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Abstract Multi-principal element alloys (MPEAs) have

shown extraordinary properties in different fields. How-

ever, the composition design of MPEAs is still challenging

due to the complicated interactions among principal ele-

ments (PEs), and even more challenging with precipitates

formation. Precipitation can be either beneficial or detri-

mental in alloys, thus it is important to control precipitates

formation on purpose during alloy design. In this work,

cluster-plus-glue-atom model (CGM) composition design

method which is usually used to describe short-range order

in traditional alloys has been successfully extended to

MPEAs for precipitation design. The key challenge of

extending CGM to MPEAs is the determination of center

atom since there are no solvent or solute in MPEAs.

Research has found that the element type of center atom

was related not only with chemical affinity, but also with

atomic volume difference in MPEAs, which has

inevitable effect on atomic arrangement. Based on exper-

imental data of MPEAs with precipitates, it was found that

elements with either stronger chemical affinity or larger

volume difference with other PEs would occupy the center

site of clusters. Therefore, a cluster index (PC), which

considers both chemical affinity and atomic volume fac-

tors, was proposed to assist the determination of center

atom in MPEAs. Based on the approach, a solid-solution

Zr-Ti-V-Nb-Al BCC alloy was obtained by inhibiting the

precipitation, while precipitation-strengthened Al-Cr-Fe-

Ni-V FCC alloy and Al-Co-Cr-Fe-Ni BCC alloy were

designed by promoting the precipitation. Corresponding

experimental results demonstrated that the approach could

provide a relatively simple and accurate predication of

precipitation and the compositions of precipitations were in

line with PEs in cluster in MPEAs. The research may open

an effective way for composition design of MPEAs with

desired phase structure.

Keywords Multi-principal element alloy (MPEA);

Composition design; Phase structure; Cluster-plus-glue-

atom model (CGM)

1 Introduction

In recent years, multi-principal element alloys (MPEAs)

have attracted much interest [1–5] due to their excellent

performance [6–13]. Performance of alloys are closely

related to their phase structures and vast efforts have been

devoted to phase prediction in MPEAs [14–22].

At present, the most frequently used phase prediction

methods for MPEAs are empirical criteria and CALPHAD

(CALculation of PHAse Diagram). Empirical criteria such

as atomic size differences (d) [14, 15], electronegativity

difference (Dv) [16], valance electron concentration (VEC)

[17] and thermodynamic parameters (X) [18] are usually

obtained by summarizing reported data, resulting in the

limitation on alloy system. Similarly, CALPHAD relies on

existing database, which mostly contain binary and limited

ternary alloy systems, since the database for higher-order

alloy systems is grossly imperfect yet [19–22]. Further-

more, empirical criteria and CALPHAD are useful in
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macro-scale, but fall short in describing the short-range

order (SRO) in alloys.

Cluster-plus-glue-atom model (CGM) method is based

on the conception of SRO [23–25] and could be used to

predict precipitations in solid solutions. In CGM method,

atoms in solid solutions could be divided into cluster and

glue atom ideally. Cluster is the coordination polyhedron

composed of a center atom and its nearest neighbor atoms,

while glue atoms are located in the interstitial sites [23]. In

traditional alloys, solute atom is regarded as the center

atoms, and other atoms could be located by comparing

chemical affinity between solute and solvent elements

[26, 27]. According to the theory, precipitations will form

if the composition of center atom exceeds the value settled

by CGM.

However, there is no clear distinction between solute

and solvent in MPEAs, and the mutual interactions among

multiple principal elements [28, 29] makes it difficult to

determine the center atom element, which results in diffi-

culties in applying CGM directly to MPEAs. Previous

research demonstrated that the atomic arrangement in

MPEAs is not only related to chemical affinity but also

atomic volume [14, 15], as the volume differences between

principal elements would result in severe lattice distortion,

which is one of the key differences between MPEAs and

traditional alloys. Thus, both chemical affinity and atomic

volume difference should be considered when applying the

CGM approach to MPEAs.

In this work, an improved CGM approach was proposed

for MPEAs, the location of PEs was determined by an

index considering both chemical and structural factors.

Through this approach, a body-center-cubic-structure-

based (BCC-based) light-weight solid-solution MPEA and

two precipitation-strengthened MPEA were designed and

confirmed by corresponding experiments. The results are

expected to provide a composition design approach for

MPEAs with the desired precipitation.

