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Abstract

In contemporary decision-making scenarios, the ability to handle uncertainty and
ambiguity is paramount. This paper introduces the concept of quadripartitioned
single-valued trapezoidal neutrosophic sets, offering a broader scope for depicting
membership grades compared to existing frameworks. Leveraging this, the quadri-
partitioned single-valued trapezoidal neutrosophic numbers (QSVTrNNs) emerge as
a robust tool for modeling evaluation values in decision-making processes, particu-
larly in multi-criteria decision making contexts. The primary contribution of this
manuscript lies in the development of novel aggregation operators tailored to fuse
quadripartitioned single-valued trapezoidal neutrosophic information effectively.
Essential groundwork includes defining the fundamental concepts of QSVTrNNs,
their operational relations, and a comprehensive score function. Two key aggrega-
tion operators, namely the quadripartitioned single-valued trapezoidal neutrosophic
weighted averaging and quadripartitioned single-valued trapezoidal neutrosophic
weighted geometric, are proposed and thoroughly investigated for their properties.
Furthermore, this paper extends its applicability into quadripartitioned single-valued
trapezoidal neutrosophic multi-criteria decision making, demonstrating its efficacy
in developing green supplier selection criteria. An illustrative example elucidates the
practical implementation of the proposed method, providing detailed insights into
selecting the most suitable green supplier based on ranking orders. This research not
only expands the theoretical framework of neutrosophic sets but also offers practical
tools to navigate complex decision landscapes, especially in domains where uncer-
tainty is inherent and critical decisions must be made with confidence.
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1 Introduction

In contemporary business landscapes, the selection of green suppliers has become
a crucial aspect of strategic decision-making for companies striving to uphold
environmental sustainability. The process of identifying the most suitable green
supplier entails evaluating numerous factors, including environmental impact,
sustainability practices, and cost-effectiveness. To facilitate this decision-making
process, methodologies that can effectively handle uncertainty and ambiguity are
essential. However, traditional decision-making methods often struggle to accom-
modate the complexity of decision problems involving triangular and trapezoi-
dal neutrosophic information. In response to this challenge, Deli and Subas [13]
proposed the concept of single-valued trapezoidal neutrosophic sets, extending
the idea of single-valued neutrosophic sets. This extension has paved the way for
addressing decision-making challenges across various research domains, where
uncertainty is inherent. The significance of single-valued neutrosophic decision
making (SVNDM) has garnered considerable attention in decision theory. Recent
years have seen a proliferation of SVNDM methods proposed by researchers,
reflecting the growing recognition of its importance [3, 4, 7, 8, 17, 19, 20, 22-26,
32, 35-39, 41, 42, 45, 46]. These methods offer versatile frameworks for tack-
ling diverse decision-making problems, ranging from customer purchasing deci-
sions [40] to supply chain management [18] and sustainable supplier selection
[12]. Studies on single-valued triangular (trapezoidal) neutrosophic numbers have
made significant contributions to decision-making processes, demonstrating their
impact across various applications [6, 16]. For instance, methodologies based on
trapezoidal neutrosophic numbers have been applied to resource leveling models
[2], production optimization [5], and risk assessment in supply chain management
[33]. In 2017, Ye [47] introduced trapezoidal neutrosophic weighted arithmetic
averaging and trapezoidal neutrosophic weighted geometric averaging operators
to aggregate trapezoidal neutrosophic number information. These operators offer
valuable tools for addressing multiple attribute decision-making problems, par-
ticularly those involving trapezoidal neutrosophic information. Furthermore, Deli
and Subas [13] introduced the concept of single-valued trapezoidal neutrosophic
sets (SVTrNS) by extending the notations of cut sets from single-valued neutro-
sophic numbers, offering a structured approach to represent uncertainty in deci-
sion problems. Since then, various methodologies based on SVTrNS have been
proposed to address a wide range of challenges across multiple research areas. In
2018, Liang et al. [28] proposed a novel ranking method for single-valued trap-
ezoidal neutrosophic numbers, demonstrating its efficacy in tackling multi-crite-
ria decision-making problems. Subsequently, Liu and Zhang [30] introduced the
single-valued trapezoidal neutrosophic Maclaurin symmetric mean operators and
applied them to multiple attribute group decision making scenarios. Liang et al.
[29] further contributed to the field by proposing single-valued trapezoidal neu-
trosophic weighted aggregation operators and applying them to MCDM problems,
showcasing the versatility of SVTrNS methodologies. In parallel, Fahmi et al.
[14] introduced aggregation operators for handling triangular neutrosophic cubic

@ Springer



OPSEARCH

linguistic hesitant fuzzy information in MCDM problems, expanding the appli-
cability of neutrosophic-based approaches. In 2021, Wang et al. [44] developed
a methodology based on single-valued trapezoidal neutrosophic power-weighted
aggregation operators for multi-criteria group decision-making problems, fur-
ther enriching the decision-making toolbox in neutrosophic environments.
Chakraborty et al. [9] introduced the concept of type-1, type-2, and type-3 trap-
ezoidal bipolar neutrosophic numbers (TrBNNs) and applied them to MCGDM
problems, expanding the scope of neutrosophic-based methodologies. Jana et al.
[21] introduced a suite of operators in the SVTrN environment and utilized them
to develop a MCDM framework, showcasing the versatility of neutrosophic-based
methodologies. In further advancements, Fahmi [15] defined Dombi #-norm and
Dombi 7-conorm operators to aggregate trapezoidal neutrosophic fuzzy informa-
tion, providing a comprehensive framework for multi-attribute decision-making
strategies. Paulraj and Tamilarasi [34] introduced new operators for single-valued
trapezoidal neutrosophic environments, offering enhanced decision-making capa-
bilities for MADM problems.

Despite the growing interest in quadripartitioned single-valued neutrosophic
sets (QSVNSs), research combining these concepts to address MCDM problems
under quadripartitioned single-valued trapezoidal neutrosophic environments
remains limited. This manuscript aims to contribute to the field of multi-criteria
decision making (MCDM) within the context of quadripartitioned single-val-
ued trapezoidal neutrosophic environments. The objectives of this study are as
follows:

1. To introduce a novel definition of a single-valued trapezoidal neutrosophic set.
To elucidate various properties of quadripartitioned single-valued trapezoidal
neutrosophic numbers.

3. To propose a new score function specifically designed for quadripartitioned sin-
gle-valued trapezoidal neutrosophic MCDM applications.

4. To define new aggregation operators, namely the quadripartitioned single-valued
trapezoidal neutrosophic weighted averaging operator and quadripartitioned sin-
gle-valued trapezoidal neutrosophic weighted geometric operator, and analyze
their properties.

5. To develop optimization MCDM models aimed at determining attribute weights
effectively.

6. To validate the proposed methodologies through a numerical example, demon-
strating their applicability and efficacy.

7. To conduct a comparative analysis between the proposed approach and existing
methods, thereby assessing its advantages and potential contributions to the field.

To achieve the objectives outlined above, this paper is organized as follows: In
Sect. 2, a comprehensive review of preliminaries regarding intuitionistic fuzzy
sets (IFSs), SVNSs, SