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Abstract Noble metal-based high-entropy alloy nanopar-

ticles (NM-HEA NPs) have exhibited brilliant catalytic

performance toward electrocatalytic energy conversion and

attracted increasing attention. The near-equimolar mixed

elements of NM-HEA NPs may result in the unique prop-

erties including cocktail effect, high entropy effect and lat-

tice distortion effect, which are beneficial for improving the

catalytic performance and reducing the amount of noble

metal. Herein, several advanced NM-HEA NPs as electro-

catalysts for energy conversion are systematically summa-

rized. The preparation methods of NM-HEA NPs are

evaluated as well as the catalytic properties and mechanism

are discussed classified by electrocatalytic reactions. Finally,

the challenges and prospects in this field are carefully dis-

cussed. This review provides an overview on recent

advances of NM-HEA electrocatalysts for energy conver-

sion and draws more attention in this infant research field.

Keywords Noble metal-based high-entropy alloys;

Electrocatalysis; Energy conversion; Synthesis; Catalytic
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1 Introduction

The development of green energy conversion technologies

has been strongly desired as the ever-increasing energy

crisis and environmental pollution caused by the excessive

consumption of traditional fossil fuels [1]. Electrocatalytic

energy conversion technology (EECT), such as water

electrolysis, fuel cells, electrochemical nitrogen fixation

and electrochemical reduction of CO2, has attracted

extensive attention and exhibited great application poten-

tial due to the higher conversion efficiency and less carbon

emissions [2–7]. However, most of the efficient electro-

catalysts for EECT are noble metal-based nanoparticles

(NPs). The high cost, low reserves and unsatisfactory

performance of these noble metal-based electrocatalysts

have been the main bottlenecks that limit the large-scale

practical applications [8–12]. Therefore, over the past

decades, numerous efforts focused on boosting the catalytic

property and reducing the cost of electrocatalysts toward

EECT. Among them, alloying noble metals with transition

metals is a promising technology. A lot of binary and

ternary alloyed noble metal-based electrocatalysts with

lower noble metals contents have exhibited outstanding

catalytic performance [13–22].

High-entropy alloys (HEAs) were first reported in

2004, which are defined based on the component as
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alloys with five or more principal elemental components

in equimolar ratios (another definition is an atomic

concentration between 5% and 35%). The definition of

HEAs is still controversial, and some argue that there is

no need to limit the concentration of elements [23, 24].

Besides, HEAs were also defined by mixed configuration

entropy (S), and S can be calculated by the following

formulas:

S ¼ �R
X

xi � lnxi ð1Þ

S ¼ R ln n ð2Þ

where R stands for the molar gas constant, xi is the mole

fraction of the elemental component and n represents the

amount of composition in the alloy. And when S C 1.36 R,

the HEA is turned out be a quaternary alloy; when S C 1.5

R, the HEA is composed of more than five elements [25].

After more than a decade of research, HEAs have shown

many fascinating properties and attracted numerous atten-

tions. However, most of the researches have paid close

attention to the mechanical property including elasticity

modulus, shearing modulus, hardness and strength of

extension [26–30]. The chemical property of HEAs has

been studied rarely. Recently, HEAs as a novel electro-

catalyst for EECT have begun to draw attention. The

influence of HEAs properties and characteristics on cat-

alytic performance has been investigated from experi-

mental and theoretical calculations [31, 32].

Compared to binary and ternary alloys, HEAs generally

have more advantages in catalytic field, such as cocktail

effect, high entropy effect, lattice distortion effect, phase

structure and sluggish diffusion effect [24, 33]. Cocktail

effect means synergistic response among the alloys with

various elemental components, which could be tuned by

changing the component elements of HEAs. This cocktail

effect could effectively modify the electronic structure

such as d-band center, which directly manages the

adsorption and activation of reactants and intermediates,

determining the catalytic performance of HEAs. Surface

environment of HEAs such as surface charge distribution

could also be governed by modulating the cocktail effect,

which affects the adsorption of reactants and thereby

improves the catalytic performance [34]. Moreover, HEAs

have a higher degree of mixed configuration relative to that

of binary and ternary alloys, which named high entropy

effect. Benefiting from the high entropy effect, HEAs

usually have a stronger corrosion and oxidation resistance

and lower atomic diffusion rate, resulting in a more

stable structure and catalytic stability of HEAs [35, 36].

