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Abstract Skyrmions are nano-scale quasi-particles with

topological protection, which have potential applications in

next-generation spintronics-based information storage.

Numerous papers have been published to review various

aspects of skyrmions, including physics, materials and

applications. However, no review paper has focused on rare

metals which play important roles in nucleating and

manipulating skyrmions and other topological states. In

this paper, various roles of rare metals have been classified

and summarized, which can tune Curie temperature (TC),

Dzyaloshinskii–Moriya interaction (DMI),

magnetocrystalline anisotropy, Ruderman–Kittel–Kasuya–

Yosida (RKKY) interaction and four-spin interaction so as

to trigger the generation of skyrmions and other topological

spin structures. The materials covered include typical B20

crystals, various layered systems with interfacial DMI,

frustrated materials, antiferromagnets, ferrimagnets, two-

dimensional (2D) materials, etc. In addition, the rare-earth

(RE) permanent magnets can provide an energy barrier and

enrich the dynamic behaviors of skyrmions, which has also

been reviewed.

Keywords Magnetic skyrmions; Rare metals; Generation

and manipulation

1 Introduction

Skyrmions are topologically protected quasi-particles,

which were proposed in nuclear physics by Skyrme in 1962

[1] and theoretically predicted to be stable in magnets by

Bongdnov and Yablonskii [2] in 1989. The first experi-

mental observation of skyrmions was carried out in MnSi,

using the neutron scattering method by Pfleiderer’s group

at Technische Universität München from Germany [3].

These exotic spin structures were then successfully

observed in real space using Lorentz image, in other B20-

type materials, including Fe0.5Co0.5Si [4, 5], MnGe [6] and

FeGe [7] etc. Later, room-temperature skyrmions were

found to exist stably in thin films [8–13] and multilayers

[14–19] composed of alternating heavy metals and mag-

netic layers, which can be driven by the spin current

readily.

Recently, robust skyrmions have been found in synthetic

antiferromagnets [20–22], where the skyrmion Hall effect

(SkHE) can be offset and hence skyrmions can be used in
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racetrack memory without the danger of losing the signal.

Various types of skyrmions are also observed in ferri-

magnets [23], ferroelectrics [24–26], antiferromagnets

[27], semiconductors [28], superconductors [29] and two-

dimensional (2D) materials [30–32]. In the meantime,

other topological spin structures, such as antiskyrmions

[33–36], bimerons [37], skyrmioniums [38], vortices

[39, 40], half skyrmions [41], hopfions [42] and skyrmion

bundles [43], have been investigated extensively in various

materials. Skyrmions-related literatures have increased

exponentially in recent years, and more than 400 papers

were published in 2020, as given by Web of Science and

shown in Fig. 1.

Up to now, there are more than 60 skyrmions-related

review articles have been published, most of which review

one aspect of the skyrmions classified according to the

physics, the materials or the applications [44–55]. However,

few review articles focus on the role of rare metals so far,

which play important roles in nucleating and controlling

skyrmions as well as other topological spin structures. In this

paper, we will systematically summarize the role of rare

metals in generating and manipulating skyrmions and other

topological spins, including rare-dispersed metals Ga, Ge,

etc., and the noble metals Pt and rare-earth (RE) metals Nd

etc.

2 Role of rare metals in generating skyrmions in
B20 and other non-centrosymmetric materials

Magnetic skyrmions were first reported in 2009 by Mühl-

bauer et al. [3], which were found via the small-angle

neutron scattering (SANS) method in a B20-type material,

MnSi. As shown in Fig. 2a, the skyrmion in MnSi can only

occur at very low temperatures (below 30 K), which,

however, aroused great interests immediately due to its

potential application in spintronics. Yu et al. [4] observed

real-space skyrmions in Fe1-xCoxSi, another B20 material,

based on Lorentz transmission electron microscopy

(LTEM), as shown in Fig. 3a [5], which can only appear in

a narrow temperature region from 7 to 36 K.

High-temperature skyrmions are found later in MnGe

[6], FeGe [7] and other B20 materials with rare metals,

which can exist at the zero magnetic field and are stable in

a wider temperature range. Spontaneous ground-state sky-

rmions in MnGe can be stabilized up to 150 K, which is

near its Curie temperature (TC = 170 K), as shown in

Fig. 2b [5]. In the meantime, stable skyrmions are found in

the FeGe thin-film from 50 K to the room temperature, as

shown in Fig. 3b [5], due to its high Curie temperature

(TC = 280 K). Recently, the so-called three-dimensional

(3D) skyrmion, i.e., the skyrmion bundle, containing the

skyrmion bag and ending with the chiral vortex, has also

been obtained in the FeGe thin film [45]. Other B20

materials, such as Mn1-xFexSi [56] and Mn1-xFexGe [57],

can host skyrmions as well, with skyrmions in Mn1-xFexGe

being stable at a much higher temperature than those in

Mn1-xFexSi.

As demonstrated above, the existence of Ge, a typical

rare-dispersed metal, in various B20 chiral magnetic

materials can help to stabilize skyrmions in a wider tem-

perature range. Ge can induce strong spin–orbit coupling

(SOC) to enhance DMI, which competes with the ferro-

magnetic exchange interaction to induce the peculiar twists

of the spins and hence the formation of the skyrmions

[6, 7, 57]. Later, it is found that other rare metal elements,

Fig. 1 Number of papers related to skyrmion in the year of 2004–2020 from Web of Science
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including Se, Mo and Rh, can also increase the critical

temperature and enhance the stability of the hosted sky-

rmions [58–60].

