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Abstract Rare-earth-based permanent magnets are one of

the most important magnets in both scientific and industrial

fields. With the development of technology, nanostructured

rare-earth-based permanent magnets with high energy

products are highly required. In this article, we will review

the progress in chemical synthetic strategies of nanostruc-

tured rare-earth-based permanent magnets.

Keywords Rare-earth; Permanent magnets; Chemical

synthesis

1 Introduction

The application of permanent magnets starts as early as

ancient China, where people made compass with the use of

magnetite as a raw material. When it comes to the modern

age, which is an age of electricity, permanent magnet is

taking an increasingly important role in the contemporary

society. In our daily life for example, majority household

appliances in a family contain certain amount of permanent

magnets. Moreover, electric motor, which is a crucial part

in a vehicle, also includes large volume of permanent

magnets. Another example lies in the field of biomedical.

With the permanent magnets as the working part, the

Magnetic Resonance Imaging (MRI) machine will diag-

nose various diseases without any harm to the human body.

Therefore, the demands for permanent magnets with larger

maximum energy product (BH)max, lighter weight, smaller

volume, and higher working temperature are essential for

the development of technologies nowadays.

The first influential finding in permanent magnets was

Alnico 3(Al–Ni–Co–Fe alloy) by Honda and Mishima in

early 1930s. The Alnico 3 possesses energy product about

8 kJ�m-3, which is superior than any other permanent

magnet used before [1, 2]. Then, the discovery of ferrite

hexagonal ferrites ((Ba/Sr)Fe12O19) increased the energy

product into 24 kJ�m-3 [3]. However, these ferrite magnets

hold small magnetization and low Curie temperatures.

Following that, the most crucial step forward took place in

1960s, where the rare-earth-based permanent magnets were

first realized as the form of RCo5 intermetallics [4]. And

this significantly enlarged the energy product of permanent

magnets to 240 kJ�m-3, which is ten times larger than that

of ferrite magnets. Afterward, in 1980s, the discovery of

Nd2Fe14B magnets further defined rare-earth-based mag-

nets the most important permanent magnets [5–7]. The

energy product of Nd2Fe14B reaches as high as

392 kJ�m-3, and large content of Fe makes the magnets

comparatively cheaper than the previous SmCo5 magnets.

Nevertheless, the lower Curie temperature (*573 K) is a

major problem of Nd2Fe14B. In order to look for a new

generation of permanent magnets which hold even higher

energy product and Curie temperature, in 1990s,

researchers proposed the model for the hard/soft phase

exchange-coupled magnets [8]. According to the simula-

tion result, the theoretical energy product for Nd2Fe14B/Fe

exchange magnet is 960 kJ�m-3. However, results which

recently reported still have big gap between the simulation

ones.

Having realized its importance, scientist developed

various methods to prepare rare-earth-based magnets. And

among them, chemical route is considered one of the major

strategies. Especially with the trends of miniaturization and
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integration in current industrial world, chemical synthesis

provides an easy way to tune size and composition of

magnets so that the as-synthesized permanent magnets will

meet the requirement of application. In this review, we will

describe the progress in chemical synthesis of various

nanostructured rare-earth-based permanent magnets as well

as their magnetic properties. And we will also provide a

view for the bottlenecks as well as futures of the chemical

method.

2 Chemical synthesis of Sm–Co permanent magnets

As mentioned above, Sm–Co magnets were the first

investigated rare-earth-based permanent magnets. The

consisting of only two elements in Sm–Co magnets make

them comparatively easier to prepare than three-elements

magnets such as Sm–Fe–N or Nd–Fe–B. Therefore, the

chemical synthetic strategies of Sm–Co magnets have been

intensively investigated over years aiming to find an

approach to make Sm–Co magnets with high energy

product, tunable size, and excellent stability [9–24]. In the

early days, researchers attempted to synthesize Sm–Co

nanoparticles (NPs) directly from wet chemical method

since it is the most accepted way to control the morphology

of NPs [9]. However, people soon found that the electro-

negativity and reactivity of Sm make it extremely difficult.

Thus, a high temperature reductive annealing with Ca as

reducing agent is introduced in the chemical synthesis of

rare-earth-based permanent magnets [13, 20].

