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Abstract Titanium and its alloys have been widely used

for biomedical applications due to their better biome-

chanical and biochemical compatibility than other metallic

materials such as stainless steels and Co-based alloys. A

brief review on the development of the b-type titanium

alloys with high strength and low elastic modulus is given,

and the use of additive manufacturing technologies to

produce porous titanium alloy parts, using Ti–6Al–4V as a

reference, and its potential in fabricating biomedical

replacements are discussed in this paper.

Keywords Beta titanium alloys; High strength; Low

elastic modulus; Additive manufacturing; Biomedical

application

1 Introduction

About 90 % of the people above the age of 40 are afflicted

with joint disease to different extent [1]. For patients suf-

fering from arthritis, artificial implant fabricated from

biomedical materials has helped to relieve much of the pain

and improve their quality of life [2, 3]. All these treatments

required orthopedic surgeries lead to an ever-increasing

number of replacements [4]. Biomedical applications of

materials are mainly based on the requirement of implants,

which usually are used as different parts in human body,

including heart valve prostheses, cardiac simulator, hip,

knee, shoulder, elbow replacement prostheses, dental

implants, intraocular lenses and stents [3, 5].

The ultimate goal of biomedical materials research is to

achieve an implant which can last long time inside human

body without failure or revision surgery [4, 6–8]. Of pri-

mary importance are properties of materials such as cor-

rosion resistance in human body environment, high

strength, low elastic modulus, good wear resistance and no

cytotoxicity [3, 9–15]. So far, there are three common

metals used for implants: stainless steel, Co-based alloys

and titanium alloys [1, 16]. In particular, titanium alloys

combine excellent mechanical properties in terms of low

density, high strength, superior corrosion resistance, good

biocompatibility and low modulus [3, 17, 18] and are of

advantage in biomedical applications due to their great

performance.

Commercially pure titanium (CP-Ti) and several alloys

have been utilized as biomedical materials [4, 17, 19–23].

Although a ? b-type Ti–6Al–4V is still the most com-

monly used [24–26], recent reports argued that V is toxic

both in the elemental state and in the form of oxide, and

there exists some correlation between V and Al ions

released from the alloy and long-term health problems such

as Alzheimer disease and neuropathy [27]. Moreover,

Young’s modulus of the alloy with a value of *110 GPa is

much too high to well match with surrounding bone with a

modulus of less than *30 GPa, thereby leading to the

‘‘stress-shielding’’ issue, one of the main origins of bone

resorption and implant loosening [28–31]. It is therefore

important to develop b-type titanium alloys with low

elastic modulus and high strength [32–37].

Recently, the rapid growth of additive manufacturing

(AM) technology adds another dimension to the develop-

ment and manufacturing of implant [32–34]. Porous
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implants can be fabricated by AM systems directly without

any machining procedure. Those implants have a series of

advantages including low modulus, lightweight and the

promotion of bone cell ingrowth [35]. In comparison with

previous manufacturing methods, AM offers the advan-

tages of accurate control of internal pore architectures and

complex cell shapes, thus receiving extensive attention

[36–38]. Till now, most of the reported AM systems

employ selective laser melting (SLM) and electron beam

melting (EBM). Both of them achieved high mechanical

properties with multiple kinds of complex structure

[35, 37, 39, 40]. The combination of AM technologies and

the excellent properties of biomedical titanium materials

would promote application in implants field [28]. In this

paper, it is reviewed mainly the development of biomedical

titanium alloys and their AM in terms of their performance

as medical implants which require good mechanical and

biocompatible properties.

2 Development of biomedical titanium alloys

Titanium and its alloys, which were pioneered in the late

1940s in the USA [41], have found wide application in

aerospace, chemical and medical industries up to now

[42–45]. The CP-Ti has good biocompatibility [46, 47],

which allows its use as orthopedic and dental materials.