Skyrmions can occur in GaV4S8, a typical semicon-

ductor material, in a narrow temperature range of 9–13 K

[28], while they can be observed from 0 to 18 K in

GaV4Se8 [58, 61]. Similarly, the transition temperature in

the ferroelectric material GaMo4S8 is only 17.5 K, which

can be raised to 27.5 K in GaMo4Se8 [59]. These results

demonstrate that the rare metal Se can also improve SOC,

enhance the DMI and help to stabilize skyrmions. Later, it

is found that the incorporation of rare metal Rh into the

strong ferromagnetic material Fe2Mo3N can produce sig-

nificant DMI and stabilize skyrmions [60].

As summarized in Table 1, B20 materials with rare

metals Ge, MnGe, FeGe and Mn1-xFexGe [5–7, 57, 62]

have much higher TC than their counterparts without rare

metals, indicating the important role of rare metal Ge in

stabilizing skyrmions in these materials. At the same time,

the substitution of Se in GaV4S8 and GaMo4S8 and incor-

poration of Rh into Fe2Mo3N can increase TC and produce

large DMI as well [22, 28, 58–60, 63].

3 Role of rare metals in layered systems with
interfacial DMI

As demonstrated above, the DMI plays a key role in the

generation of skyrmions, which occurs not only in systems

with broken central symmetry, but also at the interface

between ferromagnetic and heavy metals. As early as 1990,

Fert [64] predicted the possibility of interfacial DMI in

such thin film structures. The presence of skyrmion is

stabilized by DMI provided by strong SOC at the interface

Fig. 2 Comparison of phase diagrams of MnSi and MnGe, indicating role of rare metal Ge in stabilizing skyrmions. a B-T phase
diagram of MnSi, where skyrmions (A-phase) can only exist in a narrow temperature range of 28–30 K. Reproduced with permission
from Ref. [5]. Copyright 2018, Institute of Physics Publishing. b Change of skL period in MnGe with temperature at different applied
fields, indicating that skyrmions can be stable in a wide temperature range of 10–150 K. Reproduced with permission from Ref. [6].
Copyright 2015, American Chemical Society

Fig. 3 Comparison of phase diagrams of Fe0.5Co0.5Si and FeGe, indicating role of rare metal Ge in stabilizing skyrmions. a Phase
diagrams of spin textures observed in a thin film of Fe0.5Co0.5Si using Lorentz TEM, where skyrmions can only occur below 30 K;
b phase diagrams for FeGe thin films with various values of thickness, demonstrating that skyrmions are stable from 50 K to room
temperature. Reproduced with permission from Ref. [5]. Copyright 2018, Institute of Physics Publishing
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of the heavy metal layer and perpendicular magnetic ani-

sotropy (PMA) in the ferromagnetic layer [64–66], as

shown in Fig. 4a for Co/Pt thin films [8].

At the Co/Pt interface, due to the strong SOC in the

rare metal (Pt) and the broken mirror symmetry of the

magnetic material thin film (Co), an indirect exchange

interaction conducted by the rare metal atoms will occur

between two nearby magnetic atoms in the system

[8, 9, 16–18, 67]. The symmetry of DMI at the interface in

the magnetic film systems containing heavy metals is

different from that in the B20 structure system. As shown

in Fig. 4b, the interfacial DMI in the magnetic film system

yields Néel-type skyrmions [28], whereas skyrmions

induced by DMI in the B20 system are usually Bloch-

type, as shown in Fig. 4c [5]. The rare metal Pt in the Co/

Pt layered system provides both strong SOC and large

PMA, which are both necessary for the formation of

skyrmions in thin-film systems.

Néel-type skyrmion was also found in monolayer Fe/Ir

[68], where the heavy metal Ir offers strong SOC and hence

the large interfacial DMI. In addition to the interfacial

DMI, the four-spin interaction in the system competes with

the Heisenberg exchange interaction to form a Néel-type

skyrmion with a diameter of only 1 nm, as shown in Fig. 4,

which is the smallest skyrmion found in experiments up to

now [69–72]. In this case, the rare metal Ir provides both

the large SOC and the nontrivial four-spin interaction,

which are responsible for the occurrence of the atomic

level skyrmions.

The above thin-film systems, offering strong SOC and

DMI, have been extended to multilayer structures com-

posed of magnetic and heavy metals alternatively. The

control of interfacial DMI and PMA in such materials can

be achieved by changing the thickness, material combina-

tion and other parameters of magnetic film and rare metal

film [14, 19, 73–78], which gives the material system a

Table 1 Comparison of properties for typical non-centrosymmetric magnetic materials to demonstrate roles of rare metals in gen-
erating and stabilizing skyrmions

Materials Point group TC/K Skyrmion Conductivity Refs.