Lattice distortion existing widely in HEAs due to the var-

ious atomic sizes of each elemental component, usually the

surface strain effect. Fine-tuning the surface strain of

electrocatalysts could effectively regulate their d-band

center according to the previous reports [37–39]. In gen-

eral, the downshift of d-band center will reduce the

adsorption capacity of reactants and intermediates, while

the upshift of d-band center will result in a strong inter-

action [40–42]. Therefore, taking advantages of lattice

mismatch in HEAs may become a powerful strategy to

boost the electrocatalytic performance. Phase structure also

plays a significant important role in determining the prop-

erty of HEAs. The simple phases such as face-centered

cubic (fcc), body-centered cubic (bcc) and hexagonal close

packed (hcp) are highly associated with their catalytic per-

formance [43–47]. Therefore, controlling the phase structure

of HEAs can bring unexpected effect to improve the cat-

alytic performance. Especially in recent studies, fabricating

HEAs with desirable mixed-phase could dramatically

enhance the catalytic property. Although noble metals have

excellent catalytic properties in electrocatalytic reactions,

they are not stable enough usually. After forming HEAs, the

stability will be greatly enhanced. Owing to the large dif-

ference in the atomic size of HEAs, the lattice distortion

effect will increase the energy barrier of atom diffusion

and hinder the atomic diffusion, which will lead to the

sluggish diffusion effect of HEAs. The sluggish

diffusion effect and high entropy effect are the main

reasons for the HEAs to remain stable in acidic or alka-

line environments.

In this review, we focus on the recent research on noble

metal-based HEAs (NM-HEAs) electrocatalysts for EECT.

The synthetic methods of NM-HEAs are systematically

summarized firstly. Then we discuss the catalytic perfor-

mance and mechanism of NM-HEAs in detail according to

the various electrocatalytic reactions through experimental

and theoretical calculations. Finally, the challenges,

opportunities and development tendency in this field are

proposed to the authors’ knowledge.

2 Fabrication and detection of NM-HEA NPs

At the early stage, most studies on HEA have focused on

macroscopic HEA materials or bulk solids, which could be

obtained by mechanical alloying [48, 49], vacuum smelting

[50], powder metallurgic [51] or electrochemical deposi-

tion method [52]. However, these methods have difficulty

in constructing nano-sized NM-HEA materials [53]. The

key problem is the tradition method tends to form

nanocrystals with separated phases rather than alloys.

Especially once the elements exceed three, the rates of

nucleation and growth decrease due to the reduced sub-

stitutional diffusion and interaction among the inter-dif-

fusing species during partitioning [54]. Therefore,

developing rational method to construct a stable single-
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phase solid solution structure consisting of more than five

elements is highly desirable.

2.1 Top-to-down methods

2.1.1 Mechanical alloying at low temperatures

NM-HEA bulk solids are prepared firstly and milled at 123

K via the single ball cryomilling (Fig. 1a) after several

hours to obtain NPs, such as CuAuAgPtPd. Kumar et al.

[55] used this method to synthesize Cu0.2A-

g0.2Au0.2Pt0.2Pd0.2, which has higher product quality and

finer powder than other methods. The cryomilling not only

has the advantages of high yield and purity, fine powder,

keeping the atomic composition of NM-HEAs and reduc-

ing air pollution, but also has the great superiority of large-

scale preparation of high-entropy alloy NPs, which has

attracted wide attention.

2.1.2 Spark discharge

NM-HEA bulk solids prepared were used as the electrode

in spark discharge system (Fig. 1b). Wu et al. [56] syn-

thesized CoCrFeNiPt and CoFeNiCr0.5Pd0.8 with uniform

elemental distribution by the spark discharge way. Under

direct current (DC) pulse power of 500 W and pulse width

of 50 ls with a duty ratio of 0.5, atoms of different ele-

ments on the HEA electrodes are evaporated, and then

recondensed into NPs after encountering the cold water to

form HEA NPs.

2.2 Down-to-top methods

2.2.1 Electrodeposition based on nanodroplet-
mediation

Glasscott et al. [57] synthesized CoFeLaNiPt high-entropy

metallic glasses (HEMGs) by electrodeposition of metal

Fig. 1 a Customized single ball cryomill (WC-tungsten carbide) diagram. Reproduced with permission from Ref. [55]. Copyright 2018,
Springer. b General DC arc discharge system composes of above parts. Reproduced with permission from Ref. [56]. Copyright 2018,
Springer. c Diagram on left showing relationship between transient current and time generated by collision of a single nanodroplet on
carbon fiber, and diagram on right showing a detailed description of collision process of nanodroplet. Reproduced with permission from
Ref. [57]. Copyright 2019, Nature Publishing Group. d Schematic diagram of sample preparation and temperature versus time during
55-ms thermal shock. Reproduced with permission from Ref. [53]. Copyright 2018, American Association for the Advancement of
Science. e Experimental diagram for synthesis of HEA NPs by fast-moving bed pyrolysis (FMBP). Reproduced with permission from
Ref. [60]. Copyright 2020, Nature Publishing Group. f Process diagram of HEAs synthesis by solvent-thermal method. Reproduced
with permission from Ref. [25]. Copyright 2020, American Chemical Society
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salt precursors onto a conductive surface. Metal salt pre-

