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Electrocatalytic reduction of carbon dioxide (CO2RR) into

high value-added chemicals and fuels has been regarded as

a promising approach to achieve carbon neutrality. Though

nickel-nitrogen-carbon (Ni-N-C) electrocatalysts have

shown superior CO2RR performance, the synthesis of

highly effective Ni-N-C catalyst is still challenging.

Herein, a three-dimensional (3D) ordered porous nitrogen-

doped carbon-supported Ni-Nx catalyst has been synthe-

sized by direct pyrolysis of a mixture of SiO2, polyvinyl

pyrrolidone, nickel-phenanthroline complex, followed by

the removal of the SiO2 templates. Benefiting from the

porous structure and accessible active sites, the optimized

catalyst exhibits a high CO Faradaic efficiency above 85%

between –0.6 and –0.9 V versus reversible hydrogen

electrode (vs. RHE), and a large CO current density (jCO)

of –16.2 mA�cm-2 at –0.8 V (vs. RHE). Density functional

theory (DFT) calculations demonstrate that the Ni-N-C

catalyst with Ni-Nx species can enhance CO2RR reaction

dynamic process and suppress hydrogen evolution reaction,

thus improving the conversion efficiency toward

CO2RR.

Electrocatalytic reduction of carbon dioxide (CO2RR)

into commercial chemicals and high-valued fuels is as an

effective strategy to achieve a carbon–neutral society

[1–10]. However, the CO2RR process still faces great

challenges due to sluggish reaction process and unfavor-

able competitive hydrogen evolution reaction, thus

requiring highly efficient electrocatalysts to obtain desir-

able products at low overpotentials [11–20]. Though pre-

cious metals (e.g., Pd, Au and Ag) have been reported to be

efficient in catalyzing the CO2-to-CO conversion process,

the high cost, low stability and limited reserves hampered

their practical application [21–26]. Hence, it is of great

importance to develop non-precious metals electrocatalysts

with low cost, low overpotential and high Faraday

efficiency.

Recently, transition metal–nitrogeN-Carbon (M-N-C,

M=Ni, Fe and Co) catalysts with atomically dispersed

M-Nx sites have demonstrated attractive performance

because of their unique electronic structures and near 100%

atomic utilization [27–33]. Among them, Ni-N-C has been

reported to display superior selectivity for CO2-to-CO

conversion compared to other M-N-C materials [34–37]. In

general, the reported Ni-N-C catalysts were often synthe-

sized by directly pyrolyzing metal salts and NC precursors.

For instance, Li et al. prepared Ni-N-C via a simple solid-

phase pyrolysis of urea and Ni(NO3)2�6H2O [38]. The Ni-

N-C catalysts could only deliver a CO partial current

density (jCO) of –6 mA�cm-2 at –0.7 V (vs. RHE). Hou

et al. reported single-atom NiN4 active sites supported by a

carbon matrix catalyst, prepared by carbonized the mixture

of nickel nitrate and ophenylenediamine, delivering a

maximal jCO of –3.5 mA�cm-2 at –1.0 V (vs. RHE) [39].
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Despite great efforts have been made, these Ni-N sites were

often randomly dispersed in the carbon host with very

limited exposure, resulting in a low utilization of the cat-

alytic centers [40–42]. Therefore, the distribution of Ni-N-

C and the nanostructure of the carbon support should be

rationally designed to sufficiently expose the active sites,

thus improving the catalytic performance toward CO pro-

duction. The ordered porous structure with a specific sur-

face area not only facilitates the exposure of the active site

to the electrolyte, but also ensures the efficient exchange of

protons, electrons, carbon dioxide and the target product.

However, it is practically very challenging to synthesize

porous structures while controlling the formation of Ni-N

active sites.

Herein, we report a three-dimensional (3D) ordered

porous nitrogen-doped carbon-supported Ni-Nx as effective

electrocatalyst for CO2RR. As illustrated in Scheme 1, the

composite catalyst was synthesized by first pyrolyzing a

mixture containing polyvinyl pyrrolidone (PVP), nickel-

phenanthroline complex and SiO2 templates, followed by

the removal of SiO2. The porous structures could be easily

regulated by tuning the PVP contents which was beneficial

to the formation of the ordered honeycomb-like structure,

promoting the mass transfer during the catalytic process.