Hou et al. [13] synthesized SmCo5 magnets with nano-

scale domains from core/shell Co/Sm2O3 NPs. According

to their route, they initially prepared 8 nm-sized Co NPs

via decomposition of Co2(CO)8 in mixture of oleic acid,

dioctylamine, and tetralin under ambient atmosphere

(Fig. 1a). The obtained 8 nm Co NPs were dispersed in

hexne and subsequently injected in mixture of oleylamine

and oleic acid with Sm(acac)3 dissolved in. The system was

then heated to 250 �C to trigger decomposition of Sm

(acac)3 on the surface of Co NPs and core/shell Co/Sm2O3

NPs were generated (Fig. 1b). Later, the SmCo5 magnets

were fabricated by reductive annealing of as-synthesized

Co/Sm2O3 NPs under 900 �C in Ar/H2 with metallic Ca as

reducing agent and KCl as solvent. According to the

HRTEM image, the acquired SmCo5 magnets are assem-

bled by nanoscale domains with various orientations with a

lattice space of 0.293 nm (Fig. 1c). The magnets exhibit

coercivity of 0.8 T and remnant magnetic moment of

40–50 A�m2�kg-1 under room temperature. Moreover, the

researchers showed that the same strategy can be applied in

the preparation of Sm2Co17 by tune the Sm/Co ratio during

the synthesis of Co/Sm2O3 NPs (Fig. 1d).

Following the strategy developed by Hou et al., Zhang

et al. [20, 25] further synthesized 6 nm monodispersed

SmCo5 NPs. In their method, 7 nm monodispersed Sm–

Co–O embedded in CaO matrix was first prepared by co-

decomposition of Co(ac)2 and Sm(ac)3 in n-hexadecyl-

trimethylammonium hydroxide (HTMA–OH) with the

presence of Ca(ac)2. And the decomposition of Ca(ac)2 led

to the formation of CaO matrix which embraced Sm–Co–O

and hence would inhibit the diffusion of SmCo5 under

annealing temperature (Fig. 2a). Afterward, the Sm–Co–

O@CaO composite was annealed under 960 �C for 2 h in

Ar/H2 with Ca as reducing agent and KCl as solvent.

According to XRD patterns and TEM images, the resultant

was SmCo5 NPs embedded in CaO matrix. After removal

of CaO matrix by washing in ethanol and deionized (DI)

water, the as-synthesized SmCo5 NPs showed narrow size

distribution and diameter of 6 nm, which was quite similar

to that of Sm–Co–O NPs (Fig. 2c–e). This SmCo5 NPs

exhibit reduced coercivity of 0.72 T and remnant magnetic

moment of 35 A�m2�kg-1. In addition to that, the resear-

chers also employed this method to synthesize Sm2Co17

NPs, and the coercivity as well as remnant magnetization

were 0.58 T and 45 A�m2�kg-1, respectively. So far, this

method is the most controllable chemical route in terms of

composition and morphology. However, the as-synthesized

Sm–Co NPs are so reactive that they will be rapidly oxi-

dized and thus lose their magnetic properties if exposed to

air.

Fig. 1 a TEM images of Co NPs with size of 8 nm, b TEM image of

Co/Sm2O3 NPs, c HRTEM of as-synthesized SmCo5 magnet with

assembles of nanocrystals as indicated by dashlines, and d hysteresis

loops of SmCo5 under room temperature. Reproduced with permis-

sion from Ref. [13]. Copyright 2007 John Wiley & Sons
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Surfactant assisted ball milling (SABM) is another

popular method to synthesize nanostructured Sm–Co

magnets [11, 14, 18, 19, 26]. According to the reports, oleic

acid and oleylamine are the most commonly used surfac-

tants in the high energy ball milling of Sm–Co magnets

[17, 18, 25]. Surfactant will prevent the fragmentized NPs

from re-welding. In addition to that, surfactant will also

help the dispersion of NPs so that they will not aggregate.

Poudyal et al. [18] synthesized SmCox (x = 3.5, 4.0, 5.0,

6.0, 8.5, and 10.0) NPs via SABM technique. In their

process, they prepared SmCox magnetic powders via arc

melting and the following grinding process. The as-syn-

thesized SmCox powders were transferred into a mixture of

heptane, oleic acid, and oleylamine for ball milling. After

milling for 20 h, the products were taken out under ambient

atmosphere and went through a size selection process.