However, its low strength, less than 500 MPa in general,

limits wide applications. Although Ti–6Al–4V is the most

frequently used titanium alloy in surgery, its elastic modulus

is still much higher than that of bone tissue. To decrease

modulus, many b-type titanium alloys composed of non-

toxic and non-allergic elements have been developed [48].

The developments of b-type biomedical titanium alloys

can be divided roughly into two stages. In the first, more

attention is paid to explore the lowest limit of elastic

modulus. As shown in Fig. 1, many new alloys developed

have lower modulus compared with Ti–6Al–4V. For

example, Ti–13Nb–13Zr, Ti–15Mo and Ti–12Mo–6Zr–

2Fe have modulus of *80 GPa, while Ti–35Nb–5Ta–7Zr

and Ti–29Nb–13Ta–4.6Zr developed more recently have

modulus of *60 GPa. The characteristic of this class of

alloys is that with modulus decreasing, the strength

decreases correspondingly (Fig. 1). This tendency is not

unexpected from the principles of materials science which

state that lower modulus corresponds to lower strength.

The challenge of alloy development becomes how to

improve strength while keeping the advantage of low

modulus. Progress in this regard is expected to be very

difficult because titanium alloys are much stronger than

other metallic materials such as stainless steels and Al and

Mg alloys (Fig. 1): their ratio of strength to modulus

approaches *1 %, about twice that of other metals.

In the second stage, efforts were made to develop alloys

which are low in modulus but high in strength. An example

of such alloys is Ti–24Nb–4Zr–8Sn (abbreviated as Ti2448

from its composition in weight percentage). The hot-rolled

alloy has a strength-to-modulus ratio of *2 % (Fig. 1),

which is as high as that of brittle amorphous materials, and

good ductility of *20 % at room temperature. Its elastic

modulus is about identical to Mg alloys, but its strength is

*5 times as high (Fig. 1).

The developed activities of the alloy in the second stage

pointed to a route of exploring new alloys with lower

elastic modulus. For titanium alloys containing single b
phase or b plus a small content of x phase in volume

fraction, their elastic modulus versus the phase transfor-

mation temperature (Tb) from b phase to a phase shows a

linear relationship (Fig. 2) [20], i.e., the alloy with higher

Tb has lower modulus. Such a relation is valid for Ti–Nb-

based alloys. This suggests that the lower limit of modulus

in titanium alloys can be further decreased.

Extensive in vitro and in vivo tests of Ti2448 have been

conducted in order to investigate the correlation of elastic

matching between bone and implant to the bone healing

behavior. For example, intramedullary nails made of the

alloy were implanted into New Zealand white rabbits [49].

The results showed that the low modulus of Ti2448 leads to

significant improvement in new bone formation in frac-

tured rabbit tibiae compared with the control group of Ti–

6Al–4V (Fig. 3) [49]. Clinical trials of a number of typical

implants made of Ti2448, such as bone plates and spinal

fixtures, have been completed in several qualified hospitals.

3 Additive manufacturing for biomedical application

AM, commonly known as 3D printing, is a process of

joining materials to make objects from 3D model data as

opposed to subtractive manufacturing methodologies. The
Fig. 1 Summary of developed b-type bio-Ti alloys: strength (r)

versus elastic modulus (E)
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AM technique was established based on the principle of

materials addition to build custom-designed components

through computer-controlled self-assembly by melting

powder layers using either a laser or an electron beam [34].

Such technique has attracted great attention in biomedical

fields due to its advantages of producing prototypes or

finalized parts rapidly and cost-effectively, providing

accurate control over internal pore architectures and com-

plex shapes.

AM methods using laser and electron beams as point

source heating technologies have their origins in welding

technologies. These power sources selectively fuse or melt

the associated metal or alloy powder bed. This is also

called powder bed fusion (PBF). Currently, two of the

more representative AM techniques are outstanding:

selective laser melting (SLM) and electron beam melting

(EBM) [50]. In this part, the AM principles (including

SLM and EBM), microstructure, mechanical properties of

AM products and their application in biomedical fields are

briefly discussed.