MnSi T 30 2D, Bloch Metal [3]

MnGe T 170 3D, Hedgehog Semiconductor [6]

Fe1-xCoxSi T 7–36 2D, Bloch Semiconductor [4]

FeGe T 278 2D, Bloch Metal [7]

Mn1-xFexSi T 6.8–16.5 2D, Bloch Metal [56]

Mn1-xFexGe T 150–220 2D, Bloch Metal [57]

GaV4S8 C3V 13 2D, Néel Semiconductor [28]

GaV4Se8 C3V 18 2D, Néel Insulator [58]

GaMo4S8 C3V 17.5 2D, Néel Insulator [24]

GaMo4Se8 C3V 27.5 2D, Néel Insulator [59]

FeCo0.5Rh0.5Mo3N O 132 2D, Bloch Metal [60]

Fig. 4 DMI in Co/Pt layered system, which helps to produce Néel-type skyrmions. a Sketch of a DMI at interface between a
ferromagnetic metal (grey) and a rare metal (heavy metal) with a strong SOC (blue), where DMI vector D12 related to triangle
composed of two magnetic sites and an atom with a large SOC is perpendicular to plane of triangle. Because a large SOC exists only
in the bottom metal layer, this DMI is not compensated by a DMI coming from a symmetric triangle. b Néel-type skyrmion induced by
DMI illustrated in a, where in-plane spins orient in radius direction; c in contrast, Bloch-type skyrmion usually occurring in B20 crystals
is vortex like, where in-plane spins are circling around center. Reproduced with permission from Ref. [5]. Copyright 2018, Institute of
Physics Publishing
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great degree of freedom, reduces skyrmion size and opti-

mizes the stability and dynamic properties of skyrmions

[79]. Two typical multilayers, [Ir/Co/Pt]10 [14] and [Pt/Co/

Ta]15 [15], have been used in experiments to generate

skyrmions. First-principles calculations show that the chi-

ral direction of DMI provided by the two rare metals is

opposite in the separate Ir/Co (Ta/Co) and Pt/Co structures,

which, interestingly, can enhance the strength of DMI and

facilitate the nucleation of the skyrmions [79, 80].

Quite a few experiments [81, 82] and calculations

[18, 83, 84] show that the magnetic chirality at the Ir/Co

interface is opposite to the Pt/Co interface, where large

DMI has been observed in some Pt/Co/Ir multilayers.

However, experiments using magnetic domain walls indi-

cated that the magnetic chirality of the Ir/Co interface is the

same as that of the Pt/Co interface [85, 86]. Further

experiments confirm that the effective spin Hall angle of Ir

has the same sign as Pt, suggesting that the sign of the DM

exchange constant for Pt/Co and Ir/Co interfaces is the

same, leading to a reduced DMI in some Pt/Co/Ir multi-

layers [87]. The DMI at the Ir/Co interface thus seems to

depend on factors that are yet to be determined.

Recently, 3D spin configurations have been observed in

[Ir/Co/Pt]N multilayers shaped into nanoscale disks where

the skyrmion tube or the Hopfion is created [42]. With

substantial DMI and PMA induced by the rare metals Ir

and Pt into Co, these spin textures have a robust 3D

structure [42].

Skyrmions are also found in layered metal/oxide

heterostructures [19, 75], where the typical material is Ta/

CoFeB/TaOx multilayers. First-principles calculations

indicate that the interfacial DMI can originate not only

from the interface between rare metal Ta and the ferro-

magnetic layer but also from the interface between rare

metal oxide TaOx and the ferromagnetic layer [75]. First-

principles calculations also demonstrate that the interfacial

DMI between the ferromagnetic layer and rare metal oxide

is related to charge transfer and electric polarization at the

interface [75]. In this situation, rare metal oxides can

increase the strength of DMI, thereby reducing the sky-

rmion size and improving the stability of skyrmions.

Another layered system proposed to generate skyrmions

is the synthetic AFM multilayer structure based on rare

metals, which has the advantage of inhibiting the SkHE

and hence avoiding signal loss [20]. As shown in Fig. 5,

there is strong AFM exchange coupling between two

skyrmions with opposite polarity so that the net Magnus

force is 0 and the SkHE is completely suppressed. Sky-

rmions have been successfully generated in various syn-

thetic AFM multilayers, including [Co/Pd]/Ru/[Co/Pd] and

[Co/Pt]N/NiO/[Co/Pt]N multilayers [21, 22]. The rare met-

als Pd and Pt here are to provide strong DMI, which is

necessary for the formation of Néel-type skyrmions. On the

other hand, the rare metal Ru is to enable the AFM

exchange coupling between the upper and the lower Co/Pd

layers and hence to suppress the SkHE, similar to the role

of NiO in [Co/Pt]N/NiO/[Co/Pt]N.

4 Role of rare metals in manipulating skyrmions
and other spin textures in layered systems

As mentioned in the last section, the synthetic AFM mul-

tilayer has been proposed as an ideal structure to overcome

skyrmion Hall effect, where a pair of skyrmions with

opposite polarity driven by the electric current can move

along the racetrack without any transverse drift. Such spin-

polarized electric current can be applied in various layered

systems, with spin orbit torques [11, 88] or spin transfer

torques [89] induced in the magnetic layers to direct the

motion of skyrmions. In particular, there have been many

researches on control of skyrmions by SOT at room tem-

perature, with rare metals as an important host for the

electric current. For example, Néel-type skyrmions have

been created in Ta/Co20Fe60B20 (CoFeB)/MgO system by

inserting an ultrathin Ta layer between the CoFeB and

MgO [11], where skyrmions can be driven along racetracks

by the SOT. The interfacial DMI due to the adjacent Ta

rare metal layer with a large spin–orbit coupling facilitates

the formation of the Néel-type skyrmions.

