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Abstract
Most of the large-scale service systems in real life are subject to time-varying con-
ditions, such as arrival rates, service rates, and other factors that can affect system 
performance. These systems can be adequately modelled using time-varying queue-
ing systems, where one or several parameters change over time. Analysis of tran-
sient behaviour in such time-varying queueing systems is more challenging than 
their steady-state analysis. This study deals with the transient analysis of Markovian 
queues connected in tandem, where both the  service  and arrival processes  at each 
station depend on time. To begin with, we derive the transient distributional rela-
tionship between the average workload and the customer’s waiting time in a single-
server non-Markovian queue with time-varying arrival and service rates. We then 
generalise the transient laws for single-server queues to a k-station tandem network. 
Furthermore, we develop an algorithm for analysing transient performance measures 
in a k-station tandem queueing network and conduct a numerical study based on 
the algorithm. Numerical study supports the effectiveness of the algorithm, and the 
results provide insights into the transient behaviour of tandem networks, specifically 
in bottleneck scenarios. The study reveals that the location of the bottleneck station 
in a line has a significant impact on average workload in the stations.
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1 Introduction

Time-varying queueing system has been widely used to model complex service sys-
tems such as communication [1–3], transportation [4–6], healthcare [7–9] etc. Steady-
state analysis of time-varying general queueing systems in the literature mainly focuses  
on analytical approximation methods and simulation methods, since exact mathemati-
cal analysis of such systems is intractable. Transient analysis of general queueing mod-
els is  considered challenging and becomes much more complex when we account for 
the arrival and/or service rates changing over time. Bertsimas and Mourtzinou [10] 
focused on transient version of Little’s Law, which is one of the fundamental principles 
of queueing theory. Fralix and Riano [11] extended the time-varying generalisation of 
Little’s Law and discussed it’s applications. Kim and Whitt [12] utilised time-varying 
Little’s Law(TVLL) to estimate and reduce the average waiting time in a queueing sys-
tem. Whitt [13] discussed stabilising performance of a single server queueing system 
with time-varying arrival rate.

Over the last few decades, tandem queueing network has attracted a great deal of 
attention due to its widespread practical applications in real world such as communi-
cation networks, manufacturing systems, tollbooths, supply chains, traffic flows etc. 
Recent research on applications of tandem queueing networks includes the works of 
[14–16] and others.

The transient behaviour of a single server two-station tandem network is investigated 
in [17] and transient analysis of k-station tandem queuing model with load dependent 
service rates is discussed in [18]. Zychlinski et.al. [19] analysed tandem networks with 
general time-varying arrival rate and blocking, using time-varying fluid models.

In this study, we primarily consider a single server queueing system, where the 
arrivals  constitute a time-varying counting process with general distributional assump-
tions. We also assume that the waiting space for the queue is unlimited, the service is 
time-dependant and is provided in the order of arrival. In the first section, we derive a 
transient distributional law that relates the virtual workload in the system to the waiting 
times of customers. This formula is shown to subsume Brumelle’s formula in [20] when 
we relax time-varying assumptions and go on with the stationary regime. In Sect. 3, we 
formulate transient performance measures such as, number of customers in the system 
and virtual workload, for a two station non-stationary Markovian tandem queueing net-
work and we extend it to a k-station tandem queueing network in Sect. 4. In Sect. 5, we 
introduce an algorithm to obtain the transient performance measures discussed in pre-
vious section. In Sect. 6, we conduct a numerical study of three station tandem network 
model and analyse the transient behaviour of its performance measures.

2  Transient performance measures for single server queues

Consider a single server Gt∕Gt∕1 queueing system with general time-varying arrival 
rate �(t) and service rate �(t) and with First Come First Serve (FCFS) service 
discipline.
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2.1  Number of customers

Let L(t) be the number of customers in the system at time t, t ≥ 0 and let W(s) be 
the waiting time of the customer who arrive at time s, 0 ≤ s ≤ t . Then the time-
varying number of customers in the system or transient generalisation of Little’s 
Law in [10] is,

where Ft(x) = P{W(t) ≤ x|At}, x ≥ 0 is the cumulative distribution function of the 
waiting time for a customer who arrive at time t and Fc

t
(x) = P{W(t) > x|At}, x ≥ 0 . 

