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Abstract Hollow micro-/nanostructures have achieved

great success in the field of renewable battery materials by

reducing the volume change and promoting the ion trans-

port. Double-shelled Co3V2O8 hollow nanospheres (CVO-

DSS) were synthesized using a facile solvothermal method

followed by a thermal treatment in the absence of any

surfactant. Meanwhile, two other architectures of hollow

nanospheres and nanoparticles were obtained by changing

the annealing temperature. Benefiting from the desired

hollow structure, the CVO-DSS electrode exhibits excel-

lent lithium storage properties as an anode. It exhibits a

reversible discharge capacity of 1210 mAh�g-1 at

200 mA�g-1 after 100 cycles and a satisfactorily high rate

capacity of 628 mAh�g-1 after 800 cycles at 5000 mA�g-1.

These hollow nanostructures can efficiently enhance the

contact area of the electrolyte/electrode interface, promote

the diffusion of lithium ions and electrons and slow down

the capacity loss during long cycles.

Keywords Co3V2O8; Hollow nanospheres; Double-

shelled; Anode materials; Electrochemical properties

1 Introduction

Nowadays, lithium-ion batteries (LIBs) are extensively

applied in the industrial and commercial applications (such

as laptops, mobile communication equipment and electric

vehicles) [1, 2]. To meet the increasing demands of the

industries, the energy density and the cycle life of LIBs

need to be further improved. Hence, many anode materials

with superior electrochemical properties were reported and

replaced the traditional graphite anode [3–5]. Among these

materials, binary cobalt vanadates (such as Co3V2O8) have

attracted much attention as an alternative to oxide-based

anodes owing to the presence of multivalent vanadium

element, interfacial effects and synergistic effect of Co and

V ions [6, 7]. However, the decrease in volume expansion

and mechanical strength of bulk material can reduce the

storage efficiency of lithium upon cycling and impede their

use in the commercial applications.

Several approaches have been employed to overcome

these issues such as rational fabrication and synthesis of

nanostructured materials [8–12]. The nanostructured

materials allow the electrolyte throughout the electrode,

provide shorter diffusion path length, restrict the volume

expansion and enhance the contact area [13–20]. Thus, a

variety of micro-/nanostructured Co3V2O8 materials have

been reported, such as nanotubes [21], hollow and solid

hexagonal micro-pencils [22], mesoporous nanoparticles

[23] and porous microspheres [24]. For example, the

Co3V2O8�nH2O hollow pencils exhibited impressive

lithium storage capability, owing to their interfacial effects,

multivalent vanadium ions and the reduction of volume

expansion caused by the synergistic effects [25]. The

multilayered Co3V2O8 nanosheets exhibited an outstanding

specific capacity of 470 mAh�g-1 at 5.0 A�g-1 over 500
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cycles, in which the reversible reaction of Co2?/Co0 and

LixV2O5 acts as an electrochemical reaction, confirmed by

ex situ transmission electron microscope (TEM). These

nanosheets not only enhanced the contact area, but also

assured favorable kinetics and a stable structure [26]. The

porous Co3V2O8 nanosheets exhibited excellent lithium

storage capacity. These layer-to-layer nanosheets with

mesoporous structure and synergistic effect prevented the

storage capacity from decaying and contributed in regain-

ing the capacity [27]. Among various nanostructures, the

hollow micro-/nanostructured electrodes have attracted

remarkable attention due to the shorter diffusion path

length and lager contact area [28, 29]. Luo et al. [30]

recently synthesized interconnected Co3V2O8 hollow

microspheres by a hydrothermal method followed by

annealing; these microspheres displayed high cycling sta-

bility and rate capability (424 mAh�g-1 at 10 A�g-1 over

300 cycles). Wu et al. [31] recently synthesized uniform

Co3V2O8 microspheres by a hydrothermal method fol-

lowed by calcination. The Co3V2O8 microspheres exhib-

ited high cycling stability and rate capability as anode

materials owing to the hollow structure, synergistic effects,

mechanical stability and their complex chemical

composition.