Further, SOT in various kinds of AFM/FM exchange

bias has been used to generate and manipulate skyrmions

[13]. Skyrmions can be created at the zero-field due to the

exchange bias at the IrMn/CoFeB interface in Ta/Ir22Mn78/

Co20Fe60B20/MgO/Ta system [13], where spins in antifer-

romagnetic IrMn have a sizable spin Hall angle, allowing

SOT to control skyrmions. The rare metal Ir is responsible

for the antiferromagnetic order in IrMn and hence for the

formation of exchange bias in the system, in addition to the

large interfacial DMI of the system.

Compared to the normal FM/HM system [10], the IrMn/

CoFeB heterostructure has displayed some unique advan-

tages in generating and tuning skyrmions. First, the

exchange bias at the IrMn/CoFeB interface can eliminate

the need for an external magnetic field, leading to zero-

field skyrmion formation. Second, the antiferromagnetic

order and PMA can be tuned by the IrMn and CoFeB film

thicknesses, lending additional flexibility in interfacial

control. Third, a sizable SOT in the IrMn permits energy-

efficient current control of skyrmions. The rare metals Ta

and Ir work together to provide exchange bias, adjust PMA

and enhance DMI, so that a single skyrmion can be gen-

erated and tuned at the room-temperature and the zero

field.

For a dynamic skyrmion in the racetrack, the local

exchange-bias field (LEBF) [90–92] generated by the

1 Rare Met. (2022) 41(7):2200–2216
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IrMn/CoFeB interface can be used to suppress SkHE

effectively. The pinning effect by LEBF can make the

skyrmion move along the current direction when it is dri-

ven by the pulsed current. Here, the rare metal Ir can

enhance DMI and stabilize skyrmions in the racetrack.

Most importantly, Ir helps to provide the LEBF in IrMn/

CoFeB system, which supply an energy barrier and prevent

the skyrmion from annihilating at the racetrack edge [12].

Besides synthetic AFM and exchanging bias, there are

other methods to overcome SkHE, which can cause the

disastrous loss of skyrmion signal. Rare-earth permanent

magnets can provide additional energy barrier, similar to

the LEBF, which will be discussed in Sect. 6. On the other

hand, the Magnus force in the AFM materials is cancelled

due to two sets of antiferromagnetic coupled sublattice,

which is similar to the case in synthetic AFM and will be

elaborated in Sect. 7. In addition, various other potential

barriers have been proposed to confine skyrmions in the

center region of the racetrack so that the annihilation at the

racetrack edge is avoided [93–98]. Generally, the rare

metals can offer tunnelable PMA as well as DMI and hence

the necessary energy barriers, in addition to large SOT

under the aid of the electric current.

As displayed above, the spin-polarized current provides

an electric method to manipulate skyrmions, which has

been used extensively in both experiments and simulations.

This method, however, results in undesired Joule heating

effects, so that other methods have been proposed to con-

trol skyrmions, including magnetic field [89, 99], magnetic

field gradient [100], spin wave [101–103] and thermal

gradient [104]. It should be noted that these methods

together with the spin-polarized current can manipulate

other exotic topological spin textures, e.g., skyrmionium

[103], bimeron [99], bimeronium [95] and antiskyrmion

Fig. 5 Skyrmions in synthetic antiferromagnetic (AFM) multilayer, where Magnus force is 0. a AFM-coupled bilayer nanotrack for study
of motion of a bilayer-skyrmion driven by current perpendicular to plane, where charge current flows through heavy-metal substrate
along x-direction, which gives rise to a spin current (p = ? y) perpendicularly injected to bottom ferrimagnetic layer because of spin
Hall effect; skyrmion in bottom ferrimagnetic layer is driven by spin current, whereas skyrmion in top ferrimagnetic layer moves
accordingly due to interlayer AFM exchange coupling. b Side view of bilayer-skyrmion. Reproduced with permission Ref. [20].
Copyright 2016, Springer Nature. c Schematic diagram of force analysis in synthetic AFM multilayers, where Magnus forces in top and
bottom layers cancel each other so that skyrmion moves in the direction of the driving current without drift

1Rare Met. (2022) 41(7):2200–2216
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[89]. In any case, rare metals can provide large DMI and

PMA to realize the ideal motion of skyrmions and other

spin textures.

Recently, various simulations [105] have shown that the

electrical field can help to reverse the magnetic moments

and hence to manipulate skyrmions in Cu2OSeO3 single

crystal sample [106, 107] and CoFeB-MgO nanodisks

[108], where the role of rare metals is not identified clearly.

Generally, the rare metal can provide large enough DMI

and facilitate the formation of skyrmions.

Later in 2019, Ma et al. [109] successfully generated and

guided skyrmion bubbles in a [Pt(0.5 nm)/CoNi(0.5 nm)/

Pt(0.5 nm)/CoNi(0.5 nm)/Pt(1 nm)] multilayer racetrack at

room temperature, where the PMA could be finely tuned by

the electric field in both the experiment and the simulation.

The rare metal Pt helps to provide adjustable DMI and

PMA through the change of the layer thickness, leading to

the electric-field induced creation and directional motion of

topological spin textures. In the experiment, the multilayer

is sandwiched between the indium tin oxide/dielectric

bilayer and the glass substrate, resulting in rare metal (Pt)/

dielectric (SiO2) interfaces. Importantly, the large aniso-

tropy change can be produced in the interfaces with electric

quadrupole induction, which is different from the normal

ferromagnet/dielectric interface. The mechanism of gen-

erating and manipulating skyrmions and other spin textures

in some special materials (frustrated material and so on)

will be discussed in next sections.