At = {A(t), t ≥ 0} is the arrival process to the system.

2.2  Virtual workload

Virtual workload process Z = {Z(t), t ≥ 0} is the amount of work remaining in 
the system at time t. The following theorem gives an explicit integral formula for 
virtual workload in a single-server queueing system.

Theorem 1 Let Z(t) be the virtual workload in the system at time t and V(s) be the 
service requirement of the customer who arrive at time s. Then expected virtual 
workload at time t is,

Proof Consider the interval [0,  t]. We start with a reverse-time construction. Let 
T−k(t) be the kth arrival before time t. i.e., T−(k+1)(t) < T−k(t) ≤ t , ∀ n ≥ k ≥ 1 . Let 
W−k(t) = W(T−k(t)) be the waiting time of the customer who arrive at time T−k(t) . 
Then the workload in the system at time t can be expressed as,

where I{W(T−k(t)≥t−T−k(t)} =
{

1 if W(T−k(t) ≥ t − T−k(t)

0 otherwise
 . The first term in (3) gives 

the service time of the customer who arrive at T−k(t) and waiting for service at time 
t. V(T−k(t))

2

2
 is the remaining service time of the customer in the server who arrive at 

T−k(t) . If the server is idle then this term becomes zero.
(3) can be written as,

(1)E(L(t)) = ∫
t

0

Fc
s
(t − s)�(s)ds

(2)E(Z(t)) = ∫
t

0

Fc
s
(t − s)�(s)ds + ∫

t

0

E(V(s)2)

2
�(s)ds

(3)Z(t) =

∞∑

k=1

(
I{W(T−k(t)≥t−T−k(t)}V(T−k(t)) +

V(T−k(t))
2

2

)

Z(t) = ∫
t

0

(
I{W(s)>t−s}V(s) +

V(s)2

2

)
dA(s)
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By using Campbell–Mecke formula in [11] for taking expectations of stochastic 
integrals, we get

For Fc
s
(x) = P{W(s) > x|As}, x ≥ 0 and �(s) = �(s)

�(s)

By the definition of squared coefficient of variation of service time, this can also be 
written as

  ◻

Remark 1 If we relax the time-varying conditions, we can see that the well-known 
Brumelle’s formula in [20] immediately follows from this result. i.e., If we assume 
that Z̃ = {Z̃(t);t ≥ 0} is stationary, then

3  Transient performance measures for tandem queueing network 
of two stations

In this section, we develop transient performance measures for two-station tan-
dem queueing network. We model a queueing network with two stations in tandem 
and unlimited waiting capacity at each queue, as illustrated in Fig. 1. Arrival and 
service processes in each queue in the system are time-dependant and we restrict 
the distributional assumptions associated with the system to Markovian(Mt∕Mt∕1 ) 
supposition.

(4)= ∫
t

0

(
I{W(s)>t−s)}V(s)

)
dA(s) + ∫

t

0

V(s)2

2
dA(s)

(5)E(Z(t)) = ∫
t

0

P{W(s) > t − s)}E(V(s))𝜆(s)ds + ∫
t

0

E(V(s)2)

2
𝜆(s)ds

E(Z(t)) = ∫
t

0

Fc
s
(t − s)�(s)ds + ∫

t

0

E(V(s)2)

2
�(s)ds

E(Z(t)) =∫
t

0

Fc
s
(t − s)�(s)ds + ∫

t

0

c2
s
+ 1

2

�(s)

�(s)2
ds

=∫
t

0

Fc
s
(t − s)�(s)ds + ∫

t

0

c2
s
+ 1

2 �(s)
�(s)ds

E(Z̃(0)) =∫
0

−∞

Ps(W̃(s) > −s)𝜌 ds + ∫
0

−∞

c2
s
+ 1

2𝜇
𝜌 ds

=𝜌∫
0

−∞

P0(W̃(0) > −s) ds + ∫
0

−∞

c2
s
+ 1

2𝜇
𝜌 ds

E(Z̃(0)) =𝜌E(W̃(0)) + 𝜌
c2
s
+ 1

2𝜇
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The model is characterised by the following parameters; 

1. Arrival process Ai = {Ai(t), t ≥ 0} , Ai(t) represents number of arrivals at time t with 
E(Ai(t)) = �i(t) ; where �i(t) is the arrival rate of station i at time t, for i = 1, 2.