2 Experimental

2.1 General cluster-plus-glue-atom model

Previous study demonstrated that MPEAs are typically

characterized as FCC and BCC structures [30–36].

According to the crystal structure of FCC, the FCC-CGM

was built, as shown in Fig. 1a. Based on a 2 9 2 9 2

supercell, the basic cluster unit with periodical boundary

was established. The formula could be written as follows:

C � N12 � ðG1
1G

2
3G

3
3G

4
12Þ ð1Þ

where C is the center atom, Nn denotes there are n neighbor

atoms in the cluster, Gx
n denotes there are n glue atoms at

location x (1-vertex, 2-edge, 3-face center of original cell

and 4-face center of supercell) of supercell. The cluster in

FCC is a hexadecachoron consisted of one center atom and

twelve neighbor atoms, and the coordination relation could

be written as CN12.

The CGM of BCC structure could be built in the same

way (Fig. 1b) and it could be written as follows:

C � N1
8N

2
3 � G1

1G
2
3 ð2Þ

where N1
n denotes that there are n first nearest neighbor

atoms and N2
n denotes that there are n second nearest

neighbor atoms (the number of second nearest neighbor

atom is three as N2
n are located at the face center of the

supercell). The cluster in BCC is a dodecahedron consist-

ing of one center atom and fourteen neighbor atoms, and

coordination relation could be written as CN14 since the

second neighbor atoms occupied the face center site of

basic cluster unit.

2.2 Material preparation

Master MPEA ingots were prepared by arc-melting pure

metal with purity[ 99.9% under a purified argon atmo-

sphere. In order to improve chemical homogeneity, the

ingots were re-melted at least four times. The ingots were

then poured into a copper mold measuring

50 mm 9 13 mm 9 30 mm.

2.3 Material characterization

2.3.1 Microstructure characterization

Phase structures of these MPEAs were characterized by

synchrotron-based high-energy X-ray diffraction

(HEXRD) technique. The tests were performed at the

11-ID-C beam line of the advanced photon source (APS) in

Argonne National Laboratory. The wavelength used

Fig. 1 Atomistic packing model of basic CGM units in a FCC
structure and b BCC structure
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here is k = 0.011725 nm, and the beam size was

200 lm 9 200 lm.

Microstructure of MPEAs was investigated using

spherical-aberration corrected transmission electron

microscope (STEM, Hitachi S4800). The atomic resolution

images were obtained by high-angle annular dark field

(HAADF) detector. The samples were cut with diamond

wire saw and then grinded with carborundum papers. After

that, the samples were electro-polished with twin-jet elec-

tro-polishing and then corroded with Marble’s reagent.

Precise composition analysis of MPEAs was performed

by a CAMECA local electrode atom probe LEAPTM

4000X SI type three-dimensional atom probe tomography

(APT). The experiment was carried out at a temperature of

20 K, under a pulsing laser with a pulse energy of 40 pJ, a

pulse rate of 200 kHz, and an ion collection rate of 0.5%

per pulse. A Zeiss Auriga focused-ion-beam (FIB)/SEM

was used to fabricate a sharp tip specimen for APT anal-

ysis. Pt was deposited on the region of interest before FIB

milling, and the wedge specimen was cut out and mounted

on a pre-sharpened tip on a micro-post of a Si array cou-

pon. At last, a sharp tip suitable for APT experiments (apex

radius\ 50 nm) was produced by annular milling.

Reconstruction and quantitative analysis of APT data were

carried out by a CAMECA IVAS version 3.6.8 software.

2.3.2 Mechanical property characterization

Mechanical property of MPEAs was investigated by a

universal electronic tensile testing machine (CMT4305).

Flat, dog-bone-shaped tensile samples with a gauge size of

10 mm 9 3 mm 9 1 mm were cut by electrical discharge

machining and then polished with carborundum paper to

2000-grit s. The tensile tests were carried out at room

temperature (* 298 K) at a strain rate of 1 9 10-3 s-1.

3 Results and discussion

3.1 Determination of cluster-glue atom model

3.1.1 Theoretic model

For traditional alloys, the solute atoms were regarded as

center atoms, and the position of other atoms in CGM were

determined according to chemical enthalpy between sol-

vent and solute. However, no clear distinction can be

drawn between solvent and solute in MPEAs. Therefore,

how to determine the center atom element is critical to

applying CGM to MPEAs.

