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Abstract A series of thermal compression tests on a Cr-

Mn-Si-Ni alloyed naval steel were carried out at different

strain rates (0.0005–0.0100 s-1) at different temperatures

(1023–1173 K). Based on the friction-corrected data

obtained from the compression tests, strain-compensated

Arrhenius-type constitutive (SCAC) and backpropagation

artificial neural network (BP-ANN) models with the opti-

mized structure of the Cr-Mn-Si-Ni alloyed naval steel

were established. The optimized BP-ANN model, where

the operation time and overfitting of BP-ANN were

shortened and avoided, respectively, exhibited improved

predictive performance. The two models were assessed

further in terms of the correlation coefficient (R), average

absolute relative error, and root mean square error. The

results validated that the optimized BP-ANN model pre-

dicted the flow behavior of the Cr-Mn-Si-Ni alloyed naval

steel better than the SCAC model. The effect of the

forming temperature and strain rate on the microstructural

evolution behavior of the naval steel during thermoplastic

deformation was investigated through the electron

backscatter diffraction analysis of the compressed samples.

It was observed that the dynamic recrystallization of the

naval steel was promoted by an increase in the forming

temperature and a decrease in the strain rate during ther-

moplastic deformation.

Keywords Naval steel; Thermal compression;

Recrystallization; Constitutive model

1 Introduction

Naval steels used in marine and offshore engineering

manufacturing are required to exhibit high strength,

excellent low-temperature impact toughness, and good

weldability. To improve the low-temperature impact

toughness while maintaining other mechanical properties,

several types of alloyed naval steels have been designed

and developed, including Cr-Mn-Si-Ni alloyed naval steel

[1–4]. Thermoplastic deformation of metallic materials is a

vital step to manufacture structural components from Cr-

Mn-Si-Ni alloyed naval steel billets. The performance of

structural components and the reliability of the entire

marine product are determined by the thermal forming

properties of naval steels under particular forming condi-

tions [5, 6]. Therefore, it is necessary to investigate the

thermal forming behavior of Cr-Mn-Si-Ni alloyed naval

steels under different conditions, which has rarely been

reported. In the past decades, a considerable number of

research articles on the thermal deformation behavior of

steels and alloys have been published. Shahriari et al. [7]

studied the kinetics of the dynamic recrystallization (DRX)

of BA-160 steel during thermal compression and compared

it with a hypothetical dynamic recovery curve. Abed [8]

proposed a microstructures-based constitutive relation to

describe the plastic behavior of the DH-63 naval structural

steel over a broad range of temperatures and strain rates.
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Dandekar et al. [9] investigated the flow behavior of Fe-

21Cr-1.5Ni-5Mn alloy using thermal compression tests and

established a strain rate sensitivity map.

Recently, computers have played an increasingly crucial

role in the numerical simulation and analysis of the thermal

forming processes of metallic materials. Based on the

simulation results, suitable thermal forming parameters can

be determined and optimized [10–12]. Consequently, a

credible constitutive model that can accurately describe the

mathematical relationship between the thermal forming

properties such as the flow stress, and process parameters

such as forming temperature, strain, and strain rate of

metallic materials during the thermal forming process,

must be embedded in the commercial numerical analysis

software [13–15]. Therefore, it is essential to establish a

suitable constitutive model for simulating the forming

process of Cr-Mn-Si-Ni alloyed naval steel. Generally, the

proposed constitutive models can be classified as phe-

nomenological models, physics-based models, and artificial

neural networks (ANNs) [16–20]. For phenomenological

models, a detailed understanding of the physical phenom-

ena involved in the thermoplastic deformation process is

not required. In contrast, the constitutive relationship

between the flow stress and forming temperature, strain

rate, and strain can be determined through regression

analysis. The most well-known and widely adopted phe-

nomenological models include the Johnson–Cook consti-

tutive model, hyperbolic Arrhenius-type constitutive

model, and strain-compensated Arrhenius-type constitutive

(SCAC) model. However, regression analysis inevitably

reduces their accuracy in predicting the flow stress. Phy-

sics-based models include the Zerilli-Armstrong (ZA) [21]

and the dynamic recrystallization (DRX) models [22],

which consider thermoplastic deformation mechanisms

such as dislocation and thermal activation kinetics. How-

ever, their application in numerical simulations is limited

by the difficulty in determining the parameters of metallic

materials and the complexity of physical models. ANNs,

especially backpropagation artificial neural networks (BP-

ANN), show better prediction performance than the above-

mentioned models; thus, they have been gradually used in

the numerical simulations of the thermal forming processes

of metallic materials [23–26]. In addition, various novel

constitutive models have been proposed for several dec-

ades. For instance, Maati et al. [27] developed a statistical

and physically based model for predicting the elastic return

in a sheet after a bending operation, and the hybrid model

was successfully utilized in numerical simulations. Oliveira

et al. [28] introduced a novel three-dimensional constitu-

tive model that describes the thermomechanical behavior

of shape memory alloys. Ashrafian and Kordkheili [29]

proposed a viscoplastic temperature-dependent constitutive

model, which was proven to possess the best predictivity

by comparison of Ti-6Al-4V at high-temperature condi-

tions under quasi-static rates.

Recently, ANNs have received considerable attention

and have been optimized in previous reports. For example,

nested functions outside ANN have been developed to

improve their accuracy. An improved BP-ANN algorithm

based on a genetic algorithm was proposed by Huang et al.

[30] to predict the thermoplastic deformation behavior of

an aluminum alloy. Based on particle swarm optimization,

Wan et al. [31] optimized a double-hidden layer neural

network to predict the flow stress of zirconium alloys under

different thermal forming conditions. To obtain the optimal

random weights and biases of BP-ANN, an optimization

program with constrained nonlinear functions was estab-

lished by Murugesan et al. [32]. All of these constitutive

models successfully improved the learning capacity and

prediction accuracy of the ANN through complicated

functions. Nevertheless, little research has been done on

the optimization of the BP-ANN structure.

In this study, a series of isothermal compression tests

were performed to investigate the thermoplastic defor-

mation behavior of a Fe-0.16C-0.18Si-0.02Cr-1.45Mn-

0.005Ni alloyed naval steel. Using BP-ANN and SCAC

models, the accurate prediction of the flow stress of the

naval steel under different forming conditions, such as

forming temperature, strain rate, and strain, was per-

formed. To enhance the predictability to the furthest

extent, attempts to determine the best settings for BP-

ANN were performed through a series of experiments and

analyses. The results can provide guidance for establish-

ing excellent BP-ANN models for the thermoplastic

deformation behaviors of other metallic materials. More-

over, a comparative study on the prediction accuracy

between the optimized BP-ANN and SCAC models was

conducted based on the correlation coefficient (R), aver-

age absolute relative error (AARE) and root mean square

error (RMSE). Additionally, the influence of friction on

the thermal compression experimental results was not

negligible, as shown by the effect of the uncorrected data

on the accuracy of the constitutive equation and the

reliability of finite element simulations [33, 34]. Hence,

the raw data obtained from the thermal compression

experiments must be corrected prior to the numerical

analysis. Eventually, the microstructural evolution

behaviors of Cr-Mn-Si-Ni alloyed naval steel under var-

ious thermal forming conditions were studied through

scanning electron microscopy (SEM) and electron

backscatter diffraction (EBSD). Finally, a processing map

and strain rate sensitivity map were developed to optimize

the thermal deformation parameters and control the

microstructural evolution.
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2 Experimental

Cr-Mn-Si-Ni alloyed naval steel was used as the experi-

mental material. Table 1 summarizes its chemical compo-

sition. The original naval steel was modeled into

cylindrical samples with dimensions of U8 mm 9 12 mm.

Thermal compression tests on the cylindrical samples were

conducted using a thermomechanical simulator (Gleeble-

3500, USA) according to the experimental procedures

illustrated in Fig. 1. First, the cylindrical samples were

heated to 1223 K at a heating rate of 20 K�s-1 and held

isothermally for 180 s. Subsequently, the reheated samples

were cooled to different forming temperatures (1023, 1073,

1123 and 1173 K) at a cooling rate of 5 K�s-1. After the

isothermal holding at the forming temperature for 30 s, the

samples were compressed to a true strain of 0.7 with dif-

ferent strain rates (0.0005, 0.0010, 0.0050 and 0.0100 s-1).

The load-stroke data during the compression tests were

recorded by a computer system. The compressed samples

were immediately cooled to room temperature using cold

water.

For the microstructural examination, the compressed

specimens produced using different forming parameters

were cut parallel to the compression direction. An EBSD

instrument (NordlysMax2, Britain) installed in an SEM

(JEOL JSM-7800F, Japan) was used to examine the

microstructure and obtain information about DRX. The

scanning step size used was 0.5 lm. SEM was employed to

observe the microstructures. Subsequently, EBSD results

were analyzed using HKL Channel 5 software. In this

analysis, grain orientation spreads of 1� and 2� were

selected as the threshold values to distinguish the recrys-

tallized grains, substructured, and deformed grains. The

grains with orientation spread lower than 1� were identified

as recrystallized grains and are represented in blue, those

with grain orientation spread values between 1� and 2�
were identified as substructured grains and are represented

in yellow, and the grains with values higher than 2� were

referred to as deformed grains and are represented in red.