3.1 Selective laser melting

SLM system was first reported by Fraunhofer Institute ILT

in 1995 in Germany [51]. Biomedical parts made of Ti–

6Al–4V are among initial targets of SLM because this alloy

has high strength, good corrosion resistance and accept-

able cell response [51–53]. Unlike traditional manufactur-

ing process, the SLM process is a layered technique

fabricating component controlled by computer based on a

3D CAD model [37, 39, 52–54]. SLM systems use a laser

source to input energy, and the laser beam is controlled by

a mirror deflection systems focusing on the powder bed to

melt the powders in selected area. The input energy can be

up to 1 kW, and the mechanical movements of the scan-

ning mirror permit accurate laser beam scanning up to scan

rate of *15 m�s-1 [55]. The thickness of the powder layer

is normally between 20 and 100 lm [50]. The chamber is

filled with pure argon gas to prevent parts from being

oxidized [28]. So far, a wide range of metal powders

including stainless steel [56], copper [57], cobalt alloys

[58], aluminum alloys [59] and titanium alloys [53, 60]

have been used for parts production. The SLM as-fabri-

cated component with a complex geometry can acquire

Fig. 2 Variations of Young’s modulus with a Tb and b Nb content of Ti–Nb, Ti–Nb–(8, 10, 12)Zr and Ti–Nb–4Zr–7.5Sn alloys; alloys within

region bounded by parallel lines in b containing almost single b phase and plot in a containing only data for these alloys

Fig. 3 Micro-computed tomography views in 2D (upper) and 3D

(below) of a, c Ti2448 and b, d Ti–6Al–4V nails after implantation

for 4 weeks in fractured rabbit tibiae, in which the newly formed bone

being indicated by arrows
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very good mechanical properties without any further

treatment [40, 61, 62].

The properties of SLM as-fabricated specimen are crit-

ically determined by the process parameters including

input energy, scanning speed, hatch space and layer

thickness [39, 63]. Simchi [64] expressed the energy den-

sity (u) as:

u ¼ P=vts ð1Þ

where P is the input power, v is the scanning speed, t is the

layer thickness and s is the hatch space. A near full density

component can be obtained by a group of optimized

parameters which balance all factors above during SLM

process. Kruth et al. [52] reported that a 99.9 % relative

density part can be fabricated by SLM process.

The defects will be generated as a result of imbalanced

SLM parameters. As a result, the surface roughness and the

mechanical properties will be affected [39, 65, 66]. Most

likely, the defects are generated during SLM process,

which might be caused by insufficient energy [28], balling

effects [67], metal evaporation [40], heat-affected zone

[68], thermal fluid dynamics [69] and atmospheric condi-

tions [54]. It is necessary to study and solve these issues

and then improve the SLM as-fabricated materials [70].

The technological feasibility of biomedical titanium

alloys parts fabricated by SLM method was proved by pre-

vious researchers [28, 40, 60]. The powder materials from

(a ? b)-type titanium alloys such as Ti–6Al–4V [62, 71]

and Ti–6Al–7Nb [72] and b-type titanium alloys such as

Ti2448 [28] and Ti-21Nb-17Zr [73] have been produced to

components successfully and studied systematically.

3.2 Electron beam melting

EBM is another AM system which is capable of producing

fully dense part [50]. EBM shares the same working pro-

cess and procedures as SLM. The main difference from the

SLM is that the EBM uses an electron beam to replace the

laser beam, and the electron beam continuously scans the

powder bed, where the conversion of kinetic energy into

internal energy occurs in a vacuum chamber. EBM systems

generate a high-energy electron beam in a standard electron

gun configuration operating at an accelerating potential of

60 kV. The scanning speeds for the EBM system are orders

of magnitude greater than those for laser melting systems.