The obtained Ni/N-C-100 (Ni/N-C-X, where X refers to the

different amount of PVP added) catalyst achieved a max-

imal FECO of 91.1% at - 0.8 V with a large jCO of –

16.2 mA�cm-2. Furthermore, it exhibited a high FECO over

85% at a broad potential range (- 0.6 to - 0.9 V (vs.

RHE)) and maintained high FECO above 98% after 20 h of

reaction at - 0.8 V (vs. RHE). Density functional theory

(DFT) calculations showed that the Ni-Nx sites could

enhance CO2RR reaction dynamic process and suppress

hydrogen evolution reaction, giving rise to enhanced

activity and selectivity.

The morphology of the as-prepared catalysts was first

investigated by SEM. Without PVP, a broken frame-like

structure was observed for Ni/N-C-0. With the addition of

PVP, a honeycomb-like three-dimensional porous structure

was formed, signifying that the PVP played a key role in

maintaining the integrity of the 3D framework (Figs. 1a–c

and S3). Figure 1d shows TEM image of Ni/N-C-100,

confirming the interconnected porous structure. The

diameter of the pores in Ni/N-C-100 and Ni/N-C-200 was

measured to be approximately 180 nm, consistent with the

size of silica templates. Moreover, the lattice fringe spacing

in the Ni/N-C-100 was 0.34 nm (Fig. S4), corresponding to

the (002) plane of graphitized carbon, which indicated high

graphitization of the carbon support. Aberration-corrected

HAADF-STEM images further illustrated that a large

number of isolated bright spots and small patches were

identified by red and yellow circles, indicating the presence

of both single atoms and clusters in Ni/N-C-100 (Fig. 1e,

f). Additionally, the energy-dispersive X-ray spectroscopy

(EDX) mapping analysis revealed the homogeneous dis-

tribution of C, N, O and Ni in Ni/N-C-100 (Fig. 1g).

X-ray diffraction (XRD) patterns exhibited two broad

diffraction peaks at approximately 23� and 43� (Fig. 2a),

attributed to the (002) and (100) planes of graphitic carbon,

respectively, which confirmed that no Ni-based crystalline

phases were formed in all the three samples. As shown in

the Raman spectra (Fig. 2b), two distinct peaks at about

1340 (D band) and 1580 cm-1 (G band) were observed

[27, 36]. Notably, the intensity ratio of D band and G band

(ID/IG) of Ni/N-C-X gradually decreased with the increase

in PVP contents, indicating that the introduction of PVP

could enhance the graphitization degree of the catalysts.

The porous structures of the as-prepared samples were

further analyzed by N2 adsorption–desorption isotherms.

Typical type IV isotherms with some hysteresis were

observed for all samples (Fig. 2c), indicating mesoporous

structure in these catalysts. The corresponding pore size

distributions exhibited a sharp peak centered at 0.5 nm (dV/

dD represent pore area), demonstrating the presence of

Scheme 1 Schematic illustration of synthesis of Ni/N-C-X
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abundant micropore (Fig. 2d). The specific surface area

(SBET) of Ni/N-C-0, Ni/N-C-100 and Ni/N-C-200 was

measured to be 807.1, 912.9 and 726.7 m2�g-1, respec-

tively, signifying that the PVP played a key role in main-

taining the integrity of the 3D framework. Benefiting from

the high specific surface area and 3D ordered porous

structure, the exposure of Ni-Nx sites and mass transfer

could be significantly improved for CO2RR.

X-ray photoelectron spectra (XPS) were further per-

formed to study the elemental composition and chemical

state of the as-prepared catalysts. XPS survey spectra of all

the three samples showed the existence of C, O, N and Ni

(Fig. S5). The high-resolution C 1s spectra of as-prepared

catalysts were divided into C–C/C=C (* 284.7 eV), C-N

(* 285.5 eV) and C-O (* 288.5 eV), indicating that the

N atoms were successfully doped into the carbon frame-

work (Fig. 3a) [43]. Moreover, the binding energies of Ni

2p in Ni/N-C-0, Ni/N-C-100 and Ni/N-C-200 catalysts

were reflected by the peak at 855.2 eV, in between metallic

Ni0 (853. eV) and Ni2? (855.7 eV), suggesting that the Ni

atoms in these samples are likely to be at a low-valence

state (Fig. 3b) [44]. The N 1s spectra of these samples

could be fitted into pyridinic-N (398.5 eV), Ni-Nx

(399.2 eV), pyrrolic-N (400.8 eV), graphitic-N (401.7 eV)

and oxidized-N (404.1 eV). It was believed that the Ni-Nx

bond could promote the proton transfer and facilitate the

intermediate protonation during the CO2RR process

(Fig. 3c) [3, 39, 45]. Furthermore, the content of each N

species is illustrated in Fig. 3d, and the large amount of

pyridinic-N in the as-prepared catalysts may favor the

activation of CO2 molecules [46–49]. Furthermore, the

presence of Ni-Nx indicates that Ni would directly bind to

N rather than forming nanoparticles or clusters, indicating

the absence of metallic Ni, which agreed with XRD results.