(That is to separate NPs of various sizes by tune the sed-

imentary time of the mixture.) According to the TEM

images, 6 nm, 20 nm, and submicron Sm2Co17 particles

were received by collecting the deposition after different

sedimentary time (Fig. 3a–c). The XRD diffraction peaks

of 20 nm and submicron-sized Sm2Co17 NPs are broadened

which indicated the reduction of the grain size in both

samples. However, the XRD pattern of 6 nm NPs is one

broad peak which implied the amorphous character of the

6 nm Sm2Co17 NPs (Fig. 3d). In order to investigate the

magnetic properties of the SmCox NPs made from SABM,

researchers tuned the composition of SmCox and made a

series of SmCox NPs (x = 3.5, 4.0, 5.0, 6.0, 8.5, and 10.0).

With various Sm/Co ratio, researchers noticed that the

coercivity of the as-synthesized SmCox NPs vary from 0.05

to 0.3 T (Fig. 3e).

Yue et al. [24] also utilized SABM method and a sub-

sequently size selection process to prepare SmCo5 NPs and

nanoflakes with high coercivity and narrow size distribu-

tions. The SmCo5 NPs have average p sizes of 9.8 and

47.5 nm, and they exhibit coercivity values of 6.8 9 104

and 7.3 9 105 A�m-1 under room temperature. Moreover,

the SmCo5 nanoflakes have diameter about 1.4 lm and

average thickness of 75 nm. The researchers found that the

SmCo5 nanoflakes present strong magnetic anisotropy. The

coercivity along easy-axis is 5.5 9 105 A�m-1, while the

coercivity along hard-axis is 1.6 9 106 A�m-1.

3 Chemical synthesis of Nd–Fe–B permanent magnets

As mentioned in the synthesis of Sm–Co NPs, researchers

originally tried to use wet chemical route to directly gen-

erate Nd2Fe14B NPs with controllable size and pure phase

[25, 27]. However, all the attempts failed due to the high

negative reduction potential of Nd. Moreover, the bottom-

up strategies which were described in preparation of Sm–

Co NPs are unsuitable ascribe to the nature that Nd2Fe14B

consisted of three elements rather than two. Therefore, sol–

gel and SABM are the widely employed method to syn-

thesize Nd2Fe14B NPs [11, 16, 19, 23, 28–32].

Deheri et al. [30] synthesized Nd2Fe14B via sol–gel-

based chemical methods. In their process, NdCl3, FeCl3,

and boric acid were used as the source of Nd, Fe, and B,

respectively. In addition to that, citric acid and ethylene

glycol were employed as crosslinking agent and solvent.

The Nd–Fe–B–O was prepared by modified Pechini

type sol–gel method. Then, Nd2Fe14B NPs were obtained

by annealing the Nd–Fe–B–O powders under 800 �C in

N2 atmosphere with CaH2 as reduction agent. According

to the XRD characterization, the major phase of the

resultant is Nd2Fe14B, while some impurities such as

Nd2Fe14BH4.7(27.68 %) and a-Fe (2.43 %) were also

detected (Fig. 4a). The TEM image suggested that the

Nd2Fe14B NPs are highly aggregate with average size of

50 nm, (Fig. 4b) and the hysteresis loop characterized by

VSM under room temperature showed that the obtained

Nd2Fe14B NPs have saturation magnetization of

102.3 A�m2�kg-1 and decreased coercivity of 0.39 T

(Fig. 4c). The big gap of the magnetic property between as-

synthesized Nd2Fe14B NPs and bulk Nd2Fe14B magnet is

probably caused by the impurity as well as minimization of

the grain size. In a subsequent work from Deheri et al. [31],

they further looked into the mechanism of the transfor-

mation from Nd–Fe–B-oxide to Nd2Fe14B NPs. And they

Fig. 2 a TEM image of the 7 nm SmCo3.6–O NPs in the CaO matrix,

b TEM images for SmCo5 NPs in CaO matrix after annealing, c TEM

images for the 6 nm SmCo5 NPs after removal of CaO matrix,

d HRTEM image of the SmCo5 NPs, and e Schemes for the synthetic

route of Sm–Co NPs. Reproduced with permission from Ref. [25].

