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Abstract Rice-like Gd(OH)3 nanorods were successfully

prepared through a facile and rapid microwave-hydrother-

mal synthesis method without using any surfactants or

templates. X-ray diffraction (XRD), Fourier transform

infrared (FTIR) spectroscopy, thermogravimetric analysis

(TGA), scanning electron microscopy (SEM), transmission

electron microscopy (TEM), high-resolution transmission

electron microscopy (HRTEM), selected area electron

diffraction (SAED) and energy-dispersive spectroscopy

(EDS) were used to characterize the samples. Results show

that the nanorods have an average length of 400 nm and an

average diameter of 50 nm. The effects of reaction

parameters such as reaction temperature and time on the

preparation were briefly investigated. It is found that the

crucial factor for the formation of rice-like Gd(OH)3
nanorods is reaction time. When the rice-like Gd(OH)3
nanorods was codoped with Yb3? and Er3?, strong

upconversion emissions could be observed under the

excitation of 980-nm-laser, and the calculated CIE color

coordinates falls within the yellow region, which may be

potential candidate for optical materials.
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1 Introduction

At present, lanthanum hydroxides and their oxides or

dehydroxides are widely applied in various fields, including

as electronic, magnetic, optical materials, superconductive

materials, catalyst, etc. [1–3]. Gadolinium hydroxide

(Gd(OH)3), one of the important lanthanide hydroxides

candidates, which has been used in biomedical, luminescent

and catalytic fields, has attracted much attention to conduct

research on it [4–9]. To date, many methods have been

developed to prepare Gd(OH)3, ranging from conventional

hydrothermal treatment [10–13], coprecipitation [14], sol–

gel process [15], combustion [16], template method [17],

and wet-chemical route [18]. A variety of morphologies,

such as nanorods, nanobundles, nanotubes, nanoparticles,

nanosheets, hollow spheres, nanoflowers, nanoclusters,

nanowires, etc. [8, 18–23], have been reported by many

researchers. Gadolinium oxide (Gd2O3) was generally pre-

pared by high temperature thermal annealing of Gd(OH)3.

When doped with fluorescent ions, such as Eu3?, Yb3?,

Er3?, Pr3?, and Tm3?, they can be as important emitting

phosphors, which are promising luminescent materials

applied in novel optoelectronic devices [24–27].

Compared to above methods, microwave synthesis

possesses fast, uniform heating, eco-friendly and energy-

efficient characteristics [28]. Meanwhile, microwave

chemistry has advantages of voluminal heating, high

energy efficiency and reaction selectivity, which is widely

used in all kinds of fields of synthetic chemistry. It was

proved that products could be obtained in short reaction

time and high reaction rate by microwave way [29]. Straw-

sheaf-like terbium-based coordination polymer architec-

tures and coordination polymer submicrospheres were

obtained successfully via microwave heating method

[30, 31].

Recently, great effort has been put on the controlled

synthesis of one-dimensional (1D) nanomaterials with

unique properties, especially rod-like nanomaterials with
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morphology-dependent performance [32–35]. However,

Gd(OH)3:Yb/Er 1D nanomaterials were seldom investi-

gated. Photoluminescence study for Yb3?, Er3? doped in

Gd(OH)3 nanorods will be helpful to further highlight the

photoluminescence profiles, as well as to understand the

mechanism of luminescent materials. In this work, a fast

and simple microwave-hydrothermal synthesis method [36]

was presented for the fabrication of well-defined rice-like

nanorods. When codoped with Yb3? and Er3?, upconver-

sion emission was realized in the Gd(OH)3:Yb/Er nanor-

ods. This method may be employed in the preparation of

other lanthanide hydroxides.

2 Experimental

2.1 Chemicals and instruments

RE(NO3)3�6H2O (RE = Gd3?/Yb3?/Er3?, 99.99%) were

purchased from Shanghai Aladdin Industrial Corporation.

NaOH was provided by Tianjing Fuchen Chemical

Reagents Factory. All chemical agents were of analytical

grade and used directly without further purification.

The MDS-6G microwave reactor system (Shanghai

Sineo Microwave Chemistry Technology Co., Ltd., China)

was used for the synthesis of Gd(OH)3. The crystalline

phase was identified by a Rigaku X-ray diffractometer

(XRD) with Cu Ka radiation (k = 0.154178 nm). The

morphologies of the products were observed by scanning

electron microscopy (SEM, Hitachi, S-3400 N) equipped

with energy-dispersive spectroscopy (EDS). The mor-

phologies and sizes of the samples were taken by a trans-

mission electron microscopy (TEM, JEM-2100, Japan)

under an acceleration voltage of 200 kV. Fourier transform

infrared spectroscopy (FTIR, Perkin-Elmer) was recorded

in a KBr pellet in the spectral range of 4000–400 cm-1 at

room temperature. Thermogravimetric (TG) and differen-

tial thermal analysis (DTA) were carried out under atmo-

sphere on a TA-50 thermal analyzer from 20 to 800 �C,
with a heating rate of 10 �C�min-1. Upconversion lumi-

nescence was tested by an FLS 980 (Edinburgh Instru-

ments, England) equipped with a 980-nm-laser diode.