2. Service process Vi = {Vi(t), t ≥ 0} , Vi(t) is the service requirement of a customer 
who arrive at time t with service rate �i(t)(mean=1∕�i(t) ), i = 1, 2.

3. Transition from station 1 to station 2 occurs with probability p, 0 ≤ p ≤ 1 and 
customer departs from station 1 with probability 1 − p.

4. Number of servers, Ni = 1 , i = 1, 2.

5. Wi(t) is the waiting time of a customer who arrive at time t, i = 1, 2.

6. Zi(t) is the virtual workload in the ith station at time t.
7. The counting process Li = {Li(t), t ≥ 0} , the number of customers present in sta-

tion i waiting for service, i = 1, 2.

8. Departure process Di = {Di(t), t ≥ 0} , D1(t) denote departure of customers from 
station 1 to station 2, therefore D1(t) is merely the pattern of arrivals to the sta-
tion 2(A2(t) ). D2(t) denote the departures from station 2 and D3(t) denote the 
departures from station 1 to out of the network. 

(6)

L1(t) =∫
t

0

I{W1(s)>t−s)}
dA1(s)

E(L1(t)) =∫
t

0

(P{W1(s) > t − s)}) 𝜆1(s) ds

=∫
t

0

Fc
1
(t − s) 𝜆1(s) ds

(7)

L2(t) =∫
t

0

I{W2(s)>t−s)}
dD1(s)

E(L2(t)) =∫
t

0

(P{W2(s) > t − s)}) 𝜆2(s) ds

=∫
t

0

Fc
2
(t − s) p 𝜇1(s) ds

Fig. 1  A two station tandem queueing network model
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where I{Wi(s)>t−s)}
 represents the number of customers entered at sta-

tion i at time s and waiting for service at time t, 0 ≤ s ≤ t and 
Fc
i
(t − s) = 1 − Fi(t − s) = P(Wi(s) > t − s)) . In equation (7) arrival rate to the station 

2, �2(t) is replaced by p �1(s).

Similarly, for the second station,

where c2
i
 , i = 1, 2 is the coefficient of variation of service process in station i.

4  A tandem network of k stations

We extend the two station non-stationary Markovian tandem model in section  3 to 
a k station tandem network model, as illustrated in Fig. 2. The transition probability 
pi,i+1 denotes the probability that a customer transfer from station i to station i + 1 
after service, i = 1, 2, 3, ...., k − 1 . Let Ai = {Ai(t), t ≥ 0} and Di = {Di(t), t ≥ 0} , 
i = 1, 2, 3, ..., 2k − 1 be the arrival and departure processes respectively. Here Di(t) for 
i = 1, 3, 5, ...., 2k − 3 are departure processes as well as arrival processes  and Di(t) for 
i = 2, 4, 6...., 2k − 2 and 2k − 1 are departures from the network.

(8)
Z1(t) =∫

t

0

I{W1(s)>t−s)}
V1(s) dA1(s) + ∫

t

0

V1(s)
2

2
dA1(s)

E(Z1(t)) =∫
t

0

Fc
1
(t − s)

𝜆1(s)

𝜇1(s)
ds + ∫

t

0

c2
1
+ 1

2

𝜆1(s)

𝜇1(s)
2
ds

(9)

Z2(t) =∫
t

0

I{W2(s)>t−s)}
V2(s) dD1(s) + ∫

t

0

V2(s)
2

2
dD1(s)

E(Z2(t)) =∫
t

0

Fc
2
(t − s)

𝜆2(s)

𝜇2(s)
ds + ∫

t

0

c2
2
+ 1

2

𝜆2(s)

𝜇2(s)
2
ds

=p
(
∫

t

0

Fc
2
(t − s)