cursors firstly are dissolved water, and then suspended in

dichloroethane to form nanodroplet with assisting of

tetrabutylammonium perchlorate and ultrasonic. Delivery

of the precursor atoms to the substrate results from the

collision of nanodroplets with a biased electrode represents

an electro-shock event on the order of 100 ms, rapidly

reducing up to eight confined metal salt precursors into

HEA NPs with precisely tunable stoichiometric ratios

(Fig. 1c). Nanodroplet-mediated electrodeposition is an

ideal method used to form HEMG-NPs at room tempera-

ture, which can maintain precise control over elemental

stoichiometry.

2.2.2 Carbothermal shock (CTS)

Yao et al. [53] utilized CTS method to synthesize

PtPdCoNiFeCuAuSn in 2018. In CTS, different metal salt

mixtures (Pt, Pd, Ni, Fe, Co, Au, Cu, Sn, etc.) are first

loaded onto the carbon support, such as carbon fiber. Then,

flash heating is employed to trigger the rapid thermal

decomposition of the metal salt at high temperature (about

2000 K, with impact duration of 55 ms and rate about 105

K�S-1) (Fig. 1d), forming small droplets of multimetallic

solution. Following, these droplets are rapidly cooled to

form a uniform and homogeneous HEA NP without

aggregation or phase separation. Through controlling the

CTS parameters (substrate, temperature, impact duration

and heating/cooling rate), new types of NPs with different

structures and different practical values could be prepared.

The maximum temperature of the carbothermal method is

high enough to promote uniform mixing of almost any

metal combination.

2.2.3 Ultrasonication-assisted wet chemistry

Liu et al. [58] reported an ultrasonication-assisted wet

chemistry method for preparing noble AuRuRhPdPt HEA

NPs, utilizing the acoustic cavitation phenomenon in

ultrasonication process in which extremely high tempera-

tures in localized microscopic regions at momentary

timespans were derived (up to *5000 �C of temperature

and *2.03 9 108 Pa of pressure were generated in local-

ized microscopic regions at a time scale of less than

1 9 10-9 s). The metal salt could be co-reduced by

reducing agents and transform to alloy structures under

operation. Compared with other wet chemistry methods,

this technology uses ultrasonic technology to produce

multimetallic alloy NPs with smaller particle sizes.

2.2.4 Fast cooling and dealloying

Qiu et al. [59] reported the construction of nanoporous

AlNiFeCoCuMoPdPtAu HEA NPs by precursor fast cool-

ing and dealloying. The bulk HEA solid is first prepared by

melting pure melts using an induction-melting furnace

under Ar protection, followed by spinning to prepare the

alloy ribbons. Later, the ribbons are immersed in 0.5

mol�L-1 NaOH solution for chemical dealloying to prepare

the nanoporous high-entropy alloys (np-HEAs). Compared

with other high-entropy alloys, np-NM-HEAs not only

reduce the content of noble metals, but also

greatly improve their electrochemical activity and stability,

making them more widely used in sensing and energy

storage.

2.2.5 Fast-moving bed pyrolysis method

Recently, a strategy that through pyrolysis of metal salt

precursor loaded on carbon supports in fast-moving bed to

form ultrasmall and highly dispersed MnCoNi-

CuRhPdSnIrPtAu HEA NPs, was investigated by Gao et al.

[60]. Fast pyrolysis of precursors at high temperatures

results in the formation of HEA NPs due to the low free

energy of the formation of nuclei (Fig. 1e). Moreover, after

formation, the HEA NPs are directly dispersedly immobi-

lized on granular supports for industrial applications.