5 Role of rare metals in generating skyrmions in
other materials

5.1 Role of rare metals in frustrated materials

Skyrmions have also been found in materials without DMI,

particularly in frustrated materials, where competing

exchange interactions or generalized RKKY interactions

are responsible for the appearance of chiral spin structures.

Skyrmion lattices (skLs) have been identified at low tem-

peratures in gadolinium compounds GdRu2Si2 [110],

Gd2PdSi3 [111] and Gd3Ru4Al12 [112], with the corre-

sponding phase diagrams shown in Fig. 6. The formation

of skLs is mainly due to the RKKY interactions in these

materials, i.e., the coupling between the itinerant electrons

and the local magnetic moments. Most itinerant electrons

come from the 4d orbit of Ru, while the local magnetic

moments result from the 4f orbit of Gd. Here, the rare

metals, Gd and Ru, play important roles in providing the

frustration and hence the formation of skLs. Chiral spin

structures have also been found in other frustrated mate-

rials. Notably, Hou et al. [113–116] found high-

temperature skyrmion bubbles in Fe3Sn2 and conducted a

series of studies on their generation and manipulation.

Zhang et al. systematically studied the static and

dynamic properties of skyrmions and other topological spin

structures in the frustrated material, including bimerons

[37], bimeronium [117] and skyrmionium [38]. Using

micromagnetic modeling, they found that Pb2VO(PO4)2
could be a suitable frustrated material for hosting sky-

rmions, where the frustration comes from the competition

between the small nearest neighbor ferrimagnetic interac-

tion and the large next-nearest neighbor AFM interaction.

The AFM interaction originates from the rare metal V

through the bridge of two oxygen atoms [118].

5.2 Role of rare metals in other centrosymmetric
materials

It is noted that skyrmions and other topological spin

structures have also been reported in other centrosymmet-

ric materials. Biskyrmions have been identified in La2-

2xSr1?2xMn2O7 [119] and MnNiGa [120–122], while sky-

rmion bubbles and skyrmions have also been found in La1-

xSrxMnO3 [123] and BaFe12-x-0.05ScxMg0.05O19 (BFSO)

[124], respectively. Here, the RE metals La and Ga are to

provide and adjust the magnetic moments of the materials,

while the doping of the rare metal Sc in BFSO film is

mainly to tune the magnetic crystalline anisotropy [124].

5.3 Role of rare metals in 2D van der Waals and
ferroelectric materials

Recently, 2D van der Waals (vdW) materials are also

reported to be a suitable material for hosting topological

spin structures. Particularly, Bloch-type skyrmion bubbles

and Néel-type skyrmions have been found in single crystals

of 2D vdW material Fe3GeTe2 [30] and 2D vdW

heterostructure WTe2/Fe3GeTe2 [31], respectively. Both

layers in the heterostructure have rare metal Te atoms,

whose coupling enhances the DMI of the system and helps

to form skyrmions [31]. Furthermore, the dynamics of the

bimerons generated in the 2D vdW multiferroic

heterostructure LaCl/In2Se3 has been investigated using

micromagnetic simulation. Here, the ferroelectric polar-

ization of In2Se3 destroyes the center inversion symmetry

of LaCl, while the DMI comes from the strong SOC of the

5d orbit of the rare metal La, which promotes the genera-

tion of bimerons [32].

Ferroelectric materials are another branch of materials

that can host skyrmions and related spin structures,

including so-called 3D skyrmions in the PbTiO3 layer [25],

skyrmion-like states in PbTiO3 nanodisks [125] and sky-

rmionic states in nanocomposites Ba0.15Sr0.85TiO3 [26].

1 Rare Met. (2022) 41(7):2200–2216
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5.4 Antiskyrmions in Heusler materials

In addition to the above-mentioned topological spin

structures, antiskyrmions have also been found recently,

which are identified in tetragonal Heusler materials

Mn1.4Pt0.9Pd0.1Sn [33], low magnetization ferrimagnet

Mn2Rh0.95Ir0.05Sn [34], Fe/Gd-based multilayers [35] and

Co/Pt multilayers [36]. The specific structure of the anti-

skyrmion generated in Mn2Rh0.95Ir0.05Sn material is shown

in Fig. 7a [34], where the transmitted electron beam con-

verges vertically toward the center of the antiskyrmion and

then diverges horizontally. Therefore, in the LTEM image

of antiskyrmion, two bright and two dark lobes will form,

as shown in Fig. 7a, b. Magnetic phase diagram of

Mn2Rh0.95Ir0.05Sn is shown in Fig. 7c. The rare metal Rh in

Mn2Rh0.95Ir0.05Sn material plays important roles in

providing a small DMI, which can stabilize the anti-

skyrmion at nearly room temperature. Similar LTEM

image of antiskyrmions has been observed in the

Mn1.4Pt0.9Pd0.1Sn material [33].