Resulting from the severe lattice distortion in MPEAs,

the SRO cluster in MPEAs is not only related to chemical

affinity but also atomic volume. According to that, three

factors were selected to characterize the atomic volume

difference and chemical affinity between center atom and

other principal elements: Vi
diff is the volume difference

between i-th element and other PEs; DHi�ave
chem and DHi�SD

chem

are mean value and standard deviation of chemical

enthalpy between i-th element and other PEs, respectively.

The factors could be calculated as follows:

Vi
diff ¼

Vi � Vi�other

Vi�other

ð3Þ

Vi�other ¼
1

n� 1

Xn

k¼1;k 6¼i

Vk ð4Þ

Vi ¼ Vmi � qi=NA ð5Þ

DHi�ave
chem ¼ 1

n� 1

Xn

j¼1;j 6¼i

DHij
chem ð6Þ

DHi�SD
chem ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1;j 6¼i

DHij
chem � DHi�ave

chem

� �2
vuut ð7Þ

where Vmi is the molar volume of i-th element, NA is

Avogadro constant, qi is the stacking density of i-th ele-

ment, DHij
chem is the chemical enthalpy between i-th ele-

ment and j-th element in binary liquid alloys, which can be

calculated from Miedema macroscopic model [27].

Objective to discuss chemical affinity and volume fea-

tures of the center atoms in CGM, some reported MPEAs

containing SRO were selected and summarized [37–44].

The calculation results are illustrated in Fig. 2. It can be

obtained from the data that the center atoms have at least

one of the following features: the DHCA�ave
chem is more neg-

ative or the VCA
diff is higher. The former means that the

formation of SRO clusters is dominated by chemical

enthalpy. As shown in Fig. 2a, in Ni-Fe-Co-Cr alloy [37],

atomic volumes of principal elements are almost equivalent

( Vi
diff

�� ��\0:02) while Cr has a stronger chemical affinity to

all other elements with DHCr�ave
chem being the lowest. It is the

same with W in Mo-Nb-Ta-V-W [43, 44]. The later one

means that the lattice distortion is the main driving force.

For instance, when Pd was added into Ni-Fe-Co-Cr alloy

(Fig. 2b), center atom site will be occupied by Pd as atomic

volume difference between Pd and other elements is much

larger (VPd
diff ¼ 0:35) [38]. The same is true for Zr/Hf in Ti-

V-Zr-Nb-Mo-Hf-Ta-W [39], Ta in Mo-Nb-Ta-V-W

[43, 44], as shown in Fig. 2c, f, respectively. And in some

other MPEAs, both features would contribute to the center

atoms. For example, Al would occupy the center atom site

in Al-Co-Cr-Cu-Fe-Ni [41, 42], because of both the lower

chemical enthalpy (DHAl�ave
chem ¼ �12:6 kJ�mol-1) and lar-

ger atomic volume (PAl
V ¼ 0:37) (Fig. 2e); likewise, V in
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V-Co-Ni [40] (Fig. 2d). The center atoms here were

obtained from the reported literature, and they were

observed and determined through experimental results. For

example, HADDF image indicated that introducing Pd

promoted the formation of cluster in Co-Cr-Fe-Ni-Pd alloy

and pair correlation functions revealed strong correlation

peaks of Pd, Cr and Co [38]; TEM and APT revealed a

nano-scaled L12 phase in Al-Co-Cr-Fe-Ni-Cu, and it was

originated from the selective occupation of Al in M3Al

phase (M means the mixture of Ni, Co, Cr) [41].

As stated above, the center atom of SRO cluster in

MPEAs could be determined by considering both chemical

affinity and atomic volume difference. In order to make the

process of determining SRO cluster straightforward and

calculatable, a cluster index PCð Þ considering both chem-

ical affinity and atomic volume is proposed to determine

the center atom element type, which is calculated as

follows:

Pi
C ¼ Pi

V þ Pi
chem ð8Þ

where P chem is the metric measuring the effect of chemical

affinity; PV is the metric measuring the effect of atomic

volume factor; and Pchem and PV are calculated as follows:

Pi
V ¼ Vi

diff ð9Þ

Pi
chem ¼ DHi�ave

chem =DHref
chem ð10Þ

where Vi
diff and DHi�ave

chem are calculated based on Eqs. (3, 6),

respectively, DHref
chem is set to - 10 kJ�mol-1 here, as it was

reported as critical value of the formation of precipitation

[18]. The stronger the chemical affinity between i-th ele-

ment and other PEs is, the larger the Pi
chem is, meaning that

there is a higher chance i-th element which would act as the

center atom in CGM model; on the other hand, the larger

the volume of i-th element than that of other elements is,

the larger the Pi
V is, and there would be a higher chance i-th

element which would act as the center atom in order to

minimize lattice distortion caused by i-th element. When

the chemical affinity between i-th element and other PEs is

zero, then Pi
chem is equal to zero and only the atomic vol-

ume factor plays a role in determining the center atom;

similarly, when the atomic volume of i-th element is equal

to the average atomic volume of other PEs, then Pi
V equals

to zero, and only the chemical affinity factor determines the

center atom element type. Besides, glue atoms could be the

PEs with low PC. Figure 3 gives cluster index in the

material systems shown in Fig. 2. As can be seen, for all

the systems studied, PEs with the highest PC were observed

as the center atoms; PEs with low PC tend to be glue atoms,

such as Co, Fe and Ni in Al-Co-Cr-F-Ni-Ti alloy; and PEs

with PC in between would occupy the neighbor atom sites,

such as Ni in Al-Co-Cr-Fe-Ni-Ti alloy.

Fig. 2 Volume difference between principal elements (Vi
diff) and mean value of chemical enthalpy (DHi�ave

chem ) with their standard
deviation (DHi�SD

chem ), where elements in boxes are center atoms: a Ni-Fe-Co-Cr [37]; b Co-Cr-Fe-Ni-Pd [38]; c Ti-V-Zr-Nb-Mo-Hf-Ta-W
[39]; d V-Co-Ni [40]; e Co-Cr-Cu-Fe-Ni-Al [41, 42]; f Mo-Nb-Ta-V-W [43, 44]
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3.2 Validation

In order to validate the feasibility and correctness of the

approach, two types of MPEA alloys, one with single solid-

solution phase and the other with second strengthening

phase in solid-solution matrix, were selected to conduct

composition design with CGM followed by experimental

validation. For single solid-solution (SS) alloy, Zr-Ti-V-

Nb-Al alloy was selected to obtain light-weight alloy with

single solid-solution structure; for precipitation-strength-

ened (PS) alloy, compositions of Al-Cr-Fe-Ni-V FCC alloy

and Al-Co-Cr-Fe-Ni BCC alloy were optimized to obtain

precipitation-strengthened alloy.

3.2.1 Single solid solution Zr-Ti-V-Nb-Al alloy

Previous research demonstrated that the complex precipi-

tates in current light-weight MPEAs limited the mechanical

properties [45–49]. In the present work, Zr-Ti-V-Nb-Al

system with mainly BCC phase was selected, and purpose

is to obtain a single BCC solid-solution light-weight alloy

by avoiding precipitation.

CGMs of Zr-Ti-V-Nb-Al alloy was built based on the

BCC-based general model as demonstrated in Sect. 2.1. To

determine the position of PEs in BCC CGM, PC of PEs was

calculated, as shown in Fig. 4a. It could be seen that the PC

of Zr and Al is much higher than that of the other PEs and

therefore should be regarded as cluster atoms. Considering

that chemical affinity between Al and other PEs is much

stronger (PAl
chem ¼ 1:35;DHAl�i

chem \- 15 kJ�mol-1) while

chemical enthalpy between other PEs is very close to zero,

and the four PEs besides Al are adjacent to each other in

the periodic table, Al should be regarded as center atom

and Zr could be determined as neighbor atoms in cluster.

When it comes to Ti, V and Nb, Nb and V were chosen to

occupy glue atom site as their PC is the lowest and

chemical enthalpy between them and cluster atoms is rel-

atively weaker; Ti was also placed in neighbor atom set

here as PTi
C is relatively high and the chemical affinity

between Ti and center atom is very strong

Fig. 3 Cluster index of principal elements in selected MPEAs: a Ni-Fe-Co-Cr [37]; b Co-Cr-Fe-Ni-Pd [38]; c Ti-V-Zr-Nb-Mo-Hf-Ta-W
[39]; d V-Co-Ni [40]; e Co-Cr-Cu-Fe-Ni-Al [41, 42]; f Mo-Nb-Ta-V-W [43, 44]
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(DHAl�Ti
chem = - 30 kJ�mol-1), as can be seen in Table 1.