2.2.6 Solvothermal synthesis

Solvothermal method is one of the most commonly used

methods to prepare noble metal-based NPs. In previous

reports, this method has also been employed to fabricate

NM-HEAs. Bondesgaard et al. [61] reported a low-tem-

perature solvothermal autoclave synthesis method at 200

�C with a reaction duration of 4–24 h in Teflon-lined steel

autoclave. Metal salt precursor solutions are first dissolved

in a mixture of acetone-ethanol (50:50 vol%), and then the

solution is transferred to Teflon-lined steel autoclave which

allows the chemical reaction taking place in a nonaqueous

solvent at temperature above the boiling point and pres-

sures above 1 9 105 Pa, to form RuRhPdIrPt HEA NPs

(Fig. 1f). Wu et al. [62] successfully prepared NM-HEAs

with all six Pt group elements through co-reduction pro-

cess. The mixture of six metal precursors was dissolved in

water, then added dropwise to the preheated TEG/PVP

solution with 230 �C at a speed of 2 ml�min-1. After the

solution was cooled to room temperature, NM-HEAs with

the size of 3 nm were obtained.
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2.3 Main characteristic methods of detecting
element composition

HEAs are composed of many kinds of elements, the kinds,

distribution and content of elements should be confirmed

when testing its properties. There are many detection

methods to determine the element compositions, such as

X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray

photoelectron spectroscopy (XPS). XRD can determine

whether the sample is amorphous or crystal according to

the measured diffraction information. By comparing with

the standard pattern, we can also know what composition

the sample contains. XRF is an analytical method that

measures elements from Na to U in the periodic table. The

analytical method can be used for qualitative and quanti-

tative analysis without destroying the sample, but it is easy

to be affected by mutual element interference and super-

position peak. XPS can be used not only for qualitative

analysis of elements, but also for quantitative analysis of

elements. In qualitative analysis, almost all elements

except H and He can be identified according to the position

of the characteristic spectral line in the energy spectrum.

Inductively coupled plasma optical emission spectrometer

(ICP-OES), also known as inductively coupled plasma

atomic emission spectrometer (ICP-AES) and inductively

coupled plasma mass spectrometry (ICP-MS) can detect

most elements in the periodic table, but the detection

ability of the latter is higher than that of the former.

3 NM-HEAs for electrocatalysis

In recent years, several efforts have focused on application

of NM-HEAs for advanced electrocatalysts toward various

energy conversion reactions including liquid fuel oxidation

reaction (FOR), oxygen reduction reaction (ORR), hydro-

gen evolution reaction (HER), oxygen evolution reaction

(OER) and CO2 reduction reaction (CO2RR). Based on

experimental results and theoretical calculations, NM-

HEAs electrocatalysts have exhibited great promising on

the enhancement of catalytic activity and stability.

3.1 Electrocatalytic FOR

Proton exchange membrane fuel cells (PEMFCs) have

attracted numerous attentions for several decades due to the

high energy conversion efficiency, pollution-free process

and portability [63–65]. Besides hydrogen energy, some

organic small molecules such as methanol, ethanol and

formic acid could also be regarded as ideal liquid fuel used

in the anode of fuel cells for oxidation reaction. Pt-based

nanostructured catalysts are the most efficient electrocata-

lysts for liquid FOR [66–70]. However, the high cost, low

tolerance of CO and unsatisfactory structural stability

hinder its broad applications [71]. In recent studies, Pt-

based HEAs exhibit great potential to improve the catalytic

performance and structured stability. Wu et al. [62] fabri-

cated the platinum-group metals HEAs (PEG-HEA) with

six elements through a facile wet chemical method. These

PEG-HEA NPs with the average size of 3.1 nm are uni-

formly dispersed. The energy-dispersive X-ray spec-

troscopy (EDX) elemental mapping images reveal the

homogeneous distribution of Ru, Rh, Pd, Os, Ir and Pt in

the PEG-HEA NPs (Fig. 2a). The composition of PEG-

HEA NPs was detected by XRF and XPS. Both results

reveal that each element has a ratio of 1%–20% (Fig. 2b),

indicating the successful synthesis of HEAs. These PEG-

HEA NPs were evaluated as anodic electrocatalysts for

ethanol oxidation reaction (EOR) and showed the superior

specific and mass activity, indicating the complex

12-electron transfer processes (Fig. 2c–f). This excellent

performance of EOR could be attributed to the ideal

adsorption/desorption sites provided by the multielement

surface of PEG-HEA NPs. Besides EOR, NM-HEAs also

have been investigated as electrocatalysts for methanol

oxidation reaction (MOR). Li and co-workers synthesized

PdNiCoCuFe high-entropy alloyed nanotube arrays

(NTAs) through template-assisted electrodeposition

method (Fig. 2g) [72]. The content of each element in

PdNiCoCuFe NTAs is between 9 at% and 33 at%, which is

corresponding to the definition of HEAs. Owing to the high

entropy effect and unique structure, PdNiCoCuFe NTAs

show higher catalytic activity than commercial Pd/C cat-

alyst with lower Pd content, as well as the excellent tol-

erance of CO (Fig. 2h, i). Moreover, Zhang and co-workers

prepared PtRuCuOsIr catalyst with abundant nanoporous

by a mild chemical dealloying method [73]. Compared to

commercial Pt/C, PtRuCuOsIr catalyst exhibited enhanced

catalytic activity and stability for MOR. These studies

indicate that preparing NM-HEAs catalysts is an effective

strategy to reduce the content of noble metal and improve

the catalytic performance toward liquid FOR.