In addition, low-angle grain boundaries (LAGBs, grain

boundary misorientation lower than 15�) and high-angle

grain boundaries (HAGBs, grain boundary misorientation

higher than 15�) are represented by grey lines and black

lines, respectively. Furthermore, the phases were distin-

guished by the band slope of grains in this software (ferrite:

band slope higher than 130; bainite: band slope higher than

75 but lower than 130; martensite: band slope lower than

75).

3 Results and discussion

3.1 Correction of friction effect

The friction between the specimen and dies could not be

eliminated completely, although a lubricant was used

during the thermal compression tests. Because friction

restricted the movement in the radial direction of the

material at both ends of the specimen, the compressed

specimen exhibited a drum-like shape. To obtain more

accurate true stress-true strain curves, the original flow

stress must be friction-corrected [35]. Equation (1) is often

employed to calculate the true stress by eliminating the

effect of friction between the specimen and the dies

[36, 37]. From Eqs. (2–5), a constant friction coefficient

evaluation formula for the cylindrical specimen was pro-

posed in previous reports on the energy method [38, 39]:

r ¼ re

1 þ 2=3
ffiffiffi

3
p

� �

m R0

H0 exp 3e=2ð Þ

� � ð1Þ

m ¼ R=Hð Þb
4=

ffiffiffi

3
p� �

� 2b=3
ffiffiffi

3
p� � ð2Þ

b ¼ 4
RM � RT

R

H

H0 � H
ð3Þ

R ¼ R0

ffiffiffiffiffiffi

H0

H

r

ð4Þ

RT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
H0

H
R2

0 � 2R2
M

r

ð5Þ

where r is the corrected flow stress, re is the experimen-

tally measured flow stress, e is the strain, m is the constant

friction coefficient, and b is the barrel parameter. As shown

in Fig. 1, R0 and H0 are the initial radius and height of the

specimen before deformation, respectively; R and H are the

final average radius and height of the compressed speci-

men, respectively; whereas RM and RT are the maximum

and top radii of the compressed specimen, respectively.

Figure 2 shows a comparison between the original and the

friction-corrected flow stress curves of the steel samples

compressed under various conditions.

Table 1 Chemical composition of naval steel (wt%)

C Si Mn Ni Cr Fe

0.161 0.184 1.452 0.005 0.019 Bal.
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3.2 Thermal rheological behaviors of Cr-Mn-Si-Ni
alloyed naval steel

The true stress of Cr-Mn-Si-Ni alloyed naval steel during

thermal compression was affected by the forming temper-

ature (T), strain rate ( _e), and true strain (e) (Fig. 2). In the

early stages of thermal compression, the rheological stress

value increased with the increase in the true strain. This is

possibly due to the rapid increase in the dislocation density

in the compressed naval steel. These dislocations tangled

with each other and resulted in the increase in the dislo-

cation motion resistance. Gradually, the hardening rate

became higher than the softening rate of the naval steel and

subsequently caused work hardening. Once the dislocation

density in the naval steel accumulated to a certain extent,

the microstructural evolution behavior, such as dynamic

recovery (DRV) and DRX, with the softening effect in the

material progressively increased. Thus, the softening and

Fig. 1 Schematic illustration of thermal compression test procedure and resulting geometric change in cylindrical samples

Fig. 2 Original and friction-corrected flow stress curves of naval steel samples compressed at strain rates of a 0.0005 s-1,
b 0.0010 s-1, c 0.0050 s-1, and d 0.0100 s-1
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hardening effects inside the naval steel achieved a dynamic

balance [40, 41]. This resulted in good stability of the true

stress of the Cr-Mn-Si-Ni alloyed naval steel as the thermal

compression continued.

3.3 Arrhenius-type constitutive equation

In the Arrhenius-type constitutive model, the Zener-Hol-

lomon parameter (Z) expressed in Eq. (6) was employed to

represent the influences of deformation temperature and

strain rate on the thermoplastic deformation properties of

the naval steel:

Z ¼ _eexp Q=RTð Þ ð6Þ

In this Arrhenius-type constitutive equation, the flow

stress is expressed in terms of the widely accepted

hyperbolic law, as shown in Eq. (7).

