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Abstract The daily life of people in the intelligent age is

inseparable from electronic device, and a number of bac-

teria on touch screens are increasingly threatening the

health of users. Herein, a photocatalytic TiO2/Ag thin film

was synthesized on a glass by atomic layer deposition and

subsequent in situ reduction. Ultraviolet–visible (UV-Vis)

spectra showed that this film can harvest the simulated

solar light more efficiently than that of pristine TiO2. The

antibacterial tests in vitro showed that the antibacterial

efficiency of the TiO2/Ag film against S. aureus and E. coli

was 98.2% and 98.6%, under visible light irradiation for

5 min. The underlying mechanism was that the in-situ

reduction of Ag on the surface of TiO2 reduced the

bandgap of TiO2 from 3.44 to 2.61 eV due to the formation

of Schottky heterojunction at the interface between TiO2

and Ag. Thus, TiO2/Ag can generate more reactive oxygen

species for bacterial inactivation on the surface of elec-

tronic screens. More importantly, the TiO2/Ag film had

great biocompatibility with/without light irradiation. The

platform not only provides a more convenient choice for

the traditional antibacterial mode but also has limitless

possibilities for application in the field of billions of touch

screens.

Keywords Antibacterial; Photoresponsive;

Photodynamic; Surface sterilization; Atomic layer

deposition (ALD)

1 Introduction

Since the spread of coronavirus pandemic in 2019, healthy

life has attracted more people’s attention, especially the

demand for effective antibacterial materials [1]. At the

same time, with the advent of the intelligent society and the

popularization of electronic products, billions of touch

screens have been popularized in people’s lives. However,

the species and quantities of bacteria on the surface of them

are affecting people’s health [2, 3]. At present, traditional

antibacterial methods include antibiotics, inorganic

antibacterial agents (such as Cu, Ag, Au) [4–6], and

organic antibacterial agents (quaternary ammonium salts,

etc.) [7]. Since the discovery of penicillin by Alexander

Fleming in the early twentieth century, antibiotics have

been widely utilized to treat diseases caused by bacterial

infections. However, the overuse and abuse of antibiotics

have led to the emergence of bacterial resistance, even the

birth of ‘‘super bacteria’’ [8]. Metal ions on the carrier
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through physical or chemical means can kill the microbes

by destroying the cell membrane, which has strong bacte-

ricidal ability, low toxicity, and high safety. However, the

expensive cost and unpromising durability limit its appli-

cation [9]. Further, organic antibacterial agents have fast

sterilization speed and high stability, but they are prone to

the development of drug resistance, and the decomposition

products are toxic to human body [10].

In the post-antibiotic era, photocatalytic sterilization is

an effective antibacterial method. Photoactivated steril-

ization refers to the use of light with appropriate wave-

lengths, ranging from ultraviolet (UV) to near-infrared

(NIR), to activate photoresponsive materials [11–16].

Photoresponsive materials can absorb light energy to

effectively kill pathogens in a short time through the syn-

ergy of heat and reactive oxygen species (ROS) such as

O2
-, �OH, 1O2, generated by photocatalysts [17–22].

Among various semiconductor-based photocatalysts, TiO2

has appeared as the leading candidate due to its high

photoactivity, superior chemical stability, and broad-spec-

trum antibacterial property. However, the higher energy

band gap limits the application of TiO2 under visible light

[23]. At the same time, the low rate of electron transfer to

oxygen and the high electron–hole recombination rate of

TiO2 also inhibit the production of ROS [24]. Therefore,

many efforts have been devoted to improving visible light

absorbance by modifying TiO2 nanoparticles (NPs),

including element doping, heterojunction structure, noble

metal deposition, and so on [25–30].