3.2 Electrocatalytic ORR

The sluggish kinetics and complex multielectron process of

ORR have become a key constraint on improving the

efficiency of fuel cell. Therefore, designing and fabricating

outstanding electrocatalysts toward ORR has been strongly

desired and attracted numerous attentions in recent dec-

ades. Until now, a lot of state-of-art catalysts especially

noble metal-based catalysts have been obtained

[8, 12, 22, 74–79]. But the problems of high noble metal

usage and unsatisfactory catalytic activity and stability

remained. Recently, based on theoretical calculations and

experiments, NM-HEAs catalysts have shown a great
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potential to solve these issues. Rossmeisl and co-workers

predicted that NM-HEAs could exhibit an excellent cat-

alytic performance of ORR through density functional

theory (DFT) calculated *OH and *O adsorption energies

on random sites of IrPdPtRhRu HEAs surface [80]. The

comparison between the adsorption energy calculated by

DFT of *OH and * O and the predicted value of the model

which uses the ordinary least squares algorithm is shown in

Fig 3a, the accuracy of these predictions is very high, and

the root mean square deviation (RMSD) of * OH and * O is

only 0.063 eV. The surface of IrPdPtRhRu HEAs offered a

near-continuum of adsorption energies and the adsorption

energies can be tuned by changing the bulk composition to

match the peak of the volcano curve. As shown in Fig. 3b,

the adsorption energies and catalytic activity of

IrPdPtRhRu HEAs changed with each element content

tuning. When the contents of Ir, Pd, Pt, Rh and Ru are 10.2

at%, 32.0 at%, 9.3 at%, 19.3 at% and 28.9 at%,

IrPdPtRhRu HEAs possessed a stable structure and showed

the superior performance of ORR. Besides theoretical

calculations, the advantages of NM-HEAs on ORR

performance were also demonstrated by experiments

[81, 82]. Yao et al. [83] reported a high-throughput syn-

thesis of ultrafine and homogeneous NM-HEAs through

composition design step and rapid thermal shock synthesis

step (Fig. 3c). The components of HEAs can be tuned

easily by this method and a series of PtPdRuRhIrFeCoNi

alloys with various elemental compositions were prepared.

After rapid electrochemical screening by using a scanning

droplet cell, PtPdFeCoNi HEAs delivered enhanced cat-

alytic properties of ORR (Fig. 3d–h). Qiu and co-workers

fabricated a series nanoporous Pt-based HEAs with a low

Pt content of 20 at%–30 at% through top-down dealloying

method [84]. As a proof-of-concept application, these Pt-

based HEAs were evaluated as electrocatalysts for ORR.

Among these catalysts, np-Al–Cu–Ni–Pt–Mn HEAs

showed the optimal catalytic activity, which is 16 times

higher than that of Pt/C catalysts in mass activity. Based on

the first-principles simulations, Mn combined with Ni, Cu

and Al could effectively modify the electronic structure of

Pt, leading to the excellent ORR performance of Al–Cu–

Ni–Pt–Mn HEAs.

Fig. 2 a HAADF-STEM image with corresponding EDX maps and schematic diagram of PEG-HEA NPs; b composition analysis of
PGM-HEA according to XRF and XPS; c–f EOR performances of PEG-HEA NPs and commercial catalysts. Reproduced with
permission from Ref. [62]. Copyright 2020, American Chemical Society. g Illustration of preparing PdNiCoCuFe NTAs; h catalytic
activity and i stability of PdNiCoCuFe NTAs tested in 0.5 mol�L-1 CH3OH ?1.0 mol�L-1 NaOH at 50 mV�s-1. Reproduced with
permission from Ref. [72]. Copyright 2014, Elsevier
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3.3 Electrocatalytic HER

HER as a semireaction of electrochemical splitting of water

has attracted wide attention in past decades to produce

hydrogen energy, which is one of the most important clean

energy in the future. To date, Pt is generally regarded as the

most excellent catalysts for electrocatalytic HER in acidic

environment, but the costliness and sluggish kinetics in

alkaline electrolyte impede its practical utilization [85–89].

Recent reports showed that fabricating NM-HEAs catalysts

could boost the HER performance both in acidic and

alkaline solution as well as reduce the usage of Pt. Liu et al.