2.2 Preparation of Gd(OH)3

The rice-like Gd(OH)3 nanorods were fabricated by a

microwave-hydrothermal method. In a representative syn-

thesis route, Gd(NO3)3�6H2O (1 mmol) was dissolved in

25 ml deionized water. Next, some amount of aqueous

NaOH solution was added drop-wise to the above solution

under stirring until the pH was adjusted to 12. Finally, the

mixture was placed in Teflon-lined reaction vessel and

maintained at 120 �C for 1 h employing a microwave

power of 300 W. The reaction vessel was cooled naturally

to room temperature. The obtained white precipitations

(Gd(OH)3) were washed with deionized water and ethanol

several times and dried in vacuum at 60 �C for 24 h.

Similarly, Gd(OH)3:Yb/Er samples were prepared via the

above procedure just by using the corresponding

RE(NO3)3�6H2O (Gd3?/Yb3?/Er3?).

3 Results and discussion

Figure 1 shows XRD pattern of typical sample. All

diffraction peaks are readily indexed to be pure hexagonal

Gd(OH)3, which agrees very well with the standard values

of Gd(OH)3 (JCPDS No. 83-2037). These high and sharp

patterns, with no characteristic peaks of other crystalline

phases, indicate that the products are pure and well crys-

tallized. The sharp peaks correspond to (100), (110), (101),

(201), (211) planes of hexagonal crystalline Gd(OH)3
phase.

SEM images of typical sample synthesized by micro-

wave-hydrothermal method are shown in Fig. 2a, b, giving

rice-like morphology with diameter of about 50 nm and

length of about 400 nm. It was reported that Gd(OH)3
nanorods prepared by hydrothermal method could be

attributed to rapid growth along [001] direction [12].

HRTEM image of Gd(OH)3 nanorods, as shown in Fig. 2c,

clearly shows that lattice fringes with a spacing of 0.31 nm

correspond to the (110) planes of hexagonal-phase

Gd(OH)3. SAED pattern obtained on an individual nanorod

is shown in Fig. 2d. They appear as rings patterns, speci-

fied as single crystal of Gd(OH)3 nanorods in nature. These

rings are indexed as (100), (110), (200), (201) and (211)

reflection planes of Gd(OH)3 nanorods with [111] zone

axis, in agreement with the corresponding XRD results.

Figure 3 shows FTIR spectra of typical product. Board

band at 3100–3550 cm-1 corresponds to O–H stretching

vibration of adsorbed water molecule in Gd(OH)3. Sharp

Fig. 1 XRD pattern of typical product

4274 S. Huang et al.

123 Rare Met. (2022) 41(12):4273–4278



intense bands at 705 and 3610 cm-1 are assigned to be Gd–

O–H bending [36]. Two peaks are commonly observed at

1382 and 1502 cm-1, attributed to symmetric and asym-

metric stretching of COO-, respectively [37]. EDS results

indicate the presence of Gd and O elements in Gd(OH)3
nanorods (Fig. 4a). When codoped with Yb3? and Er3?

(Fig. 4b), no elements other than Gd, O, Yb and Er are

present (H element cannot be detected by EDS), which

demonstrates that Yb3? and Er3? have been successfully

codoped in nanorods. Furthermore, EDS spectrum shows

an approximate atomic ratio of 1:3 for (Gd, Yb, Er):O,

which matches well with that of Gd(OH)3 within experi-

mental error of EDS. EDS analysis gives further support

for XRD results.

TG/DTA (Fig. 5) was used to determine the annealing

temperature of Gd(OH)3 dehydration into the final Gd2O3

powder. The curves show weight loss in three steps

between room temperature and 800 �C in nitrogen gas

atmosphere. Initially, a very gradual decrease in weight

(4.31%) is observed between room temperature and

232 �C, due to the dehydration of physically adsorbed

H2O in Gd(OH)3. The second step starts from 232 up to

305 �C, resulted from a dehydration process:

2Gd(OH)3 ? 2GdOOH ? 2H2O [18, 36], with the

weight loss of 8.58%. The third step is caused by the

further decomposition of GdOOH to Gd2O3 at

305–426 �C (weight loss of 3.54%), where GdOOH

converts into Gd2O3 via a reaction of 2GdOOH–

Gd2O3 ? H2O [18, 36]. It is observed a total weight loss

of 16.43% for 2Gd(OH)3 ? Gd2O3 ? 3H2O. No critical

change in weight is observed between 700 and 800 �C,
indicating a thermal stability of Gd2O3 up to 1000 �C. As
discussed above, it is obtained the cubic Gd2O3 crystal

phase upon thermal annealing at 700 �C. The total weight

loss of Gd(OH)3 is 12.12%, in good accordance with the

decomposition of Gd(OH)3 to Gd2O3 obtained by theo-

retical calculation (12.97%).