6 Generating and manipulating topological spin
structures using RE permanent magnets

6.1 Spin-reorientation-related skyrmions in RE
permanent magnets

The RE metals can offer strong SOC due to their 4f orbits

with underfilling electrons and hence the huge crystalline

anisotropy field. This giant crystalline anisotropy in turn

provides the large coercivity and thus the great energy

Fig. 6 Phase diagrams of GdRu2Si2, Gd2PdSi3 and Gd3Ru4Al12 in sequence. a Magnetic phase diagram of GdRu2Si2, where
skyrmions can appear below 20 K with a large applied field ([2 T). Reproduced with permission from Ref. [110]. Copyright 2020,
Springer Nature. b Contour plot of measured magnetoresistance (MR) of Gd2PdSi3, indicating that skL can exist only below 20 K in
addition to a magnetic field (0–1.5 T). Reproduced with permission from Ref. [111]. Copyright 2020, IOP Publishing. c Contour plot of
magnetic susceptibility vDC = qM/qH (where M is bulk magnetization, and H is externally applied magnetic field) of Gd3Ru4Al12,
demonstrating that skyrmions can only survive at low temperatures (below 15 K) and a strong applied field (1.0–1.7 T). Reproduced
with permission from Ref. [112]. Copyright 2019, Springer Nature
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products necessary for the permanent magnets

[126, 127, 128]. RE permanent magnets normally do not

display topological spin structures because of the lack of

the DMI. However, on certain special occasions, RE

permanent magnets can display skyrmions or vortices

states. The first case is associated with the spin reorien-

tation, typically occurring at low temperatures for NdFeB.

Xiao et al. [129] observed topologically stable skyrmions

in Nd2Fe14B by LTEM around the spin reorientation

temperature (TSR), whereas magnetic bubbles were

observed at temperatures higher than TSR. Skyrmions

appear because of the tunable anisotropy and saturation

magnetization at TSR, which results mainly from the RE

metal Nd. The fall in temperature leads to a significant

change in the anisotropy constants from positive to neg-

ative, which triggers the spin-reorientation, thereby

forming the stable skyrmions.

Similar trigger of topological spin structures by spin

reorientation in RE-based magnets have been investigated

by Hou et al. [130], where REMn2Ge2 (RE = Ce, Pr, and

Nd) can host skyrmionic bubbles in a wide temperature

range due to the change of the easy axis. Generally, the

topological spin structures are more stable in materials with

easy-plane anisotropy than in materials with easy-axis one,

leading to the formation of the skyrmions [129] and sky-

rmionic bubbles [130] near the TSR. Owing to the same

reason, skyrmions in GaV4Se8 with an easy-plane aniso-

tropy are more stable than those in GaV4Se8 with an easy-

axis anisotropy [28].

6.2 Generating vortices in hard/soft multilayers

On the other hand, RE permanent magnets can help soft

magnetic metals to maintain the vortex state in the

demagnetization process, as theoretically demonstrated in

NdFeB/FeCo [39], exchange coupled NdFeB/Fe [40] and

Sm-Co/Fe multilayers [131] with a perpendicular crys-

talline anisotropy. However, it should be noted that there is

no vortex state reported in the hard/soft multilayers with an

in-plane crystalline anisotropy [132–134].

Vortices states can normally occur in the thin films of

very soft magnetic materials like permalloy to reduce the

demagnetization energy. However, these vortices ultimately

disappear, resulting in a full magnetic reversal under a small

applied magnetic field due to the limited coercivity origi-

nating from very weak crystalline anisotropy. In exchange

coupled multilayers, the large perpendicular crystalline

anisotropies provided by the RE permanent magnets will pin

the vortex in the soft phase so that it will survive in a larger

applied field range, as shown in Fig. 8. Similar vortex states

have been found in Ref. [40]. These vortices states produced

in the soft phase within hard/soft multilayers have not been

observed in experiments yet due to the experimental diffi-

culty in separating the signals in hard and soft layers, which

becomes more difficult because the soft phase is normally

sandwiched between two hard phases. Technically, a

hard/soft bilayer can produce the vortex state similar to a

multilayer, where the vortex state in the soft phase can be

detected relatively easier.

Fig. 7 Schematic diagram of antiskyrmion in Mn2Rh0.95Ir0.05Sn. a Distribution of magnetic moment of an antiskyrmion; b LTEM image
of a single antiskyrmion at 150 K in presence of a magnetic field of 83 mT, where insets being intensity profiles of contrast along [010]
(blue color) and [100] (orange color) directions; c magnetic phase diagram of Mn2Rh0.95Ir0.05Sn, which shows that antiskyrmions are
stable over a wide temperature range of 100–250 K at a suitable magnetic field, where H, aSk and FP stand for helical, antiskyrmion
and field-polarized states, respectively. Reproduced with permission from Ref. [34]. Copyright 2020, American Chemical Society
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6.3 Setting RE permanent magnets to prevent
annihilation of skyrmions in racetracks and
nano-oscillators

Another important role played by the RE permanent

magnets is to pin the skyrmions in the racetrack center and

hence to avoid the annihilation of the skyrmion signal

[135]. Driven by the applied current, the skyrmions will be

drifted to the CoPt racetrack edge due to the Magnus force.