𝜇1(s)

𝜇2(s)
ds + ∫

t

0

c2
2
+ 1

2𝜇2(s)

𝜇1(s)

𝜇2(s)
ds
)

(10)

E(L1(t)) =∫
t

0

Fc
1
(t − s) �(s) ds

E(Li(t)) =∫
t

0

Fc
i
(t − s) pi−1,i �i−1(s) ds

E(Lk(t)) =∫
t

0

Fc
k
(t − s) pk−1,k �k−1(s) ds



1 3

OPSEARCH 

where c2
i
 i = 1, 2, 3, ...., k is the coefficient of variation of service process in station i

Remark 2 The set of equations (10) and (11) derived in this section can be easily 
generalised to k-station tandem queueing network with non-stationary non-Marko-
vian ( Gt∕Gt∕1 ) queues by proceeding on similar lines as outlined above.

5  Algorithm for k station tandem model

In this section, we propose an algorithm to obtain transient performance meas-
ures such as number of customers and average virtual workload for  a k-station 
tandem network model with non-stationary Markovian queues. Here we consider 
some prerequisites for developing the algorithm.

• We utilise the principle of rate-matching control, discussed in [13], for choos-
ing the service rate function. In rate-matching control, we choose the service 
rate to be proportional to the arrival rate, for fixed traffic intensity � . ie., for a 
given traffic intensity �i , the service rate becomes, 

• For an Mt∕Mt∕1 model, distribution of the waiting time W(u), i.e., the prob-
ability that the waiting time of a customer who arrives at u, is larger than x is, 

 where Λt(u) = Λ(t + u) − Λ(u) , Λ(.) is the cumulative arrival rate function 
defined as, 

(11)

E(Z1(t)) =∫

t

0
Fc
1(t − s)

�1(s)
�1(s)

ds + ∫

t

0

c21 + 1
2

�1(s)
�1(s)2

ds

E(Zi(t)) =pi−1,i

(

∫

t

0
Fc
i (t − s)

�i−1(s)
�i(s)

ds + ∫

t

0

c2i + 1
2�i(s)

�i−1(s)
�i(s)

ds
)

E(Zk(t)) =pk−1,k

(

∫

t

0
Fc
k(t − s)

�k−1(s)
�k(s)

ds + ∫

t

0

c2k + 1
2�k(s)

�i−1(s)
�i(s)

ds
)

(12)�i(t) ≡ �i(t)∕�i, i = 1, 2, 3, ...., k t ≥ 0

(13)P(W(u) > x) = 𝜌e−(1−𝜌)Λt(u)∕𝜌

Λ(u) = �
u

0

�(r)dr, r ≥ 0

Fig. 2  A k station tandem queueing network model
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 and Λt(u) need to be strictly increasing and continuous, see [13]. Therefore, the 
expected waiting time, E(W(t)) in the Mt∕Mt∕1 model is, 

• Probability that the waiting time of a customer who arrives at time s  
will be greater than t − s is, 

 where Λt(s) = Λ(t) − Λ(s) . Here for station i, Λt,i(s) = Λi(t) − Λi(s) and 

• The term squared coefficient of variation of service time(c2 ) is involved in (11). 
Since we considered non-stationary Markovian queueing model, c2 can be 
assumed to be 1.

5.1  Algorithm

A general framework of the algorithm for obtaining transient performance measures 
in a k-station tandem network model is presented in this section.

Algorithm 1 

(14)E(W(t)) = ∫
∞

0

P(W(u) > x) = 𝜌∫
∞

0

e−(1−𝜌)Λt(u)∕𝜌

P(W(s) > t − s) = 𝜌e−(1−𝜌)Λt(s)∕𝜌

P(Wi(s) > t − s) = 𝜌ie
−((1−𝜌i)Λt,i(s))∕𝜌i i = 1, 2, 3, ...., k

Table 1  Four cases of traffic 
intensities

Case �
1

�
2

�
3

A 0.45 0.60 0.90
B 0.60 0.90 0.45
C 0.90 0.60 0.45
D 0.90 0.60 0.87
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6  Numerical study

In this section, we discuss two examples of tandem networks. We utilise the algo-
rithm developed in previous section to compute performance measures and study 
the transient behaviour of the models. Specifically, we analyse the effects of traffic 
intensity on the transient performance measures.