_e ¼
A1rn1 exp �Q=RTð Þ ar\0:8ð Þ
A2 exp brð Þ exp �Q=RTð Þ ar[ 1:2ð Þ
A sinh arð Þ½ �nexp �Q=RTð Þ for all rð Þ

8

<

:

ð7Þ

where Q is the apparent activation energy of thermoplastic

deformation, R is the ideal gas constant equal to

8.314 J�(mol�K)-1, and A1, A2, A, a, b, b, n and n1 are

the material constants. The value of a was calculated using

a = b/n1. The natural logarithms of both sides of Eq. (7)

were converted into Eqs. (8–10):

ln _e ¼ lnA1 þ n1 ln r� Q=RT ar\0:8ð Þ ð8Þ
ln _e ¼ lnA2 þ br� Q=RT ar[ 1:2ð Þ ð9Þ
ln _e ¼ lnAþ nln sinh arð Þ½ � � Q=RT for all rð Þ ð10Þ

As shown in the equations above, the traditional

Arrhenius constitutive equation was developed without

considering the effect of the true strain on the flow stress.

To obtain a more accurate constitutive equation for this

steel, the impact of the true strain when calculating the

material parameters was considered. The parameters a, N,

A and Q can be expressed as a function of the sixth-degree

polynomial of the true strain. Correspondingly, the

corresponding material constants were calculated every

0.05 in the range of true strain from 0.05 to 0.60 by the

linear fitting method. Thus, the accuracy of the SCAC

model can be improved. For example, the material

constants under the true strain e = 0.5 were calculated.

As shown in Eq. (8), the relationship between ln _e, lnr, and

r at a constant forming temperature is linear. As shown in

Fig. 3a, b, the values of the average slopes n1 and b at

different forming temperatures were calculated as 6.3171

and 0.07268, respectively.

According to Eq. (8), ln _e–ln[sinh(ar)] is plotted in

Fig. 3c. The average slope was calculated to be 4.785 using

linear regression analysis. According to Fig. 3d and

Eq. (8), lnsinh(ar) has a linear relationship with the

forming temperature once compression tests are conducted

with a constant strain rate. Based on the data obtained from

Fig. 3c, d, the thermoplastic deformation activation energy

of this steel was calculated to be 188.398 kJ�mol-1. To

calculate the value of parameter A, Q was assumed to be

constant at different forming temperatures. When the strain

rate is constant, the plot of lnZ–lnsinh(ar) can be obtained

from the intercept of the fitting line. The value of parameter

A was 8.68 9 105 from the linear regression analysis, as

shown in Fig. 3e. Subsequently, the material constants

obtained under different strain conditions were used to fit

the sixth-order polynomial. The relationship between the

material constants a, N, A, Q and e can be expressed by the

polynomial Eq. (11), whose coefficients are listed in

Table 2.

a ¼ B0 þ B1eþ B2e2 þ B3e3 þ B4e4 þ B5e5 þ B6e6

n ¼ C0 þ C1eþ C2e2 þ C3e3 þ C4e4 þ C5e5 þ C6e6

Q ¼ D0 þ D1eþ D2e2 þ D3e3 þ D4e4 þ D5e5 þ D6e6

lnA ¼ E0 þ E1eþ E2e2 þ E3e3 þ E4e4 þ E5e5 þ E6e6

8

>

<

>

:

ð11Þ

The experimental and predicted flow stress curves are

shown in Fig. 4. It can be seen that the SCAC model can

show the flow stress variation trend of the naval steel in the

thermal deformation process. However, there is an evident

deviation between the predicted and the actual values under

different forming conditions.

3.4 Establishment and optimization of BP-ANN
model

ANN is a complicated network system of information

processing and nonlinear transformation that is connected

by multiple neurons. It is capable of self-learning by

simulating in a similar way as the human brain processes

information. BP-ANN is one of the most mature and

extensive networks. The typical BP-ANN model consists

of the input, hidden, and output layers. In this study, T, _e,
and e are the three columns of input data, while the

corrected r is the output data. After inputting all data into

the network, the data of neurons in the upper layer were

multiplied by the initial weight, and then were transmitted

to the neurons in the next layer. By calculating and

comparing the error between the predicted result and the

experimental data, forward feedback was provided, and

the weight was then adjusted until the error declined to

the set value. Eventually, after learning and training,

ANN has a high prediction accuracy for nonlinear rela-

tionship [42–44]. The settings of BP-ANN, which include

the number of hidden layers, neurons in each layer, the

activation function, and the selection of the training

algorithm in each layer, have certain influences on the
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prediction accuracy and calculation time of the neural

network.