What’smore, the high content of Ti is beneficial to reduce the

density of alloy, as the density of Ti is lower (qTi =
4.51 g�cm-3\ qV = 6.00 g�cm-3\ qZr = 6.52 g�cm-3

\qNb = 8.57 g�cm-3). Based on the above, the CGM of

Zr-Ti-V-Nb-Al alloy was preliminarily determined as

Al1 � ðTiZrÞ11
� �

� VNbð Þ4, and the increase in center atom
Al ([ 6.25 at%) would promote the precipitation process.

In order to validate the composition design, Alx-
Ti2Zr1.2V0.8Nb alloys (SS-Alx, x = 0, 0.3, 0.6, and the

composition of Al is 0%, 5.7% and 10.7%, respectively)

were selected since the compositions were similar to

Al0.33Ti2ZrVNb composition whose center atom Al chan-

ged. The SS-Alx alloys were prepared and characterized

[50]. HEXRD patterns demonstrated that the main phase in

SS-Alx alloys was BCC solid-solution phase (Fig. 4b).

However, by enlarging HEXRD curves from 1.5� to 2.5�, a
peak around 2� was found in the curve of SS-Al0.6 and the

peak was identified as (100) peak of B2 phases. That is to

say, with the increase in Al content, SS-Alx alloys trans-

formed from BCC solid-solution phase to ordered B2

phase. Composition analysis confirmed that cluster atoms

(Zr, Al) are enriched in ordered B2 [50]. The result is

consistent with the composition design.

To reveal Al effect on the mechanical properties, the

tensile true stress–strain curves of SS-Alx alloys were

characterized and the addition of Al would significantly

improve the yield strength without ductility reduction when

there is no B2 precipitation; once the B2 phase is induced

(SS-Al0.6), the ductility reduced rapidly [50]. Taking

density into consideration, the specific yield strengths of

SS-Al0.3 is up to 166.05 MPa�m3�kg-1 (Table 2), higher

than most of the reported MPEAs with tensile ductility

[50].

3.2.2 Precipitation-strengthened alloy

At the primary stage of MPEAs, single-phase solid solution

alloys were managed to be fabricated because intermetallic

precipitates were regarded as detrimental phase as they

may degenerate the properties of MPEAs [3, 11–13, 51].

However, some studies indicated that the secondary phases

in MPEAs could also contribute significantly to improve

the mechanical properties [52–60], like those in most

engineering alloys.

3.2.2.1 FCC-based Al-Cr-Fe-Ni-V alloy Al-Cr-Fe-Ni

based alloy is a well-studied MPEAs, and previous study

demonstrated that the Ni3Al-type L12-structured precipi-

tation in FCC-based alloy is beneficial to the improvement

of alloy strength [12], and V plays an important role in the

Fig. 4 a Cluster index of principal elements in Zr-Ti-V-Nb-Al alloy; b HEXRD patterns of SS-Alx alloys

Table 1 Chemical enthalpy (DHchem) between PEs in Zr-Ti-V-
Nb-Al alloy (kJ�mol-1) [27]

PEs Al Ti V Zr Nb

Al 0 - 30 - 16 - 44 - 18

Ti 0 - 2 0 2

V 0 - 4 - 1

Zr 0 4

Nb 0

Table 2 Density and specific yield strength of SS-Alx

Alloy Density /
(g�cm-3)

Specific yield strength /
(MPa�m3�kg-1)

SS-Al0 5.964 156.27

SS-Al0.3 5.920 166.05

SS-Al0.6 5.813 83.95

1 Rare Met. (2022) 41(11):3839–3849
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precipitation process in Cr-Fe-Ni-V alloy according to the

research by Choi et al. [61]. Therefore, Al-Cr-Fe-Ni-V

alloy was selected to obtain precipitation-strengthened

MPEAs by controlling the formation and structure of

precipitates.

To determine the threshold composition to form pre-

cipitates in Al-Cr-Fe-Ni-V alloy, CGM was built based on

the FCC-based general model demonstrated in Sect. 2.1.

To determine the center atom element of CGM, cluster

index of principal elements in Al-Cr-Fe-Ni-V alloy were

calculated, as illustrated in Fig. 5a, and chemical enthalpy

between PEs is listed in Table 3. It could be seen that the

PC of Al is the largest, while those of Cr and Fe are sig-

nificantly smaller (PFe
C ¼ 0:12;PCr

C ¼ 0:13). Therefore, Al

would occupy the center atom position from structural

aspect, Cr and Fe would occupy the glue atom position. For

the other two principal elements V and Ni, their PC were in

the middle, and chemical affinity between center atom and

the two elements were regarded as the priory consideration.