The CO2RR electrochemical performance of the three

catalysts was first investigated by linear sweep voltam-

metry (LSV). As depicted in Figs. 4a and S6, all samples

showed a higher current response in CO2-saturated

0.5 mol�L-1 KHCO3 electrolyte than in the Ar-saturated

counterpart, suggesting that the Ni/N-C catalysts were

Fig. 1 SEM images of a Ni/N-C-0, b Ni/N-C-100 and c Ni/N-C-200; d TEM image and e, f HAADF-STEM image of Ni/N-C-100; g EDS
mapping images of Ni/N-C-100
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active for CO2RR. Both Ni/N-C-0 and Ni/N-C-100 showed

much larger j than Ni/N-C-200 at all applied potentials.

Specifically, the j of Ni/N-C-100 reached as high as

40 mA�cm-2 at –1.0 V (vs. RHE), showing excellent cat-

alytic activity. Next, controlled potential electrolysis at

various potentials was carried out in an H-type cell with a

three-electrode system to further evaluate the catalytic

activity and selectivity in CO2RR. Nuclear magnetic res-

onance (NMR) spectroscopy and online gas chromatogra-

phy (GC) were used to analyze the gaseous and liquid

products, respectively, and only CO and H2 were detected

as the gaseous products (Fig. S7). As depicted in Fig. 4b,

the cathodic jtotal of Ni/N-C-100 gradually increased as the

potential increased from –0.6 to –1.0 V (vs. RHE) and

remained unchanged after 1800 s, reflecting enhanced

electrochemical stability at these applied potentials

(Fig. S8). The j could reach about 30 mA�cm-2 at –1.0 V

(vs. RHE) during the long-term test for 30 min. By com-

paring the FECO of Ni/N-C-0, Ni/N-C-100, and Ni/N-C-

200 catalysts at various potentials, it could be found that

the FECO of Ni/N-C-100 remained above 85% ranged from

–0.6 to –0.9 V (vs. RHE) (Figs. 4c and S9). Notably, the

FECO of Ni/N-C-100 was up to 91.1% at –0.8 V (vs. RHE),

while that of Ni/N-C-0 and Ni/N-C-200 was 90.1% and

86.9%, respectively. To get more insight of the active site,

the KSCN poisoning experiment was conducted. As shown

in Fig. S10, a significant decrease in CO Faradaic effi-

ciency was observed for Ni/N-C-100, confirming the cat-

alytic role of Ni-Nx active site. Moreover, the jCO of Ni/N-

C-100 was calculated to be 14.34 mA�cm-2 at –0.8 V (vs.

RHE), which was 3.7 and 3.1 times higher than those of Ni/

N-C-0 (3.85 mA�cm-2) and Ni/N-C-200 (4.6 mA�cm-2),

respectively (Fig. 4d), further confirming the advantage of

the hierarchical porous structure.

To further reveal the origin of the superior performance,

the electrochemical active surface area (ECSA) of the as-

prepared samples was measured. The double-layer capac-

itance (Cdl) was first determined by the cyclic voltammetry

(CV) curves at different scan rates (Figs. 4e and S11),

where the value of Cdl was proportional to the ECSA of the

electrocatalyst. It is thus apparent that Ni/N-C-100 had a

higher ECSA than the other two counterparts, resulting in

the highest jCO. Additionally, ECSA-normalized current

density of all the three samples is provided in Fig. S12.