In this work, double-shelled Co3V2O8 hollow nano-

spheres were fabricated using a solvothermal method fol-

lowed by a thermal treatment. Scanning electron

microscope (SEM) images show that the morphologies of

Co3V2O8 nanostructures depend on the annealing temper-

atures. The formation of the double-shelled hollow nano-

spheres is the result of interaction between contraction

force (Fc) and adhesion force (Fa) during oxidation. The

double-shelled Co3V2O8 hollow nanospheres electrode

exhibits an excellent electrochemical performance owing

to the benefits of both the double-shell and the hollow

morphology, which increases its potential for anode

material in the LIBs.

2 Experimental

In the experiments, all the analytical grade reagents were

used without further purification. First, 20 ml glycerin and

40 mL ethylene glycol were added into a 200-ml glass

beaker and stirred for 2 h to form a limpid solution. Then,

3 mmol CoCl2�H2O and 2 mmol vanadyl acetylacetonate

(VO(acac)2) were dissolved in the mixed solution by

continuously stirring for 1 h. This solution was transferred

into a 100 ml Teflon-lined stainless steel autoclave and

heated at 180 �C for 15 h. The obtained product was

washed with deionized water thrice and then with anhy-

drous ethanol and later dried at 60 �C for 12 h. The

Co3V2O8 samples were annealed at 350, 450 and 550 �C

for 2 h, respectively. The products with different mor-

phologies were marked as double-shelled hollow nano-

spheres (CVO–DSS), single-shelled hollow nanospheres

(CVO-HS) and nanoparticles (CVO-NP), respectively.

X-ray diffraction (XRD; Bruker AXS, D8 diffractome-

ter, Cu Ka radiation) was used to determine the crystal

structure of the Co3V2O8 samples. Scanning electron

microscope (SEM; JEOLJSM-7400F, Japan), X-ray

energy-dispersive spectrometry (EDS; Oxford Instruments,

INCA) which was attached to SEM, high-resolution

transmission electron microscopy (HRTEM; JEOL-2010)

and X-ray photoelectron spectrometer (XPS; VGESCA-

LABMK II spectrometer) were used to detect the mor-

phologies, element compositions and element distributions

of these samples. Thermogravimetric analysis (TGA) was

performed in air at a heating rate of 10 �C�min–1 from

room temperature to 600 �C with an SDT Q600 TA

Instruments thermal analyzer.

The Co3V2O8 electrodes were obtained by smearing the

mixed slurry (the weight ratio of carboxymethylcellulose

sodium, super P and Co3V2O8 sample is 1:1:8) on a Cu foil

and dried at 100 �C for 12 h in vacuum. The mass loading

of each Co3V2O8 sample was * 2.6–2.8 mg�cm2. The

assembly of button battery (CR2032-type cells) was

arranged in an argon-filled glove box. The separator used

was an Celgard 2400 porous polypropylene film, and an

electrolyte of l mol�L-1 LiPF6 consisting of ethylene car-

bonate and diethyl carbonate (1: 1 in volume) was used.

Galvanostatic charge–discharge tests were conducted with

a battery test system (LAND CT2001A, China). The

electrochemical impedance spectroscopy (EIS) and cyclic

voltammetry (CV) tests were conducted using an electro-

chemical workstation (CHI 660A).

3 Results and discussion

3.1 Structure and composition characterization

Figure 1a shows the XRD patterns of the three Co3V2O8

samples. The characteristic peaks at 2h = 35.3�, 43.5�,
57.7� and 63.2� correspond to the diffraction planes of

(122), (042), (025) and (442) for the Co3V2O8

orthorhombic structure (JCPDS No. 74–1487), and no

other peaks are observed. Figure 1c shows the XRD pattern

of the precursor. The special peak at 2h = 10.8� can be

attributed to the metal alkoxides of the precursor. The

thermogravimetry (TG) curve (Fig. 1b) represents the total

precursor weight loss of 31.59%, owing to the evaporation

of free water, adsorbed water and the decomposition of

organic compounds [32].

XPS measurements were used to analyze the surface

chemical composition and valence states of the CVO-DSS
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sample. The full spectrum peaks of Co, V and O are shown

in Fig. 2a. The XPS spectrum of Co 2p shows two obvious

peaks at 780.1 and 796.8 eV, representing Co 2p3/2 and Co

2p1/2, respectively, which could be attributed to Co2? of

the Co3V2O8 sample. The two peaks (783.1 and 798.1 eV)

of Co3? were located after peak fitting, corresponding to

the previous reports [21, 22]. Two other peaks located at

524.7 and 516.9 eV of the V 2p spectrum, allocated to V

2p1/2 and V 2p3/2, respectively, correspond to V5? of the

Co3V2O8 sample, are shown in Fig. 2c. After peak fitting,

two peaks of V4? were located at 516.7 and 523.8 eV [23].