Compared to V, chemical affinity between Ni and center

atom Al is stronger (DHAl�Ni
chem ¼ �22 kJ�mol-1,

DHV�Ni
chem ¼ �16 kJ�mol-1); and chemical affinity between

V and Ni is also stronger than that between V and Al. Thus,

Ni would occupy the neighbor atom site and V would

occupy the center atom site in the cluster-glue-atom

formula. According to this, the CGF of Al-Cr-Fe-Ni-V

alloy could be written as AlVð Þ � Ni12½ � � CrFeAlVNið Þ19.
To obtain desired Ni3Al-type L12-structured precipi-

tates, the CGM could be modified by referring to cluster

formula of Ni3Al (Fig. 5b). According to the cluster-glue-

atom model of Ni3Al, the glue atoms are Al7Ni12, and the

glue atom in Al-Cr-Fe-Ni-V alloy could be written as

½ AlVð ÞCrFe�7 � NiCrFeð Þ12. The contribution of Fe and Cr

could be considered to be the same and occupied the sites

randomly, as DHFe�Cr
chem is - 1 kJ�mol-1 and the atomic

volumes of Fe and Cr are very similar (the molar volume of

Cr is 7.23 9 10–6 m3�mol-1 and that of Fe is 7.10 9 10–6

m3�mol-1). Accordingly, the CGM of FCC-based Al-Cr-

Fe-Ni-V alloy could be written as AlVð Þ � Ni12½ ��
AlVð Þ7=3Cr7=3Fe7=3

h i
Ni4Cr4Fe4ð Þ, and the corresponding

composition is (AlV)0.52CrFeNi2.52.

To validate the designed compositions, two Al-Cr-Fe-

Ni-V alloy, Al0.5CrFeNi2.5 (PS-V0) alloy and Al0.5CrFe-

Ni2.5V0.2 (PS-V0.2) alloy whose compositions were similar

to (AlV)0.52CrFeNi2.52, the composition changes of center

atom V were analyzed. The PS alloys were prepared and

phase structures were analyzed by means of synchrotron

HEXRD [62]. It could be seen that PS alloys mainly consist

of FCC-structured matrix and L12-structured precipitation

(Fig. 6a). HEXRD patterns of PS-0.2 alloy exhibited a

higher peak of L12 phase, proving that the addition of

center atom V could promote the formation of precipita-

tion. What’s more, the quantitative analysis results

revealed that the L12-structured precipitations were major

precipitations (* 50%) in the PS-V0.2 alloy whereas the

fraction of the BCC-structured precipitations was

barely * 6% [62].

To obtain elemental distribution in FCC matrix and L12
precipitation, one-dimensional concentration profiles of

PS-0.2 alloy are shown in Fig. 6b, and mean compositions

Fig. 5 a Cluster index of principal elements in Al-Cr-Fe-Ni-V alloy; b cluster-glue-atom model of Ni3

Table 3 DHchem between PEs in Al-Cr-Fe-Ni-V alloy (kJ�mol-1)
[27]

PEs Al Cr Fe Ni V

Al 0 - 10 - 11 - 22 - 16

Cr 0 - 1 - 7 - 2

Fe 0 - 2 - 7

Ni 0 - 18

V 0

1Rare Met. (2022) 41(11):3839–3849
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of the two phases were calculated, as listed in Table 4. It

could be found that cluster atoms with larger PC (Al, V and

Ni) enrich in the L12 precipitation and glue atoms with

smaller PC (Cr and Fe) enrich in FCC matrix, confirming

that the elemental distribution after phase separation could

be predicted by comparing PC of principal elements.

To prove strengthening effect of L12 precipitation, the

tensile engineering stress–strain curves were measured and

showed remarkable increases in strength ([ 1.5 GPa). The

PS-V0.2 alloy exhibited ultrahigh yield strength of

1,821 MPa and good strain-hardening capacity with useful

ductility (* 5%) [62]. The increase in strength confirmed

that precipitation-strengthened MPEA could be obtained

by the improved CGM approach.