Setting the NdFeB and other RE permanent magnets with

huge crystalline anisotropy at the edge provides an addi-

tional energy barrier that pushes the skyrmion back to the

center of the racetrack. As a result, skyrmions will move

along the racetrack stably and avoid the skyrmion signals

loss. Interestingly, the skyrmion speed along the racetrack

will be increased by 30% in comparison with the case of a

normal CoPt racetrack without a setting. An in-depth

analysis shows that the settings of the high crystalline

anisotropy material at the edge push the transverse speed

back to the longitudinal direction, thereby increasing the

speed of the skyrmions along the racetrack. Similar idea

has been used by Juge et al. [136] and Ohara et al. [137] in

experiments to hold skyrmions in Pt/Co/MgO racetracks

and [Pt/CoNi/FeCo]N multilayers, respectively, where the

PMA and DMI have been modified by He? irradiation

[136] or fabricating square and stripe patterns [137]. The

PMA and DMI at the edges are enhanced or reduced, hence

forming an energy barrier (or trap) to prevent the annihi-

lation of skyrmions at the edges.

Similar enhancement can be applied to a spin-torque

nano-oscillator, where RE permanent magnets can be set at

the edge of a CoPt disk to avoid the annihilation of the

skyrmion signals at the edge. The inlay of the NdFeB at the

edge provides an additional energy barrier, pushes back the

skyrmion toward the disk center [138], avoids the annihi-

lation of the skyrmion signals and increases the skyrmion

frequency by 75%. The noble metal Pt provides the huge

SOC and hence the large DMI values necessary for gen-

erating skyrmions. On the other hand, the RE metals Nd

and Sm provide strong crystalline fields and hence the large

PMA, which offer a necessary energy barrier to support

skyrmion stability in the CoPt racetrack or the oscillator.

7 Manipulating and generating topological states in
antiferromagnets and ferrimagnets

Using the AFM disk, the skyrmion frequency and the

related speed in a spin-torque nano-oscillator can be raised

by an order. As shown in Fig. 9 [139], the SkHE in an

AFM disk disappears naturally so that the skyrmion can

rotate steadily around the disk at an ultra-fast speed.

Interestingly, the direction of the skyrmion motion is

reversed when the current direction switches. In contrast,

the skyrmion drifts toward the edge with a negative current

while it drifts toward the center with a positive one. For

spin-torque nano-oscillators based on ferrimagnetic and

AFM skyrmions, the physical mechanisms of their steady

motion are different.

AFM materials can also be used in a rectangular race-

track [140], where the AFM skyrmions can be driven

efficiently by an anisotropy gradient. Similar to the spin-

torque nano-oscillator, the AFM skyrmion speed can be

enhanced by one order in comparison with a ferromagnetic

skyrmion with the same anisotropy gradient.

AFM skyrmions combine the topology aspect of sky-

rmions with the fascinating AFM spintronics [141]. The

latter has a lot of advantages over the fast-developed fer-

romagnetic spintronics, namely, much faster dynamics,

eliminating the crosstalk between neighboring memory

cells due to the disappearance of the net magnetization and

multiple stable values via two sets of exchange coupled

sublattices [141]. It is also noted that the defects [142] in

AFM materials play a more important role in pinning the

skyrmions than in ferromagnetic materials. In the latter

case, skyrmions can circle around the defects so that the

pinning effect around the defects is alleviated. AFM

Fig. 8 2D evolution of magnetic moments at hard-soft interface
calculated by Mumax3 for a Nd2Fe14B(15 nm)/a-Fe(5 nm)
bilayer with a perpendicular anisotropy, which demonstrates
nucleation, evolution and annihilation of vortices state.
a H = -0.35 T, formation of vortex magnetic state after nucle-
ation; b H = -0.65 T, where vortex core begins to rotate away;
c H = -1.53 T, right at coercive point where component of
magnetic moment in film plane is the largest; and d H = -1.54 T,
annihilation of vortex state after magnetic reversal

1Rare Met. (2022) 41(7):2200–2216

Generation and manipulation of skyrmions and other topological spin structures with rare metals 2209



skyrmion-based logic gates have been designed, inspired

by the pinning of defects in AFM materials [142].

Most works on AFM skyrmions are theoretical, which

do not specify the material. In any case, the nontrivial DMI

is necessary for the generation of skyrmions, which is

usually related to rare metals. Morvan et al. [143] found

that skyrmions can form in the ferromagnetic-AFM bilayer

based on the micromagnetic calculation. The AFM mate-

rial adopted is BiFeO3, which is also a multiferroic mate-

rial. The rare metal Bi here is responsible for regulating

both DMI and ferroelectronic behavior of the system.

Besides skyrmions, other topological spin structures can

exist stably in AFM materials, including bimerons and half

skyrmions [41]. Shen et al. [27] theoretically investigated

the dynamics and chaos of AFM bimerons and found that

the bimerons can be stable in AFM materials, which is

confirmed by the experiment. Based on a-Fe2O3 capped

with a Pt layer, AFM merons, antimerons and bimerons can

emerge from the interface between a-Fe2O3 and Pt at room

temperature [41], where these spin textures can be tuned by

the anisotropy contributed by the rare noble metal Pt.

Moreover, the doping of rare metal Rh in a basal a-Fe2O3

composite raises the temperature of the Morin transition,

above which the complex spin textures are observed. By

tuning the additional anisotropy induced by the rare metal

overlayer Pt, which changes with the temperature, the

authors show that they can control the (anti)meron core

size.