Among the commonly used preparation methods of

TiO2 coating, atomic layer deposition (ALD) has great

advantages such as accurate thickness control, outstanding

atomic-scale uniformity, and saturated surface reactions

compared with other deposition methods [31–34]. Further,

as one of the effective methods, noble metals can act as

electron traps which are close to conduction bands of

semiconductors or improve the excitation of surface elec-

trons through surface plasmon resonance effects, thereby

reducing the recombination of photoinduced carriers in

noble metal/semiconductor [35–37]. On the other hand, the

cell membranes of microorganisms are mostly negatively

charged, while metal ions are positively charged, so they

can firmly adhere to the cell membrane by electrostatic

interaction and further penetrate the cell wall into the

bacterial cell membrane [38]. Thus, TiO2 deposited silver

or other noble metals, which can not only effectively pre-

vent recombination of electron–hole pairs, but also enhance

the photocatalytic effect of TiO2 under visible light,

thereby enhancing the antibacterial efficiency of composite

materials [39, 40].

In this work, we prepared a TiO2 nanofilm by ALD, then

Ag particles were deposited on the surface by photo-re-

duction. Due to the different Fermi levels of TiO2 and Ag,

they can form Schottky barrier which can efficiently

improve the separation of electrons and holes. Therefore,

more ROS can be generated under visible light. The plat-

form showed great antibacterial efficiency against Staphy-

lococcus aureus (S. aureus, 98.2%) and Escherichia coli

(E. coli, 98.6%) under the conditions of simulated sunlight

for 5 min, respectively. The excellent antimicrobial effects

of TiO2/Ag nanofilm under visible light illumination open

up new possibilities, such as continuous visible light-

powered disinfection during daytime and at night, for a

broad range of surface disinfection application.

2 Experimental

2.1 Preparation of TiO2 nanofilms

Firstly, glass slides (2 cm 9 2 cm) were ultrasonically

cleaned with acetone, ethanol, and distilled water for

30 min to remove stains on their surface. Then TiO2

nanofilm was deposited on glass slides by plasma-enhanced

ALD (MNT-P-100–43, Micro and Nanotech Co, LTD,

Wuxi, China). Tetrakis(diethylamino)titanium (TDMAT)

as titanium precursor and H2O as oxygen precursor were

kept at 75 �C and 25 �C, respectively. The reaction tem-

perature was 200 �C and the base pressure was 25 Pa with

high purity N2 during deposition. Each cycle consisted of

precursor exposure and N2 purging following a sequence of

H2O:N2:TDEAT:N2 with a corresponding duration of

0.1:15:0.1:20 s. The reaction was repeated for 200 cycles

to produce TiO2 nanofilms.

2.2 Synthesis of TiO2/Ag nanofilms

Silver nitrate aqueous solution (0.05 mol�L-1, 400 ll) was
dropped onto surface of TiO2 nanofilm, then it was placed

in a 60 �C oven. To spread the silver ions uniformly on the

surface of TiO2, a xenon lamp was used to irradiate it for

50 min. The ultraviolet light could quickly reduce the sil-

ver ions into silver nanoparticles, with the color of the

surface changed from transparent to light gray. The Ag

nanofilm was also fabricated in the same way.

2.3 Morphological and structural characterization

The morphology of TiO2 and TiO2/Ag was observed by

scanning electron microscopy (SEM, S-4800, Hitachi,

Japan). Water contact angle (JC2000D Contact Angle

system, POWER EACH) measurement was conducted to

analyze the hydrophilic property of surfaces of TiO2 and

TiO2/Ag. The surface elemental composition of the sam-

ples was obtained using X-ray photoelectron spectroscopy

(XPS, ESCALAB 250Xi). Ultraviolet–visible–NIR (UV–
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Vis–NIR) spectrometer (UV-2700, Shimadzu, Japan) was

used to obtain samples’ optical properties.

2.4 Photoelectrochemical measurement

A three-electrode system in quartz glass cell in

0.5 mol�L-1 Na2SO4 aqueous solution was performed to

measure the photocurrent response. Pt plate as counter

electrode, an Ag/AgCl electrode as reference electrode, and

an experimental sample as working electrode was used to

analyze electrochemical impedance spectroscopy (EIS).