3.2.2.2 BCC-based alloy Previous studies have shown

that B2 phase in FCC-based alloy is unfavorable to the

plasticity due to its semi coherent relationship with the

matrix; however, B2 phase is the preferred strengthening

phase of BCC system alloy [63]. Based on the research of

Al-Co-Cr-Fe-Ni alloy, composition design research was

carried out to obtain NiAl type B2 ordered phase in BCC

solid solution matrix.

CGM of Al-Co-Cr-Fe-Ni alloy was built based on the

BCC-based general model demonstrated in Sect. 2.1.

Cluster indexes of principal elements in Al-Co-Cr-Fe-Ni

alloy are plotted in Fig. 7a, and chemical enthalpies

between PEs are listed in Table 5. Similar to Al-Cr-Fe-Ni-

V alloy, Al and Ni would occupy the center atom position

and nearest neighbor atom position, respectively. Similar to

Fe and Cr, Co would occupy the glue atom position.

Besides, to obtain NiAl type B2 ordered phase, the atomic

ratio of Al and Ni was controlled (cAl=cNi � 1=1). There-

fore, CGM of Al–Co–Cr–Fe–Ni alloy could be written as

Al1 � Ni1 FeCoCrð Þ7 FeCoCrð Þ3
� �

� FeCoCrð Þ4, and corre-

sponding composition is Al0.25Ni0.25(CoCrFe)3.5. For Al-

Co-Cr-Fe-Ni alloy, the formation of B2 phase would be

promoted when the content of Al and Ni increases as the

leading factor is strong chemical affinity of Al-Ni.

The composition of Al0.3Co0.7Cr1.3FeNi0.3 (PS-BN)

alloy is similar to the designed composition, and the con-

tents of Al and Ni (8.33 at%) are slightly higher than the

critical value (6.25 at%). Therefore, it is expected that a

certain amount of B2 phase would form in the BCC-

structured matrix. Characterized phase structure of PS-BN

alloy is shown in Fig. 7b–d. HEXRD pattern in Fig. 7b

proved that main phase of the alloy is BCC-structured

solid-solution, and the diffraction peak in 2h = 2.4� indi-

cated the existence of B2 phase. STEM image and selected

area electron diffraction (SAED) pattern (Fig. 7c) further

revealed that the spherical nanoparticles in the alloy were

B2 phase and the fraction of precipitated phase was high

(* 50%). In addition, energy dispersive X-Ray spec-

troscopy (EDX) scanning (Fig. 7d) indicated that Al and Ni

were enriched in B2 phase, and Cr and Fe were enriched in

BCC matrix, which is consistent with the calculated PC.

This result further verified the applicability of CGM to

design PS-MPEAs.

Fig. 6 Phase structure and element distribution in PS alloys: a HEXRD patterns PS alloys; b 1D concentration profile of PS-V0.2 alloy
detected by 3DAP; c sampling position displayed in reconstruction of PS-V0.2 alloy

Table 4 Mean compositions of FCC matrix and L12 precipita-
tions (at%)

Phase Al Cr Fe Ni V

FCC matrix 5.08 25.01 29.56 37.51 2.84

L12 precipitation 18.17 2.53 6.49 68.04 4.77

1 Rare Met. (2022) 41(11):3839–3849
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4 Conclusion

To design precipitation in MPEAs, a cluster index (PC)

considering both chemical affinity and lattice distortion has

been proposed to determine the center atom element in

CGM, which is the key question when extending CGM to

MPEAs. It is found and confirmed by experimental results

that PC can be used to quickly determine cluster atom and

glue atom in MPEAs, therefore control formation of pre-

cipitates in MPEAs. Based on the approach, a BCC-based

light-weight solid-solution Zr-Ti-V-Nb-Al MPEAs (SS-

MPEAs) and two precipitation-strengthened MPEAs (PS-

MPEAs) were studied, and both alloys were confirmed by

experiments with desired phase structures according to

calculation results. The phase structure of SS alloys

transfers from single BCC phase to BCC ? B2 phase, as

the composition of Al increases; the PS-FN alloys were

consisted of FCC-structured matrix and L12-structured

precipitation, the PS-BN alloy was consisted of BCC-

structured matrix and B2-structured precipitation.
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Table 5 DHchem between PEs in Al-Co-Cr-Fe-Ni (kJ�mol-1) [27]

PEs Al Cr Co Fe Ni

Al 0 - 10 - 19 - 11 - 22

Cr 0 - 4 - 1 - 7

Co 0 - 1 0

Fe 0 - 2

Ni 0

1Rare Met. (2022) 41(11):3839–3849
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