Although antiferromagnets demonstrate ultrafast mag-

netization dynamics, their spin textures are difficult to be

detected by electronic methods due to the zero net mag-

netization. On the other hand, ferrimagnets combine the

advantages of both antiferromagnets and ferromagnets,

namely, the high mobility and easy detection of skyrmions

respectively. Caretta et al. [144] observed 10 nm sky-

rmions and fast-moving (1.3 km�s-1) domain walls in the

ferrimagnetic Pt/Gd44Co56/TaOx, where the rare metals Pt

and Gd can help to offer SOT and PMA, separately. Woo

et al. [145] found the ferrimagnetic skyrmion with the

reduced skyrmion Hall angle and provided a way of the

writing and deleting of a single skyrmion in ferrimagnetic

GdFeCo films [23]. Particularly, such ferrimagnetic films

of amorphous alloys, consisting of 4f RE and 3d transition-

metal elements (RE-TM alloys), can exhibit large PMA

and host skyrmion states. Besides the single skyrmion

mentioned above, the compact ferrimagnetic skyrmions,

with a characteristic core radius about 40 nm, have been

observed in the other RE-TM alloy, DyCo3 film [146]. In

Fig. 9 Motion of AFM and ferrimagnetic skyrmions driven by different currents in nanodisk, where solid lines and dash lines stand for
trajectory of skyrmions and nanodisk edges, respectively. An AFM skyrmion driven by a current of a j = 20 MA�cm-2 and b j = -20
MA�cm-2; a ferrimagnetic skyrmion driven by a current of c j = 20 MA�cm-2 and d j = -20 MA�cm-2. Reproduced with permission
from Ref. [139]. Copyright 2019, AIP Publishing
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addition, two distinct skyrmion phases are realized in the

hybrid ferro/ferri/ferromagnetic multilayer system at room

temperature, containing two [Ir/Fe/Co/Pt]5 multilayers

separated by the ferrimagnetic [TbGd/Co]6 layer [147].

The ferrimagnetic layer permits an independent adjustment

of anisotropy and magnetization by the RE element ratio

(Tb:Gd) and RE:TM thickness ratio (TbGd to Co),

respectively.

8 Summary and outlook

The important roles of rare metals in generating and

manipulating skyrmions and other topological spin struc-

tures are reviewed. In general, rare metals can raise the

SOC and hence DMI and other related interactions, thereby

enhancing the stability of the skyrmions and other topo-

logical spin structures. In B20 crystals, rare metal Ge is

responsible for the increase of the TC and expansion of the

temperature range in which Bloch-type skyrmions can

occur. In thin films and multilayers composed of magnetic

and heavy metals, rare metals help to provide considerable

PMA or four spin interactions, in addition to strong DMI

necessary for the emergence of Néel-type skyrmions. In

frustrated materials, rare metals can offer the RKKY

interaction or the competing ferrimagnetic and AFM

exchange interactions to stabilize skyrmions. Moreover,

rare metals can provide additional magnetocrystalline

anisotropy and magnetic moments in various materials and

trigger the formation of skyrmions and other topological

spin structures. In particular, the appearance of skyrmions

in Nd2Fe14B and GaV4Se near TSR is due to the abrupt

change in the magnetocrystalline anisotropy and magnetic

moments. This offers a new approach to search for novel

materials generating skyrmions, i.e., the materials with spin

reorientation where the crystalline anisotropy changes from

the uniaxial to an easy plane.

Rare metals can also help to provide additional energy

barrier or RKKY interaction to curb or cancel the SkHE

and avoid the annihilation of signals in a skyrmion-based

racetrack [20–22, 134]. Similar designs can be extended to

skyrmion-based logic gates [148], nano-oscillators [149],

diodes [150], transistors [151] and neuromorphic comput-

ing [152]. In addition, compared with the method driven by

the current, the manipulation of exotic topological spin

structures by the electric field is getting more and more

attention and possess a strong potential to realize next-

generation low-consumption spintronics [153, 154].

Therefore, rare metals can play more important roles in

manipulating the dynamics of skyrmions in the future.
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Rønnow HM. Direct electric field control of the skyrmion

phasein a magnetoelectric insulator. Sci Rep. 2018;8:10466.

[108] Nakatani Y, Hayashi Kanai S, Fukami S, Ohno H. Electric field

control of skyrmions in magnetic nanodisks. Appl Phys Lett.

2016;108(15):152403.

[109] Ma C, Zhang XC, Xia J, Ezawa M, Jiang WJ, Ono T, Pira-

manayagam SN, Morisako A, Zhou Y, Liu XX. Electric

field-induced creation and directional motion of domain walls

and skyrmion bubbles. Nano Lett. 2019;19(1):353.

[110] Yasui Y, Butler CJ, Khanh ND, Hayami S, Nomoto T, Hana-

guri T, Motome Y, Arita R, Arima TH, Tokura Y, Seki S.

Imaging the coupling between itinerant electrons and localised

moments in the centrosymmetric skyrmion magnet GdRu2Si2.

Nat Commun. 2020;11(1):5925.

[111] Zhang H, Huang Q, Hao L, Yang JY, Noordhoek K, Pandey S,

Zhou HD, Liu J. Anomalous magnetoresistance in cen-

trosymmetric skyrmion-lattice magnets Gd2PdSi3. New J Phys.

2020;22:083056.

[112] Hirschberger M, Nakajima T, Gao S, Peng LC, Kikkawa A,

Kurumaji T, Kriener M, Yamasaki Y, Sagayama H, Nakao H,

Ohishi K, Kakurai K, Taguchi Y, Yu XZ, Arima TH, Tokura Y.

Skyrmion phase and competing magnetic orders on a breathing
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