The photoinduced current densities of the photocurrent

response with time (i-t curve) were measured at a 0 V bias

potential under xenon lamp (PLS-SXE300, Beijing

Changming Technology Co., Ltd, China) irradiation. EIS

tests were recorded over the frequency range from 1 9 104

to 1 9 10-1 Hz with an alternating current voltage mag-

nitude of 5 mV under simulated visible light irradiation.

The experimental samples (TiO2 and TiO2/Ag) were pre-

pared on ITO conductive glasses (2 cm 9 2 cm).

2.5 Detection of ROS

Electron spin resonance (ESR) spectra were recorded on a

JES-FA200 spectrometer. 5,5-dimethyl-1-pyrroline-N-ox-

ide (DMPO) (Sigma) was used to trap �OH and �O2
- under

xenon lamp irradiation. The glass slides, TiO2
, and TiO2/

Ag samples were immersed in 100 mmol�L-1 DMPO at

ambient temperature under xenon lamp irradiation (PLS-

SXE300/300UV).

2.6 Evaluation of antibacterial activity

The spread plate method was used to study the antibacterial

activity of the samples (including pure glass slide, TiO2,

Ag, and TiO2/Ag) under stimulated visible light irradiation.

E. coli (Gram-negative, ATCC 25,922) and S. aureus

(Gram-positive, ATCC 29,213) were used for antibacterial

experiments. All bacteria were cultured in Luria–Bertani

(LB) medium. The pure glass slide was set as the control

group and TiO2, Ag and TiO2/Ag constituted the experi-

mental groups. The details were as follows: 40 ll of bac-
terial suspension (* 1 9 104 CFU�ml-1) was dropped

onto the surface of the samples (2 mm 9 2 mm glass

slide). After 5 min with or without stimulated visible light

irradiation, the samples were put upside down on the LB

agar plates, then incubated at 37 �C for 1 h. Next, the glass

slide was removed from the LB plates, and the LB plates

were still incubated at 37 �C for 24 h for bacterial counts.

Three parallel samples from each group were used in the

antibacterial test. The antibacterial efficiency of each

sample was calculated by the number of bacterial colonies

on the glass slide using Eq. (1):

Antibacterial ratio ¼ CFUControl � CFUSample

CFUControl

� 100%

ð1Þ

where CFUcontrol indicates the growth of bacteria without

treatment and CFUsample indicates the growth of bacteria

with sample cotreatment.

To better analyze the bacterial morphologies, the bac-

terial morphology study was evaluated using SEM. After

5 min stimulated visible light irradiation, the E. coli and S.

aureus on the samples were fixed with a 2.5 wt% glu-

taraldehyde solution for 2 h, then washed with phosphate

buffer saline (PBS, pH = 7.0). Further, the bacteria were

dehydrated using graded ethanol solutions (20, 40, 60, 80,

and 100 wt%) for 15 min. After drying, the morphologies

and microstructures were observed by SEM.

2.7 Cytotoxicity assay

L929 fibroblast cells were cultured in Roswell Park

Memorial Institute 1640 (RPMI 1640, Meilunbio) includ-

ing 10% (v/v) fetal bovine serum and 1 wt% penicillin–

streptomycin. The cells were placed in an incubator at

37 �C with 95% humidity and 5% CO2. The cell culture

medium was replaced regularly every other day. To

investigate the cytotoxicity of TiO2, Ag, and TiO2/Ag, the

sterilized samples (U8 mm) were put into 48-well plates,

and 400 ll L929 (1 9 105 cells�ml-1) were added to the

plates. Then each type of sample was treated with or

without light irradiation. The cells were cultured in sam-

ples for 24 h under the same conditions. After that, the

culture medium was removed and 200 ll 0.05 mg�ml-1

MTT (dissolved MTT powder into pH 7.4 PBS solution)

solution was added to each well. Next, the culture medium

was incubated for 4 h at 37 �C in an atmosphere of 5%

CO2 and 95% air until purple precipitate appeared. Then,

MTT solution was removed, then 200 ll of dimethyl sul-

foxide (DMSO) was added to each well with continuous

shaking for 15 min to dissolve the purple precipitate.