Before producing, the electron beam preheats the substrate

plate. The temperature increase can be up to 700 �C in

order to reduce residual stresses and sinter the powder

avoiding powder smoking [36, 50]. The above difference in

beam energy input of SLM and EBM system results in the

different microstructures and mechanical properties of

SLM and EBM products. The densification rate and

microstructural homogeneity of EBM as-fabricated parts

with optimized parameters result in improvement of rela-

tive density of those as-fabricated parts.

Plenty of researches have been carried out to study the

performance of EBM as-fabricated components and

improve the properties of those samples. It was reported

that a large number of implants including knee, hip joint,

jaw and maxillofacial plate replacements had been manu-

factured successfully using EBM system [74–76]. Fur-

thermore, titanium alloys, such as Ti–6Al–4V and Ti–

24Nb–4Zr–8Sn, are attracting more interest due to their

low density, high strength and good biological compati-

bility [38, 77–79]. The in vivo performance of Ti–6Al–4V

EBM implant has been studied in detail [80]. The result

showed that the osseous tissues were suitable ingrowth

inside the EBM component.

3.3 Microstructure and mechanical properties of bulk

Ti–6Al–4V

Ti–6Al–4V is a typical a?b dual-phase titanium alloy.

Owing to its broad application prospect in orthopedic

implant, Ti–6Al–4V parts built by SLM and EBM have

been investigated extensively. Most investigations are

focused on the comprehensive understanding of process-

ing–microstructure–properties relationships. The

microstructure of Ti–6Al–4V part fabricated by EBM

generally consists of columnar prior b grains delineated by

grain boundary a and a transformed a ? b structure within

the prior b grains (Fig. 4a) [81]. The mechanical properties

were thought to be comparable to the wrought materials

(Fig. 4c) [35]. The morphologies and mechanical proper-

ties are closely related to processing parameter, part size,

orientation, location and post-heat treatment [82–85]. For

example, variation of build temperature is seen to have a

significant effect on the properties and microstructure of

as-deposited samples [81]. Orientation was found to have

no influence on ultimate strength (UTS) or yield strength

(YS), whereas it has significant influence on elongation

[82]. Prior-b grain size, a lath thickness and mechanical

properties, including microhardness, were not found to

vary as a function of distance from the build plate [82]. Part

size, however, influences UTS, YS and elongation signifi-

cantly [82]. A second thermal or hot isostatic pressing

(HIP) treatment above Tb might result in the expected

acicular Widmanstätten microstructure normally achieved

through annealing, which corresponds to a different rela-

tionship between a lath thickness and mechanical proper-

ties [81, 84].

Owing to the fast cooling rate, the as-fabricated

microstructure was dominated by columnar b grains and a0

martensites (Fig. 4b) [86]. The microstructure, roughness,

densification and microhardness of Ti–6Al–4V parts were
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also a strong function of processing parameters. An

excellent Ti–6Al–4V part with high microhardness and

smooth surface can be manufactured by SLM using a

preferable laser power of 110 W and scanning speed of

0.4 m�s-1, for which the build density can be comparable

to that of the bulk alloy [87]. The porosity level generally

decreases with the increase in laser power and laser scan-

ning speed [84, 86]. Owing to the hard martensite, the as-

fabricated products show very high tensile strengths but

poor ductility with elongation of generally smaller than

10 % (Fig. 4c) [88]. The horizontally built samples show

even lower elongation than vertically built samples,

whereas the strength does not show obvious difference

[84, 86]. The fatigue life of SLM product is significantly

lower compared with that of wrought material. This

reduction in fatigue performance was attributed to a variety

of issues, such as microstructure, porosity, surface finish

and residual stress (Fig. 2d) [89–91]. HIP treatment can

considerably improve ductility and close most of pores

formed during the build process [86, 89], significantly

improving their fatigue strength so as to be comparable to

the wrought alloys [91, 92].