Copyright 2013 IOP Publishing Ltd
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provided the following conclusions: (1) Reduction–diffu-

sion consisted of three steps. Initially, Fe2O3 and B2O3 will

be reduced to Fe and B at 300 �C. Then, Nd2O3 and NdFeO3

will be reduced and hydrogenated to NdH2 and Fe at 620�.

Finally, Nd2Fe14B phase will be formed at 692�. (2) Two

parallel reactions were competing during the formation of

Nd2Fe14B NPs. The first one was the direct combination of

NdH2, Fe, and B to form Nd2Fe14B. The second one was the

combination of NdH2 and Fe to form Nd2Fe17 followed by

the reaction between Nd2Fe17 and B to form Nd2Fe14B.

Due to the difficulty of preparing a single-phased Nd–

Fe–B magnet by bottom-up strategy, researchers consid-

ered SABM as a more practical way to prepare nano-sized

Nd–Fe–B particles [11, 19, 23, 28, 29, 32]. Akdogan et al.

[29] synthesized Nd2Fe14B alloy from arc-melting method

as raw material. The Nd2Fe14B powders were pre-milled in

heptane for 4 h. Then, the slurry was further milled in the

mixture of heptane and oleic acid for another 6 h. Finally,

the obtained Nd2Fe14B NPs were field-aligned. According

to the XRD study, although the SABM leads to the

broadening of the XRD peaks, the as-synthesized NPs

exhibit pure phased tetragonal Nd2Fe14B phase (Fig. 5a (1)

and (2)). Moreover, XRD patterns of the field-aligned

samples indicated [001] out-of-plane texture in Nd2Fe14B

NPs (Fig. 5a (3)). TEM image of the upper part of the

slurry suggested that the generated Nd2Fe14B NPs have

square morphology with average size of 12 nm (Fig. 5b).

The hysteresis loop of the square Nd2Fe14B NPs showed

that the coercivity of the sample is 0.18 T under room

temperature and 0.4 T under 40 K (Fig. 5c).

Yue et al. [32] synthesized Nd2Fe14B nanoflakes

through SABM method. According to their results, the

nanoflakes have average thickness of several tens nm and

average diameter of 500–1,000 nm, and this shape anisot-

ropy leads to a strong c-axis texture in the as-synthesized

Nd2Fe14B nanoflakes.

4 Chemical synthesis of hard/soft exchange-coupled

permanent magnets

Since the first model of exchange-coupling effect was

introduced by Coey et al., there have been intense interests on

this effect which only takes place at interphase between hard

Fig. 3 a TEM images of 6 nm Sm2Co17 NPs, b TEM images of 20 nm Sm2Co17 NPs, c SEM image of submicron Sm2Co17 particles, d XRD

patterns of the as-synthesized Sm2Co17 NPs and raw material, and e demagnetization curves of the Sm–Co NPs with various composition. The

inset illustrating the relationship between composition and coercivity of the SmCo NPs. Reproduced with permission from Ref. [18]. Copyright

2010 American Institute of Physics
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and soft magnet in the range of nanosize. This exchange-

coupled magnet can be designed according to the required

properties by selecting different hard and soft phases and by

tuning the phase ratio. Therefore, nanocomposite magnets

have suggested new chances for the development of new

generations of permanent magnets. Physical method, espe-

cially physical vapor deposition (PVD), is a more adopted

method that scientists used to research the exchange-cou-

pling effect. Through PVD method, one can easily change

the phase composition as well as tune the phase ratio [33, 34].

However, PVD route cannot prepare magnets with high-

yield. Therefore, based on the early results from PVD

experiments as well as theoretical simulations, researchers

have been trying to synthesize exchange-coupled magnets

through chemical routes over decades [35–53]. However, it

was never easy as the case in the PVD method.