Finally, the samples were taken out, and the optical density

(OD) of liquid was tested at 490 nm with a microplate

reader. The cell viability was calculated using Eq. (2):

Cell viability ¼ OD in experiment group

OD in control group
� 100% ð2Þ

2.8 Statistical analysis

All the quantitative data were analyzed by one-way anal-

ysis of variance (ANOVA) and expressed as mean val-

ues ± standard deviations with n = 3 (3 biologically

independent samples). A student t-test was performed to

evaluate the statistical significance of the variance. Values
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of *p\ 0.05, **p\ 0.01, ***p\ 0.001 ****p\ 0.0001

were considered statistically significant.

3 Results and discussion

3.1 Morphology and structural characterization

As schematically illustrated in Scheme 1, the TiO2 nano-

film on glass substrate was prepared by ALD. From the

thermodynamic and kinetic point of view, the reaction of

TiO2 by TDMAT and H2O can be separated into two half-

reactions, which are described as follows [41, 42]:

Ti N CH3ð Þ2
� �

4
þ TiO2�OH� ! NH CH3ð Þ2
þ TiO2�O�Ti N CH3ð Þ2

� �
3
�

ð3Þ

TiO2�O�Ti N CH3ð Þ2
� �

3
� þ 2H2O

! TiO2�TiO2�OH � þ3 NH CH3ð Þ2
� �

ð4Þ

where the asterisks denote the functional groups absorbed

on the surface of the glass substrate. The growth mecha-

nism of TiO2 nanofilm can be explained in the following

steps:

(1) The vapor pulse of the precursor TDMAT entered the

reaction formula, then chemisorption reaction

occurred on the exposed glass substrate surface.

(2) The cleaning gas N2 brought the excess precursor

TDMAT vapor which was not adsorbed by the

substrate surface, and the reaction product methy-

lamine (NH(CH3)2) out of the reaction chamber.

(3) Water vapor entered the reaction chamber and reacted

with the TDMAT precursor adsorbed on the surface

of glass substrate.

(4) The cleaning gas N2 brought the excess water vapor

and the by-product methylamine out of the reaction

chamber.

The first stage was the chemisorption of TDMAT

molecules by active sites of surface and the exchange of

ligand. It usually happened easily even at very low oper-

ating temperatures, which was attributed to high reactivity

of both TDMAT and OH groups. The subsequent step was

the purge of remained TDMAT and reaction products (NH

(CH3)2) from the reaction chamber. The next step was to

introduce H2O into the ALD chamber and perform the

oxidation reaction. After the reaction process was com-

pleted, an atomically-layered TiO2 film was formed on the

surface in which all Ti atoms were connected to each other

by O atoms. After several cycles of reaction, TiO2 nanofilm

was formed on the surface of glass substrate. Because the

two half-reactions were carried out through a cycle, the

film thickness could be adjusted with atomic-level accu-

racy and the film uniformity could be guaranteed. Subse-

quently, the silver nitrate solution was dropped onto the

surface of the film. When TiO2 nanofilm was irradiated

with UV light, holes and electrons were generated as

shown in Eq. (5), where hm is the energy absorbed:

TiO2�!
hv

hþ + e� ð5Þ

There were silver ions (Ag?) and nitrate ions (NO3
-) in

the AgNO3 aqueous solution. The silver ions gained a

generated electron and, consequently, silver metal was

deposited onto the TiO2 surface, as shown in Eq. (6):

AgNO3�!
H2O

Agþ þ NO�
3 �!
e�

Ag sð Þ ð6Þ

SEM images exhibited the morphology of the samples.