Figure 5 illustrates an example of Ti–6Al–4V biomed-

ical components fabricated using EBM system. It is

apparent that near shape products can be achieved with

significant machining reduction, and a finish by machining

is required before the clinical application.

3.4 Microstructure and mechanical properties of

porous Ti–6Al–4V

Titanium and its alloys with open cellular structures and

foams possess low modulus, matching that of human bone

and the capability to provide space for bone tissue ingrowth to

reach a better fixation, which have been thought as a good

choice for the replacement of the dense implant and received

extensive attention [33]. Recently, AM using EBM and SLM

methods has been applied successfully to fabricate titanium

cellular meshes and foams (Fig. 6a) [33, 93]. Compared with

the previous methods, it offers advantages of accurate control

of internal pore architectures and complex cell shapes, thus

receiving extensive attention. In this part, it is reviewed the

current activities of design, mechanical properties and

applications of EBM/SLM Ti–6Al–4V reticulated meshes.

Owing to fast cooling rate of the thin and isolate struts,

both EBM and SLM mesh struts primarily consist of a0

martensite in as-processed parts (Fig. 6b) [94, 95]. The

Fig. 4 Optical micrographs of a EBM and b SLM Ti–6Al–4V alloy and c tensile and d fatigue properties of EBM and SLM Ti–6Al–4V alloys
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surfaces of the mesh struts are very rough [36]. Such

phenomenon is due to powder particles partially melted

and sintered to the surface. The struts may be thinner/

thicker than those defined by CAD models for SLM/EBM

technique resulting from the processing conditions, which

results in larger/smaller pores and a higher/lower experi-

mental porosity of fabricated meshes [36, 96, 97].

Mechanical properties of SLM/EBM meshes have been

investigated extensively. The as-fabricated SLM/EBM

meshes have comparable compressive strength and elastic

modulus to those of trabecular and cortical bone (Fig. 6c)

[12, 36, 98]. Owing to hard a0 martensite contained in

struts, the meshes exhibit brittle deformation behavior

(Fig. 6c), which can be avoided by adjusting the coupling

of the buckling and bending deformation of struts [99].

Relative strength and density of EBM/SLM Ti–6Al–4V

meshes follow a linear relation as described by the well-

known Gibson–Ashby model, but its exponential factors

are deviated from the ideal value of 1.5 derived from the

model [36]. Both stress relief heat treatment and a HIP

treatment result in the lamellar microstructure of the

equilibrium a ? b phases of the mesh struts, leading to a

lower compressive strength but higher ductility compared

with as-processed martensitic parts [100]. The effective

Fig. 5 Examples of experimental biomedical replacements produced by EBM layer manufacturing: a as-manufactured components and

b finished component

Fig. 6 Macroscopic image of reticulated Ti–6Al–4V meshes a, microstructure of Ti–6Al–4V mesh struts b, and compressive c and fatigue

d properties of reticulated Ti–6Al–4V meshes
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modulus was not significantly influenced by the thermal

treatments [100].

For long-term application of metallic cellular structures

in human body, fatigue strength is very important and

should be considered carefully. For reticulated meshes

fabricated by EBM/SLM technique, their fatigue lives are

mainly determined by uniform deformation of the entire

specimens, while their failures are characterized by rapid

strain accumulation [36]. The underlying mechanism of

fatigue failure appears to be the interaction between the

cyclic ratcheting and the fatigue crack initiation and

propagation, while the former plays a dominant role in

fatigue life. Owing to hard and brittle a0 martensite con-

tained in the Ti–6Al–4V struts, their fatigue endurance

ratios ranged in 0.1 and 0.2 (Fig. 6d), which are much

lower than that of the bulk alloy (about 0.6) [36, 100].