[58] successfully prepared PtAuPdRhRu HEAs NPs

through a facile ultrasonication-assisted method by means

of the instantaneously massive energy generated by

acoustic cavitation (Fig. 4a). Thanks to the strong syner-

gistic effect between various elements and high entropy

effect, PtAuPdRhRu HEAs NPs delivered a superior

activity. The onset potential and Tafel slope of

PtAuPdRhRu HEAs NPs reduced remarkably compared to

those of other contrastive Pt-based catalysts (Fig. 4b). In

addition, Wu et al. [90] fabricated IrPdPtRhRu HEAs NPs

Fig. 3 a *OH adsorption on 871 symmetric 292 unit cells (blue dots) and tested on 76 asymmetric 394 unit cells (red crosses);
b activities of Re-engineered Compositions of alloys. Reproduced with permission from Ref. [80]. Copyright 2019, Cell. c Schematic
images of combinatorial and high-throughput fabrication of MMNCs; d ORR performance of various MMNCs, where size of these
circles indicates magnitude of specific current at 0.45 V for ORR); e TEM image and f corresponding EDX maps of PtPdFeCoNi alloys;
g cycle voltammograms and h linear-sweep voltammograms of these catalysts at 10 mV�s-1. Reproduced with permission from Ref.
[83]. Copyright 2020, National Academy of Sciences

1 Rare Met. (2021) 40(9):2354–2368
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with the average size of (5.5 ± 1.2) nm through co-re-

duction process of these five metal precursors in triethylene

glycol solution at 230 �C, and the amount of each element

is basically identical characterized by XPS and XRF

(Fig. 4c, d). Especially, diverse local electronic structures

on IrPdPtRhRu HEAs NPs caused by the random atomic

configurations have been directly demonstrated by hard

XPS. In the study of electrocatalytic HER performance,

IrPdPtRhRu HEAs NPs exhibited outstanding activity both

in acidic and alkaline solution (Fig. 4e, f). In order to prove

whether the activity of IrPdPtRhRu HEA NPs is related to

the adsorption energy of intermediate H species, the turn-

over frequency (TOF) value at 50 mV is plotted as a

function of experimental d-band center which can reflect

the metal–H binding of monometallic and most binary

catalysts in solutions of 0.05 mol�L-1 H2SO4 and 1.0

mol�L-1 KOH (Fig. 4g, h). According to Fig. 4g, h, the

TOF value of monometallic NPs is approximatively related

to the d-band center, the deeper the d-band center is, the

higher the activity is. However, it should be noted that the

enhanced HER performances do not fit perfectly to the

d-band theory all the time, suggesting that the relationship

between electronic structure and HER performance of NM-

HEAs is complex and needs to be further investigated.

3.4 Electrocatalytic OER

OER is the other semireaction of electrocatalytic water

splitting process, which possesses a complex four-electron

transfer process, leading to the high kinetic energy over-

potential [91–97]. Although numerous excellent non-noble

metal-based catalysts have been obtained and exhibited

excellent OER performance, these electrocatalysts are

generally not suitable to acidic solution. Ir, Ru and their

oxides are still the most excellent electrocatalysts for the

OER in acidic environment, as well as in alkaline elec-

trolyte. Therefore, the content of Ir and Ru in electrocat-

alysts is highly desirable to reduce and the activity and

Fig. 4 a Schematic image of synthetic method and HER application for PtAuPdRhRu/C; b HER polarization curves and Tafel plots of
various catalysts in 1.0 mol�L-1 KOH solution. Reproduced with permission from Ref. [58]. Copyright 2019, Wiley-VCH. c HAADF-
STEM images and EDX-mapping of RuRhPdIrPt HEAs NPs; d component of RuRhPdIrPt HEAs NPs characterized by XPS and XRF;
HER polarization curves of RuRhPdIrPt HEAs NPs and other monometallic catalysts in e 0.05 mol�L-1 H2SO4 and f 1.00 mol�L-1 KOH
solution; interrelation between TOF values at 0.05 (vs. RHE) and d-band center in g 0.05 mol�L-1 H2SO4 and h 1.00 mol�L-1 KOH
solution (d-band center relative to Fermi level). Reproduced with permission from Ref. [90]. Copyright 2020, Elsevier
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stability are wished to be further enhanced. Jin et al. [98]

synthesized np-AlNiCoIrMo HEAs with uniform distribu-

tion of elements by a facile dealloy process (Fig. 5a, b).