The O 1s spectrum indicated weak adsorbed-oxygen and

doughty lattice-oxygen peaks located at 532.1 and

529.9 eV, respectively, as shown in Fig. 2d. These results

confirm successful synthesis of pure Co3V2O8 phase.

3.2 Morphology characterization

Figure 3a, b displays the morphology of CVO-DSS sam-

ple. The CVO-DSS displays uniform nanosphere mor-

phology with a diameter of * 600 nm. The CVO-DSS

maintained the nanosphere morphology of the Co-V-based

precursor as observed by the SEM (in Fig. 1d). TEM and

HRTEM measurements were used to further examine the

microstructures of the Co3V2O8 samples. According to the

TEM images (Fig. 3c, d), these nanospheres are of the size

500–800 nm. Strong contrast between the pale center and

the dark edges indicates the obvious double-shelled hollow

cavity. The HRTEM images, shown in Fig. 3d, e, indicate

that the CVO-DSS demonstrates a particular d-spacing

(0.254 nm) of (311) planes. The EDS elemental mapping

shown in Fig. 3f confirms the uniform distribution of O, V

and Co throughout the CVO-DSS sample. The morphology

of the double-shelled Co3V2O8 hollow nanospheres can

effectively mitigate the volume change, improve the

lithium insertion–extraction and reduce the diffusion dis-

tance of Li? [33, 34].

Figure 4 displays the SEM images of the other Co3V2O8

samples (single-shelled hollow Co3V2O8 nanospheres

(CVO-HS) and Co3V2O8 nanoparticles (CVO-NP))

obtained at 450 and 550 �C, respectively. The CVO-HS

shown in Fig. 4a, c exhibits single-shelled hollow mor-

phology. However, when the calcination temperature

reaches 550 �C, the as-prepared Co3V2O8 sample (CVO-

NP) exhibits the nanoparticles morphology with the size

of * 100–300 nm, as shown in Fig. 4b, d. Based on these

Fig. 1 a XRD patterns of CVO-DSS, CVO-HS and CVO-NP; b TGA curves of Co-V-based precursor; c XRD pattern and d SEM image of Co-

V-based precursor
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Fig. 2 XPS spectra of CVO-DSS: a survey spectrum, b Co 3d, c V 2p and d O 1s

Fig. 3 a and b SEM images of CVO-DSS; c and d low magnification TEM images of CVO-DSS, e HRTEM image of CVO-DSS; f SEM image

and corresponding EDS elemental mappings of Co, V and O of CVO-DSS
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results and the previous reports, the formation of the dou-

ble-shelled hollow nanospheres can be considered as the

result of the interaction between Fc and Fa during oxida-

tion. Fc can induce an inward shrinkage of the Co-V-based

precursor core during the decomposition of the organic

species. Fa prevents the inward contraction of the precursor

core. Similar phenomenon has been reported in a variety of

nanostructured electrode materials [35–37].

3.3 Electrochemical performances

CV curve of the CVO-DSS material was evaluated at a

scan rate of 0.2 mV�s-1, as shown in Fig. 5a. For the CVO-

DSS electrode, two cathodic peaks at 0.65 and 0.05 V

appear in the first intercalation of lithium ions. The peak at

0.65 V can be related to the decomposition of Co3V2O8.

The pristine Co3V2O8 transformed into CoO and the

LixV2O5 resulted from the intercalation of lithium ions into

the Co3V2O8 lattice (Co3V2O8 ? xLi? ? xe– ? 3CoO ?

LixV2O5). As the insertion of Li? ions increase, the peak at

0.05 V reduces CoO/Co0 and the lithiation of LixV2O5

occurs (CoO ? 2Li? ? 2e– ? Co ? Li2O, LixV2O5 ?

yLi? ? ye– ? Lix?yV2O5) [38]. During the positive volt-

age sweep, two peaks at * 1.31 and 2.37 V may depend

on the extraction of lithium ions and hence the oxidation

peak does not change in subsequent cycles. However, these

cathodic peaks move at * 1.77, 1.02 and 0.35 V, respec-

tively. The disappearance of the peak at 0.05 V confirms

the irreversible reaction which can be attributed to the

formation and partial disintegration of the SEI layer [39].

