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Li-rich manganese-based oxides (LRMO) with high

capacities are attractive cathode materials for next-gener-

ation lithium-ion batteries. However, poor cycling stability

is one of the key issues impeding their commercialization.

Here, for the first time, we employed trimethoxy(3,3,3-

trifluoropropyl)silane (TMTFS) as a multifunctional elec-

trolyte additive to stabilize the LRMO cathode interphase

and elevate its cycling performance. The LRMO electrode

delivered a high reversible capacity of 250.4 mAh�g-1

with a stable capacity retention of 91% after 200 cycles.

Detailed analysis using in situ powder X-ray diffraction

(PXRD), cyclic voltammetry (CV), nuclear magnetic res-

onance (NMR), X-ray photoelectron energy spectra (XPS)

and transmission electron microscopy (TEM) demon-

strated that the TMTFS additive can not only form a

robust, thin, and dense LiF-dominated cathode electrolyte

interphase, but also scavenge detrimental HF in elec-

trolyte. Additionally, the TMTFS additive can adjust the

solvation environment, thus enhancing the transference

number of lithium ions.

With the explosively growing demand of portable elec-

tronic devices and pure/hybrid electric vehicles, it is urgent

to develop rechargeable lithium-ion batteries (LIBs) with

high energy and high power densities [1]. Compared to

anode materials, the energy density of commercial LIBs

has reached a bottleneck, which is limited by the cathode

materials [2–5]. The mainly commercial cathode materials

have lower capacities, such as LiCoO2 (140 mAh�g-1) [6]

and LiFePO4 (150 mAh�g-1) [7, 8]. Therefore, it is crucial

to seek or optimize cathode materials with high capacity

for next-generation LIBs.

Among the high capacity cathode materials, Li-rich

manganese-based oxides (LRMO), a formula of xLi-

MO2�(1-x)Li2MnO3 or Li1?xM1-xO2 (0\ x\ 1, M = Ni,

Co, Mn), have attracted considerable attention on high

theoretical capacities ([ 300 mAh�g-1) and a wide voltage

range of 2.0–4.8 V (vs. Li/Li?), compared with Ni-rich

NCM (lithium nickel cobalt manganese oxide) and NCA

(lithium nickel cobalt aluminum oxide) [9–11]. However,

the LRMO materials usually have a large initial capacity

loss [12, 13], poor rate capability [14, 15], fast capacity

decay and continuous voltage fading upon cycling [16–18],

which seriously hinders them for the practical LIBs

applications. Various studies demonstrated that the poor

electrochemical performance of LRMO materials origi-

nates from the following: (1) the irreversible oxidation of

O2- occurred once charged to 4.4–4.8 V (vs. Li/Li?),

resulting in a low initial Coulombic efficiency (ICE)

[12, 18]; (2) the irreversible oxygen release induced oxy-

gen vacancy and transition-metal ions migration into Li

layer, leading to voltage fading and capacity degrading

[19–21]; (3) the continuous high voltage interfacial side

reactions and the dissolution of transition-metal ions in

electrolyte under the corrosion of hydrofluoric acid,

resulting in thick cathode electrolyte interphase (CEI) layer

and poor rate capability [22, 23], respectively.

To solve/mitigate the above detrimental effects, several

strategies have been reported. One strategy focuses on the
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cathode materials, such as surface modification [24, 25],