Scheme 1 Illustration of synthesis process of TiO2/Ag coating
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As shown in Fig. 1a, b, TiO2 deposited by ALD formed a

uniform and flat coating. Further, in Fig. 1c, the SEM

image of TiO2/Ag nanofilm exhibited that the size of

photo-reduced silver nanoparticles was 200–800 nm, with

slight agglomeration. The main reason for the

agglomeration may due to the longer light irradiation.

Elemental mappings further confirmed the successful

deposition of silver nanoparticles on TiO2 nanofilm

(Fig. 1d–f).

Considering the subsequent antibacterial application of

the coating on the touch screen, the transmittance of the

sample was studied. The visible light transmittance of the

TiO2 nanofilm reached 83.2%. Even after adding photo-

reduced silver particles, the light transmittance could still

be maintained at about 76.4%, which satisfied the standard

of the screen surface (Fig. 1g). The thickness of the

nanofilm was proportional to the number of ALD cycles,

thus the transmittance of the samples can be controlled and

adjusted (Fig. 1h, i). The hydrophilicity and hydrophobic-

ity of the coating would affect its antibacterial effect, so

water contact angle was also measured. The contact angles

of glass slide, TiO2 film, Ag film, and TiO2/Ag film were

46.0�, 52.7�, 71.7�, and 84.7�, respectively (Fig. 1j). The

result demonstrated the hydrophilicity of the samples,

which were not conducive to the adhesion of bacteria.

The UV–Vis spectra (Fig. 2a) could reflect the optical

property of TiO2, Ag, and TiO2/Ag nanofilms. Obviously,

the optical absorbance of TiO2 nanofilm mainly focused on

the ultraviolet region, while Ag particles could absorb

partial visible light. After Ag nanoparticles were deposited

on TiO2 nanofilm, the absorption edge of TiO2/Ag had a

red shift compared with separate TiO2 or Ag. It may be

Fig. 1 Morphologies and characterization of synthesized materials: SEM images of a glass slide, b TiO2 and c TiO2/Ag; d–f SEM
element mapping images of TiO2/Ag; g–i light transmittance of TiO2/Ag film; j water contact angles of glass, TiO2, Ag and TiO2/Ag, in
which data represent mean ± standard deviation (n = 3 independent experiments per group). Significance was assessed using a one-
way ANOVA with Dunnett’s multiple comparisons (*p\0.05, **p\0.01, ***p\0.001, ****p\0.0001)
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based on the local plasmon resonance effect of Ag

nanoparticles [43]. The red shift of the absorption curve led

to a decrease in the band gap energy and recombination

rate, thereby increasing the effect of photocatalytic activity.

The calculation of the semiconductor band gap was

expressed by the following equation:

ahvð Þn¼ Cðhv� EgÞ ð7Þ

where a is the absorption coefficient, hm is the absorption

energy, C is a parameter associated with the valence and

conduction band, and Eg is the band gap. The digit of

n depends on the nature of the transition. In our case, for an

indirect band gap, the value of n is 1/2. The variation of

(ahm)1/2 with photon energy is shown in Fig. 2b. The band

gaps were determined to be about 3.44 eV of TiO2 and

2.61 eV of TiO2/Ag, respectively, by extrapolation of the

linear portion of the absorption coefficient a to zero for

indirect-band-gap nanoparticles. When the band gap is

reduced, the spectral absorption range of TiO2 will be

broadened, from only absorbing ultraviolet light originally

to visible light. Besides, the yield of photogenerated elec-

tron–hole pair will also increase because of the shortening

of band gap [44].