Fig. 2 Microstructures of typical product: a, b SEM images, c HRTEM image, and d SAED pattern

Fig. 3 FTIR spectra of typical product and Yb3? and Er3? codoped

product
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To determine the effect of reaction time on the forma-

tion of the rice-like Gd(OH)3 nanorods while retaining

other reaction conditions unchanged, SEM images obtained

at 120 �C are shown in Fig. 6. It is obvious that the mor-

phology changes greatly with different reaction time. At

30 min, rice-like nanorods were not fully formed (Fig. 6a).

Interestingly, with the increase of reaction time to 60 min,

a large amount of nanorods with an average length of

400 nm and an average diameter of 50 nm are obtained

(Fig. 2b). No obvious change is observed in the products

when the reaction time is prolonged to 90 min or longer

(120 min) (Fig. 6b, c). The effect of reaction temperature

on the preparation of rice-like Gd(OH)3 nanorods were also

investigated, a series of experiments were carried out at

100, 140 and 160 �C for 60 min with other conditions

being the same. All the products are found to be rice-like

nanorods (Fig. 7), illuminating that the reaction tempera-

ture has slight effect on the formation of rice-like Gd(OH)3
nanorods. Based on above results, it can be concluded that

the crucial factor for the formation of rice-like Gd(OH)3
nanorods through microwave-hydrothermal synthesis

method is reaction time.

Figure 8 displays upconversion emission spectrum of

Er3?/Yb3? codoped Gd(OH)3 nanorods at room tempera-

ture. The spectrum is composed of two parts. Under

980-nm-excitation, the weak peaks in the green emission

regions of 522–539 and 548–563 nm are assigned to 2H11/2,
4S3/2–

4I15/2 transitions of Er3?, respectively. A strong red

emission near 661 nm comes from 4F9/2–
4I15/2 transition in

rice-like Gd(OH)3:Yb/Er nanorods. To measure the color

of visible emissions that the naked eye perceived, the

chromaticity coordinates are calculated from the spectra by

the method using 1931 CIE (Commission Internationale de

I’Eclairage France) system. The calculated CIE color

coordinates (0.466, 0.519) fall within the yellow region.

From the upconversion (UC) spectrum, one knows that

both 2H11/2–
4I15/2 and 4S3/2–

4I15/2 transitions are split into

two peaks. Under 980-nm-excitation, Yb3? is excited to
2F5/2 level from ground state. Then the energy is transferred

to adjacent Er3?, leading to the population of 4I11/2 level.

At the same time, the multiphonon relaxation occurs and

part of 4I11/2 level decays to 4I13/2 level [38]. During the

lifetime of 4I11/2 and
4I13/2 levels, the second photon energy

is absorbed by Yb3? and again the energy is transferred to

Er3?. Subsequently, electrons located at 4F7/2 level nonra-

diatively relax to 2H11/2,
4S3/2 and

4F9/2 levels [39]. Finally,

Fig. 4 EDS spectra of a typical product and b Yb3? and Er3? codoped product

Fig. 5 TG/DTA curves of typical product

Fig. 6 SEM images of rice-like Gd(OH)3 nanorods obtained at 120 �C for different time: a 30 min, b 90 min, and c 120 min
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these electrons relax to the ground state 4I15/2, leading to

the green and red upconversion emission. While the red

emission of 4F9/2–
4I15/2 is stronger than the green emissions

of 2H11/2,
4S3/2–

4I15/2 in the rice-like Gd(OH)3:Yb/Er

nanorods, hence the sample presents to be yellow.

4 Conclusion

In summary, rice-like Gd(OH)3 nanorods were successfully

fabricated via a fast and facile microwave-hydrothermal

route. Results demonstrate that the products have an

average length of 400 nm and an average diameter of

50 nm. It turns out that the crucial factor for the formation

of rice-like Gd(OH)3 nanorods through microwave-hy-

drothermal synthesis method is reaction time, while the

reaction temperature has slight effect on the formation of

rice-like Gd(OH)3 nanorods. When doped with Yb3? and

Er3?, the rice-like Gd(OH)3:Yb/Er nanorods show strong

upconversion emissions under the excitation of 980-nm-

laser. The calculated CIE color coordinates of rice-like

Gd(OH)3 nanorods fall well within the yellow region,

which may expand their application from optics to the

biological field. This method has the advantages of time

saving, uniform heating, high purity and quality. Also it is

eco-friendly and energy-efficient, which holds promise in

the preparation of other rare earth nanostructures facilely.
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