The overlapped scanning curves (excluding the first cycle)

indicate that the CVO-DSS electrode exhibits reversible

discharge/charge process and good stability.

The galvanostatic charge–discharge (GCD) and the

cycling performance were evaluated to understand the

storage capacity of all the Co3V2O8 electrodes at a current

density of 200 mA�g–1, as shown in Fig. 5b, c, d. The first

discharge of CVO-DSS reveals a high capacity of

1366 mAh�g–1, and a reversible capacity of

1192/1210 mAh�g–1 can be obtained with an ideal

coulombic efficiency of 87.3%. After 100 successive

cycles, the CVO-DSS electrode indicates a good discharge

capacity of 1210 mAh�g–1 and a capacity retention of

88.6% compared to the initial discharge capacity, as shown

in Fig. 5e. For the CVO-HS and CVO-NP electrodes, the

first discharge capacities are 1311 and 1180 mAh�g–1,
respectively. However, the capacity decay is observed for

in the CVO-HS and CVO-NP electrodes. They exhibit the

discharge capacities of * 899 and 654 mAh�g–1 after the

100th cycle, only when the capacity retentions are 68.6%

and 55.4% from the first cycle. It is clear that the cycling

stability of the CVO-HS and CVO-NP electrodes is inferior

to that of the CVO-DSS electrode. It is interesting to

observe that the cycling performance of all the Co3V2O8

electrodes increases slightly starting from the second cycle

and this repeats until the 45th cycle. Similarly, previous

Fig. 4 SEM images of a CVO-HS and b CVO-NP; TEM images of c CVO-HS and d CVO-NP; e schematic illustration of temperature-

dependent morphologies of Co3V2O8 samples
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studies on metal oxides reported this phenomenon [25].

The discharge capacities of the CVO-HS and CVO-NP

electrodes keep declining with the increase in the number

of cycles. The capacity loss of hollow nanosphere and the

nanoparticles electrodes could be associated with the pul-

verization and vigorous volume changes of nanostructures

during the charge and discharge process. However, the

CVO-DSS remains stable after 100 cycles. This result

indicates that the double-shelled hollow nanospheres and

porous structure can effectively limit the volume change

and pulverization of the electrode materials. Figure 5f

shows the rate capabilities of the CVO-DSS, CVO-HS and

CVO-NP electrodes. The discharge capacities of 1382,

1278, 1315, 1106, 772, 605 and 519 mAh�g–1 can be

acquired for the CVO-DSS at 200, 500, 1000, 2000, 5000,

10,000 and 20,000 mA�g-1, respectively. More interest-

ingly, when the current density returns to 200 mA�g-1, the

reversible capacity of 1109 mAh�g–1 can be obtained after

80 cycles. However, the CVO-HS and CVO-NP electrodes

display unsatisfactory rate capabilities, especially at high

rate.

EIS was utilized to analyze the interfacial property of

the three Co3V2O8 electrodes in Fig. 6a. All the Nyquist

plots are made up of a semicircles and slanted lines. The

diameter of the semicircle represents the ability of charge

transfer resistance (Rct); the slanted line displays the

Warburg resistance (Zw) [40]. From the equivalent circuit

in the inset of Fig. 6a (Rs is the electrolyte resistance), the

Rct value of the CVO-DSS electrode is 56.3 X, which is

less than that of the CVO-HS (78.5 X) and CVO-NP (88.7

X), indicating that the CVO-DSS exhibits a rapid charge

transfer and lithium-ion diffusion, compared to the CVO-

HS and CVO-NP electrodes. In addition, the linear fitting

of the Warburg impedance of all the Co3V2O8 electrodes is

shown in Fig. 6b. Lithium-ion diffusion coefficient (DLiþ)

is closely related to the slope Aw of the fitting curve. The

slope Aw affects the ability of lithium-ion diffusion coef-

ficient (DLiþ) [41]. Equation (1) shows the relationship

between DLiþ and Aw, and they are inversely proportional

to each other [42]. The parameters E and F represent the

open-circuit voltage and Faraday constant. x, S and Vm

represent the Li? concentration, surface area and molar

volume of the active materials in Eq. (1).

