary phase (Zone 1) 22.10 17.99 21.05 19.12 18.49 1.25

Eutectic region (Zone 2) 13.97 20.43 16.80 17.82 19.64 11.35

Laves-rich region (Point 3) 7.67 22.18 9.78 16.39 22.45 21.53

Table 2 Mixing enthalpy (kJ�mol-1) between two components
and atomic radius (nm)

Element (atom radius) Al Co Cr Fe Ni Hf

Al (0.143) 0 - 19 - 10 - 11 - 22 - 39

Co (0.125) 0 - 4 - 1 0 - 35

Cr (0.128) 0 - 1 - 7 - 9

Fe (0.126) 0 - 2 - 21

Ni (0.124) 0 - 42

Hf (0.159) 0

Table 3 Electronegativity of various constituent elements in Al–
Co–Cr–Fe–Ni–Hf HEA system

Element Al Co Cr Fe Ni Hf

Electronegativity 1.61 1.88 1.66 1.83 1.91 1.30
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And the numerous stacking faults and twins are discovered

in Laves phase of an as-casted HEA, which is in accor-

dance with Refs. [50–52]. As seen in Fig. 3e, f, Laves

phase is (Hf, Ni and Co)-rich, agreeing well with EMPA

results (Fig. 1g).

3.2 Mechanical properties

TheVickers hardness values of (AlCoCrFrNi)100-xHfxHEAs

are collected in Fig. 4a. By increasing Hf addition, the Vick-

ers hardness enhances from * HV 512.3 to * HV 734.1.

The hardness enhancement is resulted from three strength-

ening mechanisms: solid-solution strengthening, fine-grain

strengthening, and precipitated phase strengthening. As learnt

from Fig. 1b, the dissolution of Hf atoms in BCC phase can

cause a more serious lattice distortion relative to Hf-0 HEA.

Among the four HEAs, the most serious lattice distortion

takes place in Hf-6 HEA. However, the dissolution content of

Hf atoms in Hf-6 HEA is only 1.25 at% (Table 1), which is

too lower to be responsible for the total Vickers hardness

increments of (AlCoCrFrNi)100-xHfx HEAs.

Meanwhile, fine-grain strengthening has also made

some contributions due to the ‘‘Hall–Petch’’ relationship

[53, 54] as follows:

ry ¼ r0 þ
ky

d1=2
ð1Þ

where ry is the yield stress, r0 stands for the lattice friction
stress, ky (182 MPa�lm1/2 [55]) denotes the strengthening

coefficient and d is the mean grain diameter. According to

Eq. (1), an increase in yield strength ascribed to the grain

size difference (DrG) is described as:

DrG= ky d
�1=2
H � d

�1=2
0

� �
ð2Þ

where dH denotes the grain size of the Hf-doped HEA (Hf-2,

Hf-4 and Hf-6 HEAs), and d0 is the grain size of Hf-0 HEA.

Based on Fig. 1c–f, the mean grain sizes of Hf-0, Hf-2, Hf-4

and Hf-6 HEAs are d0 = 141.6 lm, dHf-2 = 61.7 lm, dHf-4
= 45.9 lm, and dHf-6 = 31.1 lm, respectively. The strength

contribution values of fine-grain strengthening on Hf-2, Hf-4

and Hf-6 HEAs are 7.88, 11.58, and 17.35 MPa,

respectively. It should be noted that the strength of an

alloy follows a linear relationship with the hardness of an

alloy, which fits with Tabor’s findings [56], i.e.,

H ¼ c� ry ð3Þ

where c (3.3) is the proportionality factor based on Ref. [57].

Therefore, the calculated hardness increments corresponding

Fig. 2 a–d TEM images, b1, b2, e1, e2 SAED patterns, and c, f elemental composition maps of Hf-0 HEA
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to the fine-grain strengthening for Hf-2, Hf-4, and Hf-6

HEAs are * HV 2.60, * HV 3.82, and * HV 5.73,

respectively (Fig. 4b). The calculated hardness increments

are too small to account for the total hardness increase.

Figure 4c elucidates the relationship between the vol-

ume fraction of Laves phase and Hf addition. By adding Hf

from 0 to 6 at%, the volume fraction of Laves phase

increases from 0 to 29.7 vol%. In consequence, the Vickers

hardness is enhanced from HV 512.3 to HV 734.1. This

indicates that precipitated phase strengthening acts as a

vital role in the total Vickers hardness increase of

(AlCoCrFrNi)100-xHfx HEAs.

3.3 Wear features

The coefficient of friction (COF), regarded as a basic

parameter of a friction system, is related to the resistance

between an alloy and a friction pair. When the test is

Fig. 3 a–c, e TEM images, d1–d3 SAED patterns, and f elemental composition maps of Hf-2 HEA

Fig. 4 a Vickers hardness, b calculated hardness increase and c volume fraction of Laves phase of (AlCoCrFrNi)100-xHfx HEAs
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conducted under the same conditions, the microstructure

and surface roughness play a vital role on the COF. The

COF curves of (AlCoCrFrNi)100-xHfx HEAs are depicted

in Fig. 5a. Some severe fluctuations during the running-in

process are caused by the ragged grinding between HEA

and friction pair. After this running-in process of appro-

priately 10 min, there are four relatively stable COF

curves. During the relatively stable process, both instru-

ment vibration and measurement accuracy lead to the

fluctuation of COF value [58]. To accurately compare COF

values of (AlCoCrFrNi)100-xHfx HEAs, Fig. 5b shows the

average COF values collected from the relatively

stable period of COF curves. The COF values of Hf-0, -2, -

4 and -6 HEAs are 0.53, 0.46, 0.35 and 0.28, respectively.