cation or anion doping [14, 26, 27]. One typical example is

coating Li3PO4 with high ionic conductivity and the sub-

stances with high electronic conductivity on the surface of

high-capacity layered oxide cathode materials, resulting in

restraining the interfacial side reactions, and promoting the

ionic and electronic conductivity [24, 28–31]. Recently,

Wynn and co-workers [32] demonstrated that the Mo-

doped LRMO tuned charge density distribution and the

local band structure to enhance the electrochemical per-

formances. Another strategy focuses on the electrode

construction, i.e., introducing functional binder or con-

ductivity to build the electrode [33, 34]. Various binders,

such as sodium carboxymethyl cellulose (CMC) and

polyacrylic acid (PAA), were employed to construct the

stable electrodes, which indicated that the voltage-fading

phenomena were alleviated [17, 35]. The third strategy

focuses on the electrolyte, for instance, adding new sol-

vents or additives [36–38]. Meng and co-workers used

LiBOB as an additive, which can remove HF and form

stable CEI layer, resulting in relieving particles’ sur-

face/subsurface phase transformation and alleviating volt-

age decay [39]. Similar study was also carried out by

Zhang et al. [23]. Compared to the above three strategies,

adding electrolyte additive is an easier approach, which can

be accepted by the battery manufacturers.

In this study, we are the first to choose TMTFS as a

functional electrolyte additive. The electrochemical per-

formance of this additive displayed higher cycling stability

of LRMO electrodes. In situ PXRD, NMR, XPS and TEM

revealed the TMTFS additive to form a thin and uniform

LiF-enriched CEI layer, which effectively protected the

LRMO particles during the cycling. The TMTFS additive

tuned the solvation environment of lithium ions, resulting

in enhancing Li-ion transference number and inhibiting the

decompose of PF6
-. Meanwhile, it can also effectively

scavenge hydrogen fluoride (HF), which can corrode the

LRMO structure, from the electrolyte.

The LRMO (Li1.2Ni0.13Co0.13Mn0.54O2) material was

synthesized by a simple polymer-pyrolysis method

[17, 40–42]. The structure and morphology of the as-syn-

thesized LRMO were characterized by PXRD, SEM and

TEM, as shown in Fig. 1. PXRD pattern of the LRMO has

a typical layered hexagonal structure of a-NaFeO2 lattice

with space group of R �3m (Fig. 1a). Meanwhile, the peaks

from 20� to 25� belonged to the formation of Li2MnO3,

which were referred to as superlattice reflections [43]. It

was worth noting that the clearly split diffraction peaks of

(006), (012), (018) and (110) were observed, indicating the

sample with a well-layered structure. The ratio of the peak

intensity of (003)/(104) in the PXRD pattern corresponds to

the cation disorder degree between lithium and transition

metal sites [24, 40]. In addition, the particle size of LRMO

nanoparticle is about 200–300 nm (Fig. 1b, c). The clear

edge and angle were observed in each of particles from

SEM image, which confirmed the LRMO nanoparticles

with crystal structure. High-resolution transmission elec-

tron microscopy (HRTEM) image (Fig. 1d) indicates that

the distance between adjacent lattice plane is measured

about 0.47 nm, which is in good agreement with the d-

spacing of the (003) plane of the LRMO.