DLiþ ¼ 0:5
Vm

FSAw

� dE

dx

� �� �2
ð1Þ

The slope Aw of the CVO-DSS electrode is 22.6 X�s-1/2,

which is less than that of the CVO-HS (56.2 X�s-1/2) and

CVO-NP (65.3 X�s-1/2), indicating that the CVO-DSS

exhibits rapid lithium-ion diffusion rate, compared to the

CVO-HS and CVO-NP electrodes.

To further examine the long-term cycle at high current

density, the double-shelled Co3V2O8 hollow nanosphere

was tested, as shown in Fig. 7a. Though there is obvious

capacity fade above 100 cycles, a satisfying reversible

discharge and charge capacity of 847 and 834 mAh�g–1 can

Fig. 5 a CV curves of CVO-DSS; charge/discharge profiles of b CVO-DSS, c CVO-HS and d CVO-NP; e cycling performance of CVO-DSS,

CVO-HS and CVO-NP at a current density of 200 mA�g-1; f rate performance of CVO-DSS, CVO-HS and CVO-NP
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be achieved. It can also be decreased to 613 and

628 mAh�g–1 after 800 consecutive cycles at ultrahigh

current density of 5000 mA�g-1. Furthermore, the TEM

image of the CVO-DSS electrode after 100 cycles at cur-

rent densities of 200 mA�g-1, as shown in Fig. 7b, indi-

cating that the CVO-DSS electrode still retains the sphere-

like morphology. The CVO-DSS electrode material can

retain the morphology even after many cycles, which is the

main reasons for its good cyclic stability. Thus, compared

to the other existing literature as summarized in Table 1

[21, 24, 26, 27, 30, 31, 34, 43, 44], high lithium storage

properties of the CVO-DSS electrode can be attributed to

the following: (i) Uniform double-shelled hollow nano-

spheres effectively reduce the internal resistance and

increase the diffusion rate of Li? [45]; (ii) this particular

nanostructure efficaciously increases conductivity of the

electrode material and buffer the influence of volume

expansion [46]; (iii) synergistic effect between Co and V

ions can improve the electrochemical performance of the

Co3V2O8 electrode material [47].

Fig. 6 a EIS and b linear fitting of Warburg impedance of CVO-DSS, CVO-HS and CVO-NP (Z0, real part of impedance; Z00, imaginary part of

impedance)

Fig. 7 a Cycling performance of CVO-DSS at current densities of 5000 mA�g-1; b TEM image collected after 100 cycles of CVO-DSS

Table 1 Comparison of electrochemical performances of Co3V2O8

with previously reported results for LIBs

Samples Cycles Rate/

(A�g–1)
Capacity/

(mAh�g–1)

Co3V2O8 nanotubes [21] 1100 5.0 630

Porous Co3V2O8 microsphere [24] 400 5.0 650

Co3V2O8 sponge network [26] 700 1.0 501

Co3V2O8 porous nanosheets [27] 1000 3.0 1560

Co3V2O8 hollow microsphere [30] 300 10.0 424

Co3V2O8 microspheres [31] 400 5.0 550

Co3V2O8 hexagonal pyramid [34] 300 0.5 712

Co3V2O8 multilayered nanosheets

[43]

100 1.0 1114

Co3V2O8 nanoparticle [44] 250 0.2 1024

Double-shelled Co3V2O8 hollow

nanosphere (This work)

800 5.0 628
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4 Conclusion

In summary, the Co3V2O8 electrode materials with differ-

ent morphologies (double-shelled hollow nanosphere, sin-

gle-shelled hollow nanosphere and nanoparticle) were

synthesized successfully by using a solvothermal method

followed by thermal treatment. The calcination tempera-

ture plays a crucial part in the formation of Co3V2O8

particles. The double-shelled Co3V2O8 hollow nanospheres

(CVO-DSS) exhibit excellent lithium storage properties

with a reversible capacity of * 1210 mAh�g–1 at

200 mA�g–1 after 100 cycles and also provide * 628

mAh�g–1 at 5000 mA�g–1 after 800 cycles. The double-

shelled hollow nanosphere provides several advantages like

increasing the Li? diffusion coefficient and electronic

conductivity, decreasing the electrode polarization and

simultaneously balancing the volume expansion of

Co3V2O8 during the cycling.
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