XPS measurements were conducted to verify the surface

components and valence states of TiO2/Ag nanofilm in

Fig. 2c. The survey spectra of TiO2/Ag nanofilm indicated

the signal peaks corresponding to Ag, Ti, O and C

elements. The adventitious C 1s peak might lead to the

contamination because the samples were exposed to air

atmosphere. By fitting the high-resolution spectra, the

binding energies centered at 457.91 and 463.69 eV corre-

sponded to the 2p3/2 and 2p1/2 core levels of Ti
4? (Fig. 2d)

[45, 46]. Figure 2e displays the O 1s spectra with peaks at

529.62 and 531.41 eV. The former was attributed to oxy-

gen lattice, while the latter was correlated to surface

hydroxyl groups [47]. 367.66 and 373.73 eV in the high

resolution XPS (HRXPS) spectrum corresponded to Ag

3d5/2 and Ag 3d3/2, respectively; and the splitting of the 3d

doublet was about 6 eV, indicating the silver was of

metallic nature (Fig. 2f) [48].

3.2 Photocatalytic performance

Photocurrent response and EIS were utilized to character-

ize the photo-electrical properties of photocatalysts. It is

widely accepted that the photocurrent intensity is decided

by the separation efficiency of photogenerated carriers. As

shown in Fig. 3a, the TiO2 nanofilm had a weak current

response under dark conditions but exhibited a stable cur-

rent when exposed to xenon lamp irradiation. What’s more,

the composite film had a larger photocurrent response than

the pure TiO2 film. This indicated that the recombination of

Ag particles could improve the separation of electron–hole

pairs and transition efficiency of carriers. As shown in

Fig. 2 Light absorption and XPS spectra of synthesized materials: a UV–Vis spectra (200–800 nm); b band gap of TiO2 and TiO2/Ag;
c XPS spectrum of TiO2/Ag; corresponding narrow scan of d Ti 2p, e O 1s, and f Ag 3d
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Fig. 3b, the diameter of Nyquist semicircle of TiO2 was

obviously shortened after the deposition of Ag particles,

suggesting that the carriers transfer resistance was smaller.

Further, electron spin resonance (ESR) measurement

was used to study generation process of ROS (Fig. 4). It

can be seen that �OH and �O2
- were detected under stim-

ulated sunlight, while no signals for these two species were

detected in the dark. In addition, it is indicated that the

TiO2/Ag heterojunction can provide more photogenerated

holes and electrons than TiO2 nanofilm to generate more

ROS, which further supported the photocurrent and EIS

test results. This was due to the localized plasmon reso-

nance (LSPR) effect on the surface of Ag nanoparticles.

After being excited under the irradiation of visible light,

Ag nanoparticles can induce the transition of electron from

the valence band (VB) of TiO2 to the conduction band

(CB), leaving holes in the VB. The photo-generated elec-

trons reacted with O2 adsorbed on the surface of TiO2 to

generate �O2
-, while the holes in the CB of TiO2 have

more positive potential to oxidize OH- and produce �OH.
Therefore, the TiO2/Ag nanofilm can generate more ROS

[49]. As the product of photocatalysis, ROS bears the

important responsibility of killing bacteria, which is

exactly the antibacterial mechanism of this study. This will

be further elaborated in the following text.

3.3 In vitro antibacterial property

Two typical pathogenic bacteria, S. aureus and E. coli were

chosen to evaluate the antibacterial performance of the

coating. It can be seen from Fig. 5a–d that after 5 min of

exposure to the simulated sunlight, the bacterial colonies of

the TiO2 group and the Ag group were slightly reduced

compared to the control group. However, the doping of

silver particles improved the photocatalytic activity. The

bacterial colony reduction of the TiO2/Ag group was the

most significant, whose antibacterial efficiency against S.

aureus and E. coli were 98.6% and 98.2%, respectively.

Fig. 3 Photoelectrochemical performance of samples: a photocurrent responses and b EIS plots of TiO2 and TiO2/Ag, where Z0 is real
part of impedance and Z0 0 is imaginary part of impedance

Fig. 4 ESR spectra of TiO2 and TiO2/Ag with and without light irradiation: a �OH and b �O2
-

1 Rare Met. (2022) 41(12):4138–4148
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The results of antibacterial activities also agreed with

photocatalytic results. That is to say, better photocatalytic

performance means more ROS generated during visible

light irradiation, thus providing better antibacterial prop-

erty [50].