A multi-hidden layer neural network has a strong gener-

alization capability and high prediction accuracy; however,

the training time is relatively long. The number of neurons in

the hidden layer has a significant impact on prediction

accuracy of the neural network. If there are too few neurons,

the network cannot learn well, and the accuracy of the

training is affected. However, with too many neurons, the

training time increases considerably, and the network tends

to overfit [32]. The activation function is adopted to add

nonlinear elements to improve the expression ability of the

neural network for the model and resolve the problems

encountered using the linear model. In this study, the tansig

function with a fast convergence speed and high applicability

was selected. Equation (12) expresses the tansig function.

For the output layer, the activation function purelin (linear

function) was directly selected. The problem was assumed to

be linear at the output layer because the output was propor-

tional to the weighted total input.

Fig. 3 Solving process diagrams of material parameters a n1, b b, c n, d Q, and e A of naval steel

Table 2 Coefficients of polynomial data of naval steel used in
Eq. (11)

Bi Ci Di Ei

0.01680 5.96891 174,653.5 11.72

- 0.08836 - 7.72253 - 264,941.0 - 22.71

0.64614 - 144.43300 2,706,667.0 277.10

- 2.50079 1401.95860 - 13,248,300.0 - 451.10

5.30975 - 4625.49700 - 13,248,300.0 - 1011.30

- 5.83873 6644.92110 34,656,900.0 3008.11

2.59647 - 3525.36800 - 21,962,800.0 - 1940.90
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f xð Þ ¼ tanh xð Þ ¼ ex � e�x

ex þ e�x
ð12Þ

In addition, among the commonly used training

functions, the trainlm (Levenberg–Marquardt) function is

the fastest backpropagation algorithm; however, it requires

more computer memory. The trainbr (Bayesian

regularization) is a network training function that updates

the weight and bias values according to the Levenberg–

Marquardt optimization. It minimizes a combination of

squared errors and weights and then determines the correct

combination to develop a network with better generalization

[45, 46]. To optimize BP-ANN, the effects of the number of

hidden layers, number of hidden layer neurons, and training

algorithm on the learning ability of ANN were evaluated.

The BP-ANN structure of the double hidden layers for

flow stress prediction is shown in Fig. 5. The values of R

(Eq. (13)), AARE (Eq. (14)), and RMSE (Eq. (15)) were

used to evaluate the learning capability and prediction

accuracy of the ANN [47]:

R ¼
PN

i¼1 rE � rEð Þ rP � rPð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 rE � rEð Þ2PN

i¼1 rP � rPð Þ2
q ð13Þ

AARE ¼ 1

N

X

N

i¼1

rE � rP

rE

�

�

�

�

�

�

�

�

� 100% ð14Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

ðrE � rPÞ2

v

u

u

t ð15Þ

whererE is the experimental data,rP is the predicted value of

the phenomenological model, rE and rP are the mean values

of re and rp, respectively, and N is the number of data points

used in the survey. R is usually used to assess the linear

relationship between the predicted and experimental obser-

vation values; nevertheless, an R value closer to 1 does not

imply that the predicted value is in good agreement with the

experimental value to some extent. This is because the value

of R may be easily influenced by extremely high or low

values. Therefore, AARE and RMSE are used to test the

reliability of the model [9, 48]. These statistical parameters

can be utilized to check the predictability of the established

constitutive model by comparing the relative error of the

prediction with the actual value of the variable [49, 50].

Because the reliability of BP-ANN depends strongly on the

quantity of high-quality experimental data and characteristic

variables, 960 discrete data points were selected from 16

stress–strain curves (Fig. 2) of Cr-Mn-Si-Ni alloyed naval

steel ranging from 0.01 to 0.60 with an interval of 0.01.

Among these data sets, 767 data points were randomly

chosen to train the artificial neural network, while 193 data

points were utilized to test the performance of the ANN

Fig. 4 Experimental flow stress curves of naval steel and curves predicted by SCAC model and BP-ANN model at strain rates of
a 0.0005 s-1, b 0.0010 s-1, c 0.0050 s-1, and d 0.0100 s-1
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model. The other settings of the BP-ANN model in this study

are listed in Table 3.

Moreover, the entire input and output variables must be

normalized before training the network. Equation (16) is

widely adopted to accomplish this process to obtain a

usable form for the ANN model [51]:

XN ¼ X � 0:95Xmin

1:05Xmax � 0:95Xmin

ð16Þ

where X is the measured experimental data (including the

values of r, _e, e, and T), Xmin and Xmax are the minimum

and maximum values of the chosen actual data,

respectively, and XN represents the modified data after

normalization.