The biocompatibility of SLM/EBM Ti–6Al–4V meshes

has been investigated extensively. Warnke et al. [101]

fabricated the porous Ti–6Al–4V scaffolds using SLM and

evaluated the tissue ingrowth and the influence of pore size

on their biocompatibility. Heinl et al. [77] and Li et al.

[102] fabricated cellular Ti and Ti–6Al–4V parts by the

selective EBM technique, and their results showed that by

chemical surface modification using HCl and NaOH, the

bioactivity of the surface was improved and the modified

surface is expected to enhance the fixation of the implant in

the surrounding bone as well as to improve its long-term

stability. Guo et al. developed a porous Ti cage and com-

pared its spinal fusion efficacy with a polyetheretherketone

(PEEK) cage in a preclinical sheep anterior cervical fusion

model [103]. The in vivo test indicated that the porous Ti

cage fabricated by EBM could achieve fast bone ingrowth

and it had better osseointegration and superior mechanical

stability than the conventional PEEK cage, demonstrating

great potential for clinical application (Fig. 7) [103, 104].

3.5 Ti2448 alloy fabricated by AM technique

Low-modulus b titanium alloys comprising non-toxic and

non-allergic elements are currently being developed for the

next generation of metallic implant materials. Recently,

some b-type titanium alloys fabricated using SLM and

EBM have been reported. Murr et al. fabricated solid,

prototype components using atomized, pre-alloyed Ti2448

powder by EBM and studied their microstructure and

mechanical properties [38]. X-ray diffraction (XRD)

analyses showed that they had bcc b phase microstructure,

and transmission electron microscopy (TEM) analyses

Fig. 7 Macro-images of porous EBM a Ti–6Al–4V cage and b PEEK cage used in animal test; histological images of c porous EBM cage and

d PEEK cage over post-surgery recovery time
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found that the b phase had plate morphology with space of

*100–200 nm. Vickers hardness values were tested to be

on average 2.0 GPa for the precursor powder and 2.5 GPa

for the solid EBM-fabricated products.

Zhang et al. [28] produced biomedical b type Ti2448

components using SLM. The density and microhardness

generally increase with laser scan speed decreasing, which

corresponds to a higher laser energy density. Near full

density parts ([99 %) can be obtained at a laser power of

200 W and with a scan speed range of 300–600 mm�s-1.

Compared with material prepared by conventional pro-

cessing routes, SLM processing produces samples with

similar mechanical properties but without pronounced

superelastic deformation due to the high oxygen content of

the starting powder. An example of an acetabular hip cup

with complex outer scaffold has been manufactured

(Fig. 8) [28]. Liu et al. [40] presented an optimal porous

structure with 85 % porosity fabricated by Ti2448. The

relative density was affected by scanning speed and input

energy. A 99.3 % relative density specimen was achieved

at 750 mm�s-1 with an input power of 175 W. The com-

pressive strength reaches 51 MPa with a ductility of 14 %.

The results above indicate that Ti2448 is suitable for arti-

ficial implant.

4 Conclusion

The emphasis of this review is on the recent progress in

biomedical titanium development and achievement brought

about by additive manufacturing. Beta-type biomedical

titanium alloys are preferred materials for medical implants

due to their low modulus, excellent biocompatibility, high

corrosion resistance and high strength compared with

stainless steel and Co-based alloys. Efforts to further

improve biocompatibility and reduce modulus of titanium

alloys had been made. A new generation of b-type

biomedical titanium alloys consisting of non-toxic ele-

ments possessed low elastic modulus.

The development of new biomedical titanium alloys

coupled with the application of additive manufacturing

technologies brought about new opportunities in the

biomedical industry. Many researches exhibited the

excellent performance of AM technologies in fabricating

artificial replacements in terms of complex structure, high

mechanical properties and the promotion of bone cell

ingrowth. Further investigations need to be done to

improve the roughness of implants manufactured by AM

systems. Design and fabrication of graded porous structure

with gradient modulus to reduce the stress concentration of

implants is an important future research direction.
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