The bacterial morphologies of representative samples of

different groups under xenon lamp irradiation were exam-

ined by SEM. It can be seen from Fig. 6 that the bacteria in

the control group were smooth, complete, and representa-

tive. In contrast, the bacterial membranes of the TiO2 group

and the Ag group showed slight wrinkles and ruptures.

However, the bacterial membrane of the TiO2/Ag group

exhibited obvious deformation and cracking, whether it was

S. aureus or E. coli. It has been verified that ROS could react

with membranes through multiple mechanisms, causing

them to rupture, inducing protein leakage, and even entering

bacteria to damage DNA and organelles [51]. In addition to

the effect of ROS, the release of Ag? also played a certain

role in the damage of the bacterial membrane. The release of

Ag? which interacted with the thiol group of a bacterial

enzyme interrupted the respiratory mechanism by having a

lethal effect on the bacteria [52].

The mechanism of the photocatalytic disinfection was

schematically illustrated in Fig. 7. As one of traditional

Fig. 5 Antibacterial activity of TiO2, Ag and TiO2/Ag: a spread plate of S. aureus and c corresponding antibacterial efficiency; spread
plate of b E. coli and d corresponding antibacterial efficiency. Data represents mean ± standard deviation (n = 3 independent
experiments per group; *p\ 0.05, **p\ 0.01, and ***p\0.001, ****p\0.0001)

Fig. 6 SEM images of bacteria with TiO2, Ag, and TiO2/Ag under 5 min stimulated solar irradiation: a S. aureus and b E. coli
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n-type semiconductors, when TiO2 was irradiated by

stimulated sunlight, the electrons in its VB would be

excited to the CB. These electrons would be removed by

O2, so that �O2
- was produced. At the same time, the holes

on the VB trapped the H2O on the surface to oxidize them

to �OH. However, when Ag particles were deposited on the

surface of TiO2 and in contact with each other, since the

Fermi level of TiO2 was higher than Ag, electrons will

transfer from TiO2 to Ag until the Fermi levels of them

were equal. Therefore, in the space charge layer formed

after the electrical contact, the surface of Ag got excessive

quantity of negative charges, while the TiO2 surface left

excessive quantity of holes, which formed a Schottky

heterojunction at the interface of TiO2 and Ag. The Ag

particles acted as electron traps to leave electrons and holes

in two different phases, inhibiting the recombination of

electron–hole pairs, thereby improving the efficiency of

photocatalysis.

3.4 Cytotoxicity evaluation

The MTT assay was used to examine the effects of dif-

ferent samples on the growth of L929 cells. Since the film

was used in vitro, the cells were only cultured for one day.

It can be seen from Fig. 8 that the effect of light on cell

viability was almost negligible. The cell survival rate of the

TiO2 group was about 90%, while the cell viability of final

group could still be maintained at about 85%, indicating

that the material will not have a health impact on the

human body when applied in vitro.

4 Conclusion

In this work, TiO2 nanofilm was prepared by atomic layer

deposition, and then Ag particles were deposited on the film

by photo-reduction to prepare photocatalytic TiO2/Ag

coating. Because the Schottky heterojunction was formed at

the interface between TiO2 and Ag, the electron–hole

recombination rate of TiO2/Ag was suppressed. Besides, the

photocatalytic efficiency of TiO2/Ag was greatly increased

by generating more ROS. Its visible light catalytic antibac-

terial effect was better than that of untreated TiO2 nanofilm.

The antibacterial efficiency against S. aureus and E. coli

in vitro under the irradiation of stimulated sunlight reached

98.2% and 98.6%, respectively. Meanwhile, the deposited

film had great light transmittance and biocompatibility with/

without light irradiation, with a good prospect not only for

the traditional antibacterial mode but also in the field of

surface antibacterial application.
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