The atomic ratio of Ir in this np-AlNiCoIrMo HEAs is only

*20%, which is much lower than that of binary and

ternary Ir-based alloys. Owing to the high-entropy effect

and sluggish diffusion effect of HEA, np-AlNiCoIrMo

HEAs show a record-high OER electrocatalytic activity in

acidic solution as well as superior stability (Fig. 5c, d). As

shown in Fig. 5d, the potential changes of np-AlNiCoIrMo,

AlNiCoIrCu and AlNiCoIrNb samples are very small,

about 11.5, 2.1 and 11.0 mV, respectively, while np-AlNiIr

shows a sharp potential increase of about 70.3 mV at 60

mA�cm-2 after 7000 cycles. These results prove that the

quinary HEAs have excellent durability. Based on the

calculation of Ir–O band, the covalency of Ir–O bond could

be increased through alloying Ir with Ni and Mo, leading to

the outstanding OER performance (Fig. 5e). Moreover,

beside HEAs, Glasscott et al. [57] showed a generalized

platform for fabricating the noble metal-based high-

Fig. 5 a HAADF-STEM and b EDX-mapping images of np-AlNiCoIrMo HEAs; c OER polarization and d catalytic stability of Ir-based
HEAs and IrO2. e Difference of Ir d-band center and O p-band center for various catalysts. Reproduced with permission from Ref. [98].
Copyright 2019, Wiley-VCH. f Electrocatalytic evaluation of CoFeLaNiPt HEMG-NP electrocatalyst for HER and OER. Reproduced
with permission from Ref. [57]. Copyright 2019, Nature Publishing Group
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entropy metallic glasses, which were also containing dis-

ordered five or more equimolar components, but with

amorphous microstructure. These novel catalytic materials

exhibit excellent OER performance as well as HER due to

the strong synergistic effect (Fig. 5f) and provide novel

idea for designing advanced water splitting

electrocatalysts.

3.5 Electrocatalytic CO2RR

Electrocatalytic CO2RR has been regarded as a promising

technology for the proficient conversion of CO2 into

chemical fuels [99–106]. However, the high kinetic barri-

ers, complex multielectron process and competition with

HER in CO2RR lead to the unsatisfactory activity and

selectivity, which hinder its practical application. In pre-

vious reports, CO binding energy of metal electrocatalysts

played a key role in tuning the activity and selectivity of

CO2RR. For instance, Au NPs as the electrocatalysts for

CO2RR could exhibit the superior activity due to the weak

Au-CO binding energy, but the products are mainly CO.

Cu NPs as the electrocatalysts could result in a variety of

products including hydrocarbons and oxygenates due to the

intermediate CO binding energy [107–111]. NM-HEAs

hold a great potential as electrocatalysts for CO2RR since

the cocktail effect, high entropy effect, lattice distortion

effect, phase structure and sluggish diffusion effect in

HEAs could effectively modify the electronic structure and

tune the CO binding energy. Rossmeisl and co-workers

systematically calculated the CO and H adsorption energies

on (111) surface sites of disordered AgAuCuPdPt HEAs

with various components through combining DFT with

supervised machine learning (Fig. 6a–f) [24]. The results

demonstrated that optimizing the HEA compositions could

increase the likelihood for sites with weak H adsorption

and strong CO adsorption, which can suppress the com-

petition of HER and enhance the reduction of CO. In an

experimental attempt, Nellaiappan et al. [112] fabricated

AuAgPtPdCu HEAs as a ‘‘single-atom catalyst’’ for the

electrochemical reduction of CO2 to reveal the advantages

of HEAs catalysts toward CO2RR (Fig. 6g–k). They find

that redox-active Cu metal (Cu2?/Cu0) is the only activity

site for electrocatalytic CO2RR in AuAgPtPdCu HEAs,

other metal elements only provide a synergistic effect.

Different from the pure Cu catalysts, the products of CO2

conversion are complete 100% gaseous at a lower potential

on AuAgPtPdCu HEAs, and with an excellent stability.

According to the free-energy calculations of intermediates,

the destabilization of the *OCH3 and stabilization of the

*O on HEAs surface lead to the lower limiting potential. In

addition, - 0.45 eV of free-energy adsorption of H is

usually the thermoneutral value for efficient HER catalysts,

resulting in the lower Faraday efficiency (FE) of H2 than

that of CH4 and C2H4.

4 Summary and outlook

Noble metal-based catalysts have been investigated widely

in electrocatalytic field. However, the high cost and

unsatisfactory catalytic performance are still not effectively

addressed. Recently, NM-HEAs have exhibited great

promising to enhance the catalytic performance as well as

decrease the usage of noble metal. In this review, the

preparation methods of NM-HEAs have been systemati-

cally evaluated and the advantages of HEAs electrocata-

lysts including high entropy effect, cocktail effect, lattice

distortion effect, phase structure and sluggish diffusion

effect have been discussed. These characteristics could

effectively modify the geometric/electronic structure of

NM-HEAs. Moreover, recent progresses in NM-HEAs

electrocatalysts for fuel cells, water splitting and CO2

reduction have been summarized, with focus on the roles of

high entropy effect, cocktail effect and lattice distortion

effect in the enhancement of catalytic property. Although

several significant efforts have been devoted to the

exploitation of advanced NM-HEAs electrocatalysts for

energy conversion. The research is still in the infant stage

and many challenges and problems still need to be solved.