6.1  A three‑station example

Here we consider a three-station tandem network of non-stationary Markovian 
Mt∕Mt∕1 queues with following characteristics;

• Let the external arrival rate to station 1, �1(t) be the identity function, t, t ≥ 0 . 

 where �i(t) , i = 1, 2, 3 is the service rate function obtained from (12) and 
pi−1,i is the transition probability from station i to i + 1 , i = 1, 2 . Here we take 
pi−1,i = p = 0.75 , ie., equal probability for all transitions.

• In this study, we consider four cases, A, B, C and D by taking arbitrary values for 
traffic intensities, as shown in Table 1. Stations with traffic intensities close to 1 
are considered bottleneck stations. Case D is more challenging because of two 
bottleneck stations, whereas all the other cases have only one bottleneck station.

(15)�i(t) = pi−1,i�i−1(t), i = 2, 3,
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Fig. 3  Average number of customers at time t for four different cases considered in this study
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Fig. 4  Average workload at time t for different cases. Here blue, red and green figures represent station 1, 
station 2 and station 3 respectively
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The results are illustrated by implementing algorithm  1 in Wolfram Mathemat-
ica 12.3. Fig. 3 presents the time-varying number of customers in each station in the 
three-station tandem network. As can be seen from the figure, stations with high traf-
fic intensity have a large number of customers in the queue. Fig. 4 shows the average 
virtual workload in each station. The workload is heavy for bottleneck stations when 
compared to other stations. If the bottleneck station is located in the first position, the 
workload becomes heavier than if it is located in the second or third position.

6.2  A five‑station example

We consider another example of five-station tandem network model with simi-
lar external arrival rate and transition probability. We look at four different cases 

Table 2  Four cases of traffic 
intensities

case �
1

�
2

�
3

�
4

�
5

A 0.45 0.50 0.75 0.60 0.90
B 0.60 0.45 0.90 0.50 0.75
C 0.90 0.75 0.60 0.50 0.45
D 0.90 0.45 0.85 0.60 0.90
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Fig. 5  Average number of customers at time t for four different cases considered in this study
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Fig. 6  Average workload at time 
t for different cases. Here blue, 
red, green, brown and purple 
figures represent stations 1, 2, 3, 
4 and 5 respectively
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of traffic intensity for each station and summarised in Table 2. As in the previous 
example, Fig. 5 illustrates the time-varying number of customers and Fig. 6 presents 
the average virtual workload in the five-station tandem queueing network.

The results from the numerical study provide insight into the relation between 
location of bottleneck stations and transient performance measures. It is evident 
in this example that if the bottleneck station is located first, the workload in both 
the first station and the next stations will be heavy. As a result, customers will 
have to spend more time in the system. Interestingly, when the bottleneck station 
is at the end of the series, there is no effect on the average workload in the previ-
ous stations; hence, customers can obtain service without any delay. Whereas,  
when there are multiple bottleneck stations within the system, the average work-
load is consistently high.

7  Conclusion

In this paper, we discussed some transient distributional laws that characterise the 
performance of a time-varying tandem queueing network. To derive the virtual 
workload in the system, we initially considered a general single server queue-
ing system with unlimited waiting capacity. Subsequently, we extended our model 
from single server queue to tandem queueing network of k servers and formulated 
transient performance measures such as, number of customers and average virtual 
workload in stations. We further introduced an algorithm that  provides a general 
framework for obtaining  transient performance measures in a k-station tandem 
network, and we implemented the algorithm through numerical study. The results 
clearly demonstrated the relationship between performance measures and traffic 
intensities.

Although  time-varying queueing systems are widely used in many real life 
applications, their transient analysis requires more attention in the  queueing sys-
tems  literature. Through this paper, we have attempted to advance the field fur-
ther. Implementation of finite buffer case and extending the results to different 
queueing disciplines are some interesting avenue for future research.
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