Figure 6a, c, e illustrates the performance of the single-

hidden layer neural network with different numbers of

neurons and training functions, while Fig. 6b, d, f shows

the performance of the double-hidden layer neural network

with different numbers of neurons selected. For both hid-

den layers, trainbr was selected as the training function.

With an increase in the number of neurons, the prediction

accuracy of both the single-hidden and the double-layer

neural network initially increases rapidly. However, the

prediction accuracy when the number of weights (W) of the

neural network reached approximately 112 was the highest;

it remained stable even with an increase in the number of

neurons. W is expressed as:

W ¼ iH1 þ
X

N

1

HiHiþ1 þ HNO ð17Þ

where i and O are the numbers of neurons in the input and

output layers, respectively, Hi is the number of neurons in

the hidden layer of layer i, and N is the number of data used

in this survey.

The performance of the ANN model was evaluated at

each setting. As shown in Fig. 6, the R value between the

experimental value of the flow stress and the predicted

value from the BP-ANN model in single and double hid-

den layers (with the trainbr as the training function) was

stable from 0.99996 to 0.99998. Meanwhile, AARE and

RMSE remained stable at 0.17%–0.19% and 0.20–0.23,

respectively. From these figures, it can be seen that the

Fig. 5 BP-ANN structure diagram for flow stress prediction of double hidden layers

Table 3 Setting of BP-ANN for prediction of flow stress with
double hidden layers

Parameters Values

Number of training samples 767

Number of test samples 193

Number of hidden layers 1 or 2

Hide layer activation functions Tansig

The output layer activates the function Purelin

The training function Trainlm or trainbr

Learning function Learngdm

Number of variables in the input layer 3 (three variables)

Number of variables in the output layer 1 (one variable)

Learning rate 0.01

Number of cells per hidden layer 4–50 neurons

The accuracy to be trained 1 9 10–5

1 Rare Met. (2022) 41(10):3515–3529
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usage of more hidden layers in the BP-ANN model does

not necessarily result in the better predictability of the flow

stress. In addition, Fig. 6a, c, e reveals that the BP-ANN

operated more accurately when the trainbr training func-

tion was used rather than the trainlm function. Thus, for

the precise and accurate prediction of flow stress, a single

hidden layer BP-ANN using the trainbr training function

was selected, and the number of neurons in the hidden

layer was set to 28. In this case, an ANN model that

showed the best performance in a relatively short operation

time was realized.

The experimentally measured flow stress curves of the

naval steel and those predicted by the optimized BP-ANN

model are also presented in Fig. 4. The predicted flow stress

curves highly coincide with the experimental curves.

Meanwhile, the hardening and softening regions of this naval

steel during thermal deformation can be identified from the

predicted results. Accordingly, the optimized BP-ANN

Fig. 6 Relationship between prediction accuracy of BP-ANN and training function, number of hidden layers and number of neurons in
hidden layers: a and b R, c and d average absolute relative error (AARE), and e and f root mean square error (RMSE)
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model can be adopted to simulate the thermal deformation

behavior of the Cr-Mn-Si-Ni alloyed naval steel.

3.5 Comparison between SCAC and BP-ANN
models

The accuracy and predictability of the SCAC and BP-ANN

models were examined and compared using the values of

R, AARE, and RMSE. The correlations between the

experimental and the predicted data from the SCAC and

optimized BP-ANN models are illustrated in Fig. 7a, b,

respectively. Although most data points obtained by the

two models were distributed close to the line, the optimized

BP-ANN exhibited better performance. For an instance, the

R value for the SCAC and the optimized BP-ANN models

was 0.97538 and 0.99997, respectively. This indicates that

the flow stress predicted by the optimized BP-ANN model

has a better correlation with the experimental data.

The predictabilities of the SCAC and optimized BP-

ANN models in terms of the flow stress of the Cr-Mn-Si-Ni

alloyed naval steel during the thermal deformation process

are summarized in Table 4. Similarly, according to the

calculated values of R, AARE, and RMSE, the optimized

BP-ANN model rendered a remarkably better predicted

result than the SCAC model. Owing to its excellent accu-

racy and reliability, the optimized BP-ANN model can be

used to predict the thermal deformation behavior of the

alloyed naval steel. Furthermore, the capabilities of these

two models were analyzed using the relative error. The

relative error is defined by Eq. (18) [18]:

Relative error ¼ rE � rP

rE

� 	

� 100% ð18Þ

The relative errors between the experimental results and

the flow stress predicted by the SCAC and optimized BP-

ANN models in the entire true strain range are shown

Fig. 7 Correlation between experimental and predicted flow stress values by a SCAC and b optimized BP-ANN models; relative
errors between experimental and predicted flow stress values by c SCAC and d optimized BP-ANN models

Table 4 Calculated values of R, AARE, and RMSE for two
models

Model R AARE /
%

RMSE /
MPa

SCAC 0.97538 5.11 5.81

Optimized BP-ANN 0.99997 0.17 0.42
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graphically in Fig. 7d, respectively. The relative errors

obtained from SCAC model ranged between - 15% and

12%, whereas those calculated from the optimized BP-ANN

model were almost close to zero (from - 1.2% to 0.8%).

This result further proved that the optimized BP-ANN model

has a surprisingly high predictive performance for the flow

stress of this naval steel during thermal forming.

The results discussed above demonstrate that the opti-

mized BP-ANN model exhibited a better performance than

the SCAC model in predicting the thermal forming

behavior of Cr-Mn-Si-Ni alloyed naval steel. Furthermore,

this implies that the optimized BP-ANN model can possi-

bly be used to conduct a numerical simulation of the

thermoplastic deformation of this steel to obtain more

accurate results.

3.6 Microstructural evolution

SEM images of the Cr-Mn-Si-Ni alloyed naval steel samples

compressed under various conditions are presented in Fig. 8.

Although the austenite in the compressed samples trans-

formed into martensite after water cooling, the original

austenite grain boundaries could still be seen based on the

direction of the martensite lath. The grains in the compressed

samples were equiaxed, which demonstrates that DRX

occurred. The occurrence of DRX can also be proven by the

existence of peak stress on the flow stress curves (Fig. 2).

Moreover, because the carbon content of the naval steel was

only 0.16 wt%, only a small number of carbides precipitated;

thus, carbides were not visible in SEM micrographs.

The inverse pole maps obtained from EBSD analysis of

the Cr-Mn-Si-Ni alloyed naval steel samples compressed

under different conditions are illustrated in Fig. 9. The

corresponding average equivalent circle diameters are lis-

ted in Table 5. On the other hand, the grain orientation

spread maps of the samples are presented in Fig. 10. From

these figures, it can be seen that the compressed naval steel

samples were dominated by recrystallized grains. The

volume fraction of grains and the number fraction of the

misorientation angle in the naval steel samples are also

shown in Fig. 10.

As shown in Fig. 8a, c, e, the grain size decreased with

strain rate increasing when the samples were compressed at

1023 K. Statistical analysis results obtained from EBSD

analysis data presented in Table 5 further confirmed the

effect of strain rate on the equivalent circle diameter in the

deformed samples. When the strain rate was increased from

0.0005 to 0.0100 s-1, the equivalent circle diameter of the

specimen compressed at 1023 K decreased from 5.57 to

3.57 lm. At the same time, the grain size increased with

forming temperature increasing. As shown in Table 5, the

grain size increased from 3.57 to 7.37 lm as the forming

temperature was increased from 1023 to 1173 K. More-

over, the volume fraction of the recrystallized grains in the

specimen compressed at 1023 K increased with strain rate

decreasing, as shown in Figs. 9 and 10a. Equiaxed grains

dominated the microstructure of the naval steel samples

compressed at a strain rate of 0.0100 s-1 because of the

insufficient time for the growth of the recrystallized grains.

The recrystallized grain size increased when the strain rate

decreased from 0.0100 to 0.0005 s-1, as shown in Fig. 10.

When the strain rate increased from 0.0005 to 0.0100 s-1,

the volume fraction of the LAGBs increased from 24.8% to

35.2%. The increased fraction of LAGBs with strain rate

Fig. 8 SEM images of naval steel samples compressed under various conditions: a 1023 K, 0.0005 s-1; b 1073 K, 0.0005 s-1;
c 1023 K, 0.005 s-1; d 1123 K, 0.0005 s-1; e 1023 K, 0.0100 s-1; f 1173 K, 0.0005 s-1
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increasing was due to the limited time for the annihilation

and rearrangement of dislocations and substructures at high

strain rates. The LAGBs were progressively transformed

into HAGBs because of the accumulation of dislocations.

This result was consistent with the observed increase in the

orientation angle fraction from 30� to 60� [52]. The low

strain rate allowed the samples to accumulate energy and

annihilate dislocations continuously with sufficient time,

which contributed to the growth of the recrystallized

grains. As a result, the size of the recrystallized grains in

the compressed steel specimens increased with a decrease

in the strain rate.