4.1 Facile preparation of NM-HEAs

Until so far, despite several different kinds of strategies

have been developed to successfully synthesize NM-HEAs,

the novel preparation method particularly easy-to-opera-

tion under ambient condition is highly desirable. Those

methods mentioned in this review above either need spe-

cialized equipment (mechanical alloying, sputter deposi-

tion, spark discharge, etc.), or need to be operated in

extreme condition (carbothermal shock synthesis, sputter

deposition, etc.), such as high temperature of thousands

degree or high vacuum. Additionally, the small preparation

scale is also an issue needed to be addressed. Therefore, the

simple, easy-to-operate and scale-up methods of fabricat-

ing NM-HEAs under facile conditions are imperative to

develop.

4.2 Morphology-controlled synthesis of NM-HEAs

As is well known, the morphology of noble metal alloyed

electrocatalysts has great influences on the catalytic per-

formance. Various exposed facets possess different binding

energies of intermediates, influencing the catalytic activity

and stability. In the past decades, shape-controlled fabri-

cating noble-based catalysts have been investigated in-
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depth and the structure-performance relationships in many

electrocatalytic reactions have been gradually revealed

[113]. For instance, concave nanocubic and tetrahexahedral

noble-based NPs generally exposed high-index facets

(HIFs), which usually enhanced the catalytic performance

due to the low coordination numbers of surface atoms

[114]. In addition, numerous state-of-art noble-based dec-

ahedrons and icosahedrons also exhibit superior

Fig. 6 GPR-predicted (DEpred) versus DFT-calculated (DEDFT) adsorption energies of AgAuCuPdPt for a on-top, b fcc-hollow H and
c hcp-follow H, where blue represents data for 2 9 2 atoms slabs and red 3 9 3 atoms slabs; distributions of H and CO adsorption
energies for AgAuCuPdPt d equimolar components, e optimal components and f locally optimal components without constraints.
Reproduced with permission from Ref. [24]. Copyright 2020, American Chemical Society. g Schematic diagram, h XRD pattern, i TEM
image, j HRTEM image and k atom probe microscope mapping image of AuAgPtPdCu NPs; l chronoamperometric test in CO2-
saturated solution at -0.7, -0.8 and -0.9 V for 1000 s; m Faradic efficiencies of different products. Reproduced with permission from
Ref. [112]. Copyright 2020, American Chemical Society
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performance for electrocatalytic HER, ORR and CO2RR

due to the abundant twinned defects on the surface and the

introduction of strain effect.

Fine controlling the nucleation/growth kinetics of

metal alloyed NPs to desired shape is more difficult with

the increase in compositional metals. Especially, NM-

HEAs require five or more elements with equal content

(or 5 at%–35 at%), leading to the greater difficulty.

Therefore, morphology-controlled preparation of NM-

HEAs remains a great challenge and is reported rarely.

However, based on the shape-controlled synthesis of

ternary and quaternary alloys reported previously, it is

promising to fabricate NM-HEAs with definite mor-

phology through fine-tuning the capping agents, reducing

agents, shape-regulation agents and other control

conditions.

4.3 Phase structure regulation of NM-HEAs

Phase structure has been regarded as the most significant

structural parameter and played a crucial role in deter-

mining the catalytic property of HEAs. Especially, the

unconventional phases of metal elements generally endow

them with intriguing catalytic properties and innovative

applications. 4H Au shows enhanced activity and higher

ethylene selectivity in electrochemical CO2 reduction

compared to the traditional (face center cubic) fcc Au

[115]. Fcc Ru NPs could exhibit superior electrocatalytic

HER and OER performance than conventional (hexagonal

close packed) hcp Ru catalysts [44]. CoNi NPs with fcc/

hcp closest packing polymorphism interface significantly

boost the HER activity than CoNi NPs with pure fcc or hcp

structure. Therefore, fabricating NM-HEAs with uncon-

ventional phase structure or multiple phases has great

potential to enhance the electrocatalytic performance and is

full of challenges at the same time. In general, we believe

that NM-HEAs provide a novel strategy to fabricate

advanced electrocatalysts and will be applied widely in the

further.
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