Fig. 2 a XRD patterns, b Raman spectra, c N2 adsorption–desorption isotherms and d pore size distribution of Ni/N-C-0, Ni/N-C-100,
Ni/N-C-200
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Notably, Ni/N-C-100 possessed a lower specific CO cur-

rent density than Ni/N-C-0. The porous structure is bene-

ficial to the exposure of active sites and the penetration of

the electrolyte, resulting in a larger current density of Ni/N-

C-100 in CO2RR. The long-term electrolysis of Ni/N-C-

100 at the potential of –0.8 V (vs. RHE) (Fig. 4f) indicated

that 90% of its initial FECO could be retained without any

significant change in current density after 20 h of contin-

uous operation, and its 3D ordered porous structure

(Fig. S13) and XRD pattern (Fig. S14) demonstrated

almost no change before and after the long-term test,

reflecting its high robustness.

To gain a deeper understanding of the superior CO2RR

electrochemical performance of Ni/N-C-100, DFT calcu-

lation was performed. Based on XRD and HAADF-STEM

results, the modeling for cluster/Ni-N-C was built by

arranging a Ni cluster onto the surface of Ni-N-C. For

comparison, a Ni cluster and Ni-N-C model were also

constructed (Fig. S15). As shown in Fig. 5a, the first step of

CO2 to form COOH* intermediates was the rate-limiting

step (RDS) for cluster/Ni-N-C and Ni-N-C, and the free-

energy change (DG) for this step on cluster/Ni-N-C

(0.99 eV) was significantly smaller than that on Ni-N-C

(1.62 eV), indicating enhanced reaction dynamic process

[27, 29]. Although the Ni cluster exhibited a lower free-

energy change for the formation of *COOH intermediates

(- 0.38 eV) than cluster/Ni-N-C (1.46 eV), the CO des-

orption energy on Ni cluster was much higher than that on

cluster/Ni-N-C, which indicated that CO molecule would

be trapped on the Ni cluster surface, resulting in a sluggish

reaction dynamic process [33, 44]. Furthermore, cluster/Ni-

N-C possessed a higher H* adsorption energy (0.81 eV)

than pure Ni cluster (- 0.56 eV), demonstrating that HER

view was well inhibited on cluster/Ni-N-C (Fig. S16).

Moreover, the structural evolution of active site on cluster/

Ni-N-C is shown in Fig. 5b, visually reflecting that CO2RR

catalytic process. In addition, Fig. 5c exhibits the charge

density difference of the adsorbed COOH* intermediates

on cluster/Ni-N-C, Ni cluster and Ni-N-C. The electron

transfer between adsorbed COOH* and cluster/Ni-N-C was

much stronger than that with Ni-N-C, reflecting enhanced

ability toward COOH* formation for cluster/Ni-N-C.

Fig. 3 High-resolution XPS spectra of Ni/N-C-0, Ni/N-C-100, Ni/N-C-200: a C 1s, b Ni 2p, and c N 1s; d atomic content of pyridine–N,
Ni-N, pyrrole-N, graphitic-N and oxide-N for three samples
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In summary, utilizing SiO2 as the hard template and

PVP as a structure directing agent, highly ordered honey-

comb-like 3D porous carbon framework loaded with

atomically dispersed Ni-Nx species was constructed. When

used for CO2RR, the as-prepared Ni/N-C-100 catalyst

exhibited a high FECO of 91.1% at –0.8 V (vs. RHE) with

jCO of –16.2 mA�cm-2, and robust stability after a 20-h

long-term electrolysis. DFT calculations have demon-

strated that the Ni-Nx active sites were beneficial to the

formation of CO key intermediates and suppress hydrogen

Fig. 4 a LSV curves for Ni/N-C-100 in 0.5 mol�L-1 CO2-saturated KHCO3 electrolyte; b chronoamperometric (i-t) curves of Ni/N-C-
100 at different potentials; c FECO at different potentials; d jco for all samples at various potentials; e electrochemical double layer
capacitance measurements for Ni/N-C-0, Ni/N-C-100, Ni/N-C-200; f long-term stability of Ni/N-C-100 at –0.8 V (vs. RHE)

Fig. 5 a Free-energy diagram of CO2 electroreduction to CO over cluster/Ni-N-C and Ni cluster; b structural evolution of active site for
cluster/Ni-N-C in CO2RR process; c charge density difference of cluster/Ni-N-C, Ni cluster and Ni-N-C with COOH* adsorption from
3-dimensional

1Rare Met. (2023) 42(6):1800–1807

Three-dimensional ordered porous N-doped carbon-supported accessible Ni-Nx active sites 1805



evolution reaction, giving rise to enhanced activity and

selectivity. This work developed a facile method for the

preparation of high-performance Ni single-atom electro-

catalysts, which can also be applied to a widespread range

of electrochemical applications.
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