Hou et al. [41] employed a wet chemical process and a

following Ca reduction to synthesize SmCo5/Fe exchange-

coupled nanocomposite. In their strategy, Fe3O4/SmCo-

hydroxide composite was first generated from precipitation

Fig. 4 a XRD pattern of as-synthesized Nd2Fe14B NPs (Inset showing that peaks corresponding to Nd2Fe14BH4.7 phase shifting to a lower 2h
compared with the XRD pattern of Nd2Fe14B.), b TEM image of as-synthesized Nd2Fe14B NPs (Inset being the SADP of the NPs), and

c hysteresis loop of as-synthesized Nd2Fe14B NPs. Reproduced with permission from Ref. [30]. Copyright 2010 American Chemical Society

Fig. 5 a XRD patterns of Nd2Fe14B: (1) milled for 4 h in heptane, (2)

milled for extra 6 h with OA, (3) after field-aligned for the 6 h

milling; b TEM image of the upper part of the slurry; c hysteresis loop

of square Nd2Fe14B NPs at 40 K and room temperature (Inset).
Reproduced with permission from Ref. [29]. Copyright 2010 IOP

Publishing Ltd
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of Sm and Co in monodispersed Fe3O4 NPs solutions. The

Fe3O4 NPs were embedded in SmCo-hydroxide matrix, and

this matrix could prevent Fe NPs from aggregation in the

following reductive process. Afterward, the composites

were annealed at 900 �C temperature for 1 h with Ca as

reducing agent and KCl as dispersion medium. According to

the HRTEM image, the average grain sizes of SmCo5 and

a-Fe are 29 nm and 8 nm, respectively (Fig. 6a). The

researchers prepared a series of SmCo5/Fex (x = 0–2.9)

samples, and found that both saturated magnetization and

coercivity are varied with Fe content (Fig. 6b). The hyster-

esis loop of representative SmCo5/Fe1.5 showed enhanced

saturated magnetization and single-phase behavior which

implied the incorporation of soft phase a-Fe into hard phase

SmCo5 (Fig. 6c). The d–M plot of the composition is ini-

tially positive, suggesting the existence of exchange cou-

pling, but it soon drop to negative after the reversal,

indicating magnetostatic interactions in the composite due to

the presence of soft magnetic Fe phase (Fig. 6d).

5 Conclusion and perspectives

In summary, we have presented various chemical synthetic

strategies to prepare nanostructured rare-earth-based

permanent magnets. The chemical routes not only provide

convenient approaches to prepare rare-earth-based perma-

nent magnetic NPs but also offer an opportunity to

manipulate the phase and morphology of the NPs to meet

the requirement of current applications. However, there are

still big challenges in the future development of chemical

synthesis of nanostructured rare-earth-based permanent

magnets. For example, the defects and impurities are often

discovered in the NPs, and the particle morphology is

relatively hard to control compared to non-rare-earth-based

magnetic NPs. The as-synthesized NPs are too reactive to

be practically stabilized. In the future, the proper use of

other middle or heavy weight rare-earth elements might

reduce the cost or enhance the magnetic properties of Sm-

and Nd-based nanostructured magnets. In the case of bulk

magnets, although single-phased Pr-, Te-, or Dy-based

magnets exhibit either low anisotropy or small moment, the

incorporation of those elements in Sm- or Nd-based mag-

nets can dramatically increase the energy product of

magnets [54–59]. In addition to that, the synthesis of rare-

earth-based magnetic NPs with the composition other than

RCox or RFeB was rarely reported. For example, Sm–Fe–N

or Sm–Fe–C magnets also possess favorable magnetic

property, while their nanostructures were seldom sug-

gested. Moreover, the chemical synthesis of exchange-

Fig. 6 a HRTEM of SmCo5/Fe nanocomposite, b Change of coercivity and magnetic moment with various Fe ration in the SmCo5/Fex,

c Hysteresis loop of SmCo5 and SmCo5/Fe1.5 magnets, and d dM–H plot of SmCo5/Fe1.5 magnet. Reproduced with permission from Ref. [41].

Copyright 2007 American Institute of Physics
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coupled magnets still remains a big challenge. The current

strategy is far from the objective of thoroughly controlling

the composition and ratio in both hard and soft phase.

Generally, the chemical method has great importance in the

development of rare-earth-based magnetic NPs, and it

needs to be further investigated in the coming years.
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