Coin cells were employed to evaluate electrochemical

properties of the LRMO cathode in the LB-372 electrolyte

with and without TMTFS additive. Figure 2a presents the

initial charge–discharge profiles of LRMO electrodes in

LB-372 and LB-372-1.0 vol% TMTFS electrolytes. Both

of them exhibit similar charge–discharge behaviors with a

considerable discharge capacity of 286.3 and 283.3

mAh�g-1 for LB-372 and LB-372-1.0 vol% TMTFS elec-

trolytes, respectively. Figures 2b and S1b show the cycle

performance of batteries with different electrolytes at 0.4C

(1.0C = 250 mA�g-1). LRMO electrode in the LB-372

electrolyte displayed an initial capacity of 241.1 mAh�g-1

and the capacity retention of 77% after 200 cycles. While

the LRMO cathode in LB-372-1.0 vol% TMTFS elec-

trolyte showed clearly improved stability, which had the

first capacity of 250.4 mAh�g-1, corresponding capacity

retention of 91% under identical conditions. When the

content of TMTFS additive increased to 2.5 vol% and 5.0

vol% (Fig. S2a), the capacity retention was 89% and 83%

after 200 cycles at 0.4C. Additionally, different fluorosi-

lane and n-propyltrimethoxysilane (without fluorine) were

chosen as control experiments, as shown in Fig. S2c, d,

which demonstrated the TMTFS additive with the best

electrochemical performance among them. To further

assess the stability at high current densities, we measured

the rate dependence of specific capacity of the LRMO

cathode in the electrolyte with and without 1.0 vol%

TMTFS, as shown in Figs. 2c, S1a–d. When the electrolyte

included TMFTFS, the reversible capacities of the elec-

trodes are 195.8 and 162.2 mAh�g-1 after 200 cycles at

1.0C and 2.0C, respectively. An over-charge phenomenon

was observed in the LB-372 electrolyte after over 100

cycles in all current densities (Fig. S1b–d). This phe-

nomenon brought forward to * 40th cycle when the

charge voltage range extended to 5.0 V (Figs. 2d, S1e).

This result illustrated that the LB-372 electrolyte is

unstable for the high voltage cathode materials during

cycling. Fortunately, the TMTFS additive can improve the

stability of electrolyte at high voltage during charge pro-

cess and overcome this over-charge phenomenon.

To understand why the electrolyte with TMTFS additive

exhibits excellent cycling performance, we carried out

analysis on the electrolytes and the electrode/electrolyte
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interface. We first performed NMR measurements on

electrolyte with and without TMTFS additive to study the

chemical environment of Li and F. When the TMTFS was

added into the electrolyte, it could change the solvation

structure of Li?. Upon adding the additive in the LB-372

electrolyte, the 7Li peak shifts downfield (more positive,

Fig. 2e), which is indicative of decreased Li?-solvent

interaction, resulting in less electron density around Li?

[40]. It means that the less solvent molecules are around

Li?, which can move faster in this electrolyte during

charge–discharge processes. This result was confirmed by

the lithium-ion transference number through the Bruce–

Vincent–Evans technique (Fig. S3) [44].

The solute of electrolyte, LiPF6, is a moisture-sensitive

component, which is easy decomposed to form HF and PO2F2
-.

HF is a harmful species, resulting in etching the LRMO and

current collectors [45, 46]. Therefore, the electrolyte with the

function of scavenging HF is one of the strategies to enhance the

cycling performance. The 19F NMR spectra of electrolytes are

shown in Figs. 2f, S4. When adding HF aqueous solution in LB-

372 electrolyte, new peaks belonging to HF (- 192 9 10–6)

and PO2F2
- (- 85 9 10–6 and - 87 9 10–6) were observed.

The 19F peak of HF was not detected after adding HF in LB-372

electrolyte with 1.0 vol% TMTFS. Meanwhile, the peak

intensity of PO2F2
- clearly decreased. It demonstrated that the

TMTFS additive not only scavenged HF, but also suppressed

the hydrolysis of LiPF6. This result is different with that of (2-

allylphenoxy) trimethylsilane additive, which still observed

peaks of PO2F2
- [47].

Both of the 7Li and 19F NMR spectra revealed that the

TMTFS additive can change the structure of electrolyte,

and it also will change the interface between cathode and

electrolyte. HRTEM, XPS, electrochemical impedance

spectroscopy (EIS) and CV were employed to analyze and

characterize the electrode/electrolyte interface. Firstly, the

LRMO particles after charge–discharge cycles in both

electrolytes were characterized through TEM, as shown in

Fig. 3a, b. A roughness layer, with thickness from

nanometers to 25 nm, was observed on the LRMO par-

ticle in LB-372 electrolyte. It seems to be etched by HF,

which is from hydrolysis of LiPF6 or the decomposition

of the electrolyte under high potential. Such thick and

unshaped interphase layer may hinder the transportation

of Li? between electrolyte and LRMO particles. In con-

trast, the surface of the LRMO particles has a uniform

and smooth layer when adding TMTFS into the elec-

trolyte. The thickness of the interphase layer is about

4 nm. Compared to both TEM images (Fig. 3a, b), they

confirmed that the TMTFS affected the electrode/elec-

trolyte interface.