The dislocations generated by the deformations that

were tangled with each other impeded the further defor-

mation of the naval steel. Subsequently, a surge in the

stress was observed in the early stages of deformation.

Meanwhile, the surge in dislocations gradually aggravated

DRV. Notably, austenite has a low stacking fault energy,

which favors the recrystallization over the cross-slip

mechanism [53]. Therefore, DRX began once the disloca-

tion density in the naval steel accumulated to a certain

extent. With the intensification of DRV and the occurrence

of DRX, the consumption of dislocations gradually caught

up with their generation, which eventually gave rise to a

steady flow stress in the later stages of deformation. In

addition, the increase in temperature can speed up DRV

and DRX, which explains the observed decrease in the flow

stress of this naval steel with an increase in the deformation

temperature.

3.7 Processing map

Based on the dynamic materials model (DMM), the strain

rate sensitivity (m) map and the processing map at e = 0.6

were developed to optimize the thermal deformation

parameters and control the microstructural evolution

(Fig. 11). The processing map was formed by superim-

posing the instability map on the power dissipation map.

According to Prasad’s theory, the instability map and

power dissipation map are representations of the variations

in power dissipation efficiency (g) and instability parame-

ter (n), respectively, as functions of temperature and strain

rate. g represents the proportion of energy used for the

microstructural evolution during thermal deformation,

Fig. 9 Inverse pole maps of naval steel samples compressed under various experimental conditions: a 1023 K, 0.0005 s-1; b 1023 K,
0.0050 s-1; c 1023 K, 0.0100 s-1; d 1173 K, 0.0100 s-1

Table 5 Equivalent circle diameter of naval steel samples
compressed under various conditions

Forming
temperature / K

Strain rate /
s-1

Equivalent circle diameter
/ lm

1023 0.0005 5.57

1023 0.0050 3.82

1023 0.0100 3.57

1173 0.0100 7.37
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while n is used to assess the occurrence of rheological

instabilities, including adiabatic shear bands, mechanical

twinning, flow rotations, and flow localization, during

deformation. These two parameters are given by Eqs. (19,

20) [54, 55]:

g ¼ 2m

mþ 1
ð19Þ

n _eð Þ ¼
oln m

mþ1

h i

oln _e
þ m\0 ð20Þ

where m is the strain rate sensitivity of the material. It is

defined by:

m ¼ o lnrð Þ
o ln _eð Þ ð21Þ

The shaded area in Fig. 11b is the area where n is less

than 0. This corresponds to the instability region.

Furthermore, this indicates that the thermal working of

the naval steel at 1023–1073 K and 0.005–0.010 s-1 must

be avoided. For optimal workability, regions with higher

m and higher g are preferred [9, 55]. When the naval steel

samples were deformed at a higher strain rate and lower

temperature or at lower strain rate and higher temperature,

m and g tend to be higher. Additionally, the processing

efficiency must also be considered; thus, for the new steel,

Fig. 10 Grain orientation spread maps, volume fraction of grains, number fraction of misorientation angle of naval steel samples
compressed under different conditions: a 1023 K, 0.0005 s-1; b 1023 K, 0.0050 s-1; c 1023 K, 0.0100 s-1

Fig. 11 a Strain rate sensitivity and b processing maps of steel at e = 0.6
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the optimal thermal working parameters are in the

temperature range of 1140–1173 K and strain rate range

of 0.005–0.010 s-1.

4 Conclusion

An SCAC model and an optimized BP-ANN model of a

Cr-Mn-Si-Ni alloyed naval steel were established from

the thermal compression experimental data obtained at

different strain rates (0.0005–0.0100 s-1) and tempera-

tures (1023–1173 K). The optimized BP-ANN model

exhibited more effective and accurate performance on

predicting thermal forming behavior of Cr-Mn-Si-Ni

alloyed naval steel comparing with the SCAC model. In

addition, the processing map and the strain rate sensitivity

map of the Cr-Mn-Si-Ni alloyed naval steel were pro-

vided. The optimized BP-ANN model exhibited more

effective and accurate performance in predicting the

thermal forming behavior of the Cr-Mn-Si-Ni alloyed

naval steel than the SCAC model. During thermoplastic

deformation, the dynamic recrystallization of Cr-Mn-Si-

Ni alloyed naval steel can be improved by increasing the

deformation temperature or decreasing the strain rate. At

higher strain rates, microstructures with finer recrystal-

lized grains were obtained after thermoplastic

deformation.
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