By adding Hf, the COF value decreases. Tailoring the alloy

microstructure results in the increase of Vickers hardness

and thereby reduces the COF value [10, 58], agreeing well

with this work.

The 3D worn morphologies of (AlCoCrFrNi)100-xHfx
HEAs are shown in Fig. 6. When Hf addition increases

from 0 to 6 at%, the distance and depth of wear track of Hf-

doped HEAs gradually decrease, indicating the anti-wear

property improvement of Hf-doped HEAs. Figure 7 dis-

plays the wear rates of (AlCoCrFrNi)100-xHfx HEAs. With

increasing Hf element, the Vickers hardness increases

(Fig. 4a), and the wear rate decreases from 6.71 9 10-5 to

0.97 9 10-5 m3�N-1�m-1, agreeing well with Archard’s

rule [21].

Figure 8 shows the worn morphologies of (AlCoCrFr-

Ni)100-xHfx HEAs. On the wear track surface of Hf-0

HEA, the wear debris island and scattered wear debris are

detected. The formation of the wear debris island is caused

by the accumulation and compaction of wear debris [59].

Si and O are found on the surface of wear debris island.

Meanwhile, O is obtained on the wear track surface of Hf-0

HEA (Table 4). Hence, the wear mechanism of Hf-0 HEA

is affirmed to be abrasive wear, adhesive wear, and mild

oxidative wear. For Hf-2, -4 and -6 HEAs, many wear

grooves and wear debris are present on their wear track

surfaces instead of the wear debris island. It is noted that O

content on the wear track surfaces increases by adding Hf,

manifesting that oxidative wear plays an increasingly cru-

cial role. As a result, the wear mechanisms of Hf-2, -4 and -

6 HEAs are oxidative wear and adhesive wear.

Fig. 5 a Coefficient of friction (COF) curves and b mean COF values of (AlCoCrFeNi)100-xHfx HEAs

Fig. 6 3D worn morphologies of (AlCoCrFeNi)100-xHfx HEAs
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In Table 4, the chemical compositions of wear track

surfaces of (AlCoCrFrNi)100-xHfx HEAs are testified by

EDS. An increasing O content suggests that more oxides

are produced on the wear track surfaces of Hf-doped

HEAs. In order to identify the phase compositions of oxi-

des on worn surfaces, Raman spectra of four (AlCoCrFr-

Ni)100-xHfx HEAs are carried out and displayed in Fig. 9a.

On the outside of wear track surface, no oxides are

observed. For Hf-0 HEA, there is only a small number of

Al2O3 and Cr2O3 oxides on the inside of the worn surface.

The Vickers hardness of Hf-doped HEAs is higher than that

of Hf-0 HEA. Therefore, Hf-doped HEAs are strong

enough to resist the wear against the Si3N4 ball, and the

alloy surface will not be worn off quickly during the wear

test. Indeed, they can withstand being worn for a long time

and are thus continuously heated due to friction. Such

frictional heating raises the temperature of the local contact

areas on the surface, causing serious surface oxidation

[31, 38]. As a result, for Hf-6 HEA, there are a large

number of Al2O3 and Cr2O3 oxides. Al2O3 and Cr2O3

oxides protect the Hf-doped HEAs from direct contact with

friction pair and reduce the degree of adhesive wear

[60, 61]. Thus, the wear rate of the Hf-doped HEAs is

further decreased. The reason why Al2O3 and Cr2O3 oxides

form rather than other oxides is correlated with the lowest

Gibbs free energy of the formation of Al2O3 and Cr2O3

oxides, as shown in Fig. 9b.

4 Conclusion

To summarize, the phase compositions, microstructure

features and wear properties of (AlCoCrFrNi)100-xHfx

Fig. 7 Wear rate values of (AlCoCrFeNi)100-xHfx HEAs

Fig. 8 SEM images of worn morphologies of (AlCoCrFeNi)100-xHfx HEAs: a Hf-0; b Hf-2; c Hf-4; d Hf-6
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HEAs are studied. Hf addition changes the original phase

constitution, which yields the formation of (Ni, Co)2Hf-

type Laves phase besides the original solid solution phase.

This causes the microstructure evolution from a BCC solid

solution to a hypoeutectic structure. By increasing the Hf

addition, the Vickers hardness enhances from HV 512.3 to

HV 734.1, which is related to solid-solution strengthening,

fine-grain strengthening and precipitated phase strength-

ening. The elevated hardness of Hf-doped HEAs and the

formed oxides (Al2O3 ? Cr2O3) resulting from the wear

heating contribute to a downward wear rate, thus changing

the wear mechanism from abrasive wear, adhesive wear

and mild oxidative wear to oxidative wear and adhesive

wear. The high-performance AlCoCrFeNiHf HEAs have

broad application prospects in the mechanical equipment

which are used in extreme conditions in the future.
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