Fig. 1 a XRD pattern, b SEM image, c TEM image and d HRTEM image of synthesized Li1.2Ni0.13Co0.13Mn0.54O2 nanocrystals
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To elucidate the chemical component of the elec-

trode/electrolyte interface, i.e., CEI layer, XPS was used to

check the chemical bonding environments of the species.

Figures 3c–f and S5 display the deconvolution of C 1s, F

1s and Si 2p XPS spectra of the samples after charge–

discharge cycles. The deconvolution of the C 1s spectrum

indicated that peaks of RO–CO2Li/Li2CO3 (290.8 eV),

C=O (287.9 eV), and C–O (286.2 eV) were attributed to

the decomposed of solvent or additives [37, 47]. Compared

to the reference peak (284.8 eV), the intensity of those

three peaks is lower in the electrolyte with TMTFS than

that of the electrolyte without additive (Fig. 3c, d). This

result illustrated that this additive alleviated solvent

decomposition. The F 1s XPS spectra indicated three spe-

cies, i.e., C–F (687.9 eV), LixPOyFz (687.2 eV) and LiF

(685.3 eV), as shown in Fig. 3e, f. The intensity of the

peak of LixPOyFz is clearly decreased, but the peak of LiF

is significantly increased when this additive is added into

electrolyte. Combined to the deconvolution of the Si 2p

spectrum (Fig. S5), it revealed that some of TMTFS was

decomposed to construct the electrode/electrolyte interface,

and formed a robust, thin, and dense LiF-dominated CEI

layer, which is further confirmed by TEM images (Fig. 3)

and EIS results (Fig. S6 and Table S1). Furthermore, SEM

images showed that LRMO materials in LB-372-1.0 vol%

TMTFS electrolyte contacted more tightly after 200 cycles

(Fig. S7). It was worth noting that the clearly split

diffraction peaks of (006), (012), (018) and (110) still

existed in LB-372-1.0 vol% TMTFS electrolyte after

cycles (Fig. S8). These results are believed that the TMTFS

additive is to be the key factor in achieving the excellent

cycling performance of LRMO electrode due to forming a

unique CEI layer.

CV was employed to further assess the electrochemical

performance of the electrode/electrolyte interface. The CV

with various scan rates was recorded, as shown in Figs. 4,

Fig. 2 a Initial charge–discharge profiles of LRMO electrode at 25 mA�g-1 in LB-372 and LB-372-1.0 vol% TMTFS electrolytes;
cycling performance of LRMO cathodes at a current density of b 100 and c 500 mA�g-1 in LB-372 and LB-372-1.0 vol% TMTFS
electrolytes between 2.0 and 4.8 V; d cycling performance of LRMO electrode at a current density of 100 mA�g-1 in LB-372 and LB-
372-1.0 vol% TMTFS electrolytes between 2.0 and 5.0 V; e 7Li NMR spectra of LB-372 and LB-372-1.0 vol% TMTFS electrolytes; f 19F
NMR spectra of LB-372 electrolyte and with HF or/and TMTFS
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S9. When the scan rate increased from 0.1 to 0.5 mV�s-1,

the anodic peak (A) shifted by 212 and 52 mV to higher

potentials, while the cathodic peak (B) shifted by 300 and

160 mV to lower potentials for electrolyte without/with the

TMTFS additive, respectively. Obviously, there is a larger

polarization in electrolyte without the additive, which can

be further supported by TEM images (Fig. 3). We calcu-

lated the apparent lithium-ion diffusion coefficients, which

reflects the kinetics of lithium insertion/extraction at the

electrode/electrolyte interface (Fig. 4e, f), according to the

classical Randles–Sevcik equation [48]. Clearly, all the

apparent lithium-ion diffusion coefficients of the battery

Fig. 3 TEM images of LRMO electrodes after cycling in a LB-372 and b LB-372-1.0 vol% TMTFS electrolytes; XPS spectra of LRMO
electrodes after cycling in LB-372 (c and e) and LB-372-1.0 vol% TMTFS (d and f) electrolytes

Fig. 4 CV curves of LRMO electrodes with different scanning rates: 0.1–0.5 mV�s-1 in a LB-372 and b LB-372-1.0 vol% TMTFS
electrolytes, and corresponding relationship between c, d Vp and v, e, f Ip and v1/2
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with the TMTFS additive are larger than that of battery

without this additive (Table S2). This difference value of

the diffusion rates and polarization can be attributed to the

structure and component of the electrode/electrolyte

interface, which was improved by the TMTFS additive.

This result is further supported by the excellent cycling

performance of the LRMO electrodes with the TMTFS

additive.

We carried out in situ PXRD studies of the LRMO

electrode to check the structure changes during the first

three cycles under the current density of 25 mA�g-1. The

contour map of in situ PXRD and the corresponding

charge–discharge profiles are displayed in Figs. 5, S10. The

unshifted peaks are attributable to current collector,

beryllium window, and the device of the in situ cell. During

the first charging process, some peaks, including (003) and

(018), shift to lower angle at first, then keep a period of

time, and then a little back to higher angle. It is attributed

that lithium ions are extracted from lithium layers and

transition metal layers with different structure changes,

resulting in c-parameter increasing at first, then keeping

constant, and then decreasing later [49]. With extraction of

lithium from the lithium layers, the electrostatic repulsion

between oxygen layers induced the increase of c-parame-

ter. With further extraction of lithium to * 4.5 V, the

lithium of transition metal layers was activated and entered

into the lithium layers, which kept the c-parameter constant

during this process. When the speed of extraction lithium is

larger than that of lithium from transition metal layers

entered into lithium layers, the lithium lays contracted,

meanwhile, oxygen released and transition metal entered

into the lithium layers, which may decrease the electro-

static repulsion and then decrease the c-parameter [49].

Other peaks shifted to higher angle, which is related to a-

parameter [50]. During the initial discharge process, the

lithium ions also have two processes, i.e., insertion into

lithium layers and transition metal layers, resulting in the

peaks shifted to inverse direction of the charging process.

During subsequent two cycles, similar phenomena were

observed. The periodic shift of the peaks indicated a

reversible lithiation/delithiation process. It should be noted

that the positions of (003) and (018) peaks at full charge

and full discharge stages are almost constant, which is

related to the change of c-parameter. This phenomenon

observed by in situ PXRD is similar to previous reports

[49–51].

In summary, we report TMTFS as a new multifunctional

electrolyte additive, which significantly enhance the

cycling stability of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode.

A LRMO electrode delivered a reversible capacity about

227.6 and 195.8 mAh�g-1 at 0.4C and 1.0C after 200

cycles with a capacity retention of 91% and 81%,

Fig. 5 a, b First three-cycles curves and corresponding in situ PXRD patterns of LRMO electrode in LB-372-1.0 vol% TMTFS
electrolyte at 25 mA�g-1; c discrete PXRD patterns selected from Panel a
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respectively, compared to those (only 77% and 46%) in

electrolyte without TMTFS under the same conditions. 7Li

and 19F NMR spectra revealed that the TMTFS additive

can change the structure of electrolyte, the solvation

environment of lithium ions and HF scavenging. XPS,

TEM, EIS and CV results confirmed that the TMTFS

additive can promote a robust, thin, and dense LiF-domi-

nated cathode electrolyte interphase on the LRMO cathode.

From this study, a fundamental understanding of the

function of TMTFS additive can serve as a guide for

designing new additives for Li-rich layered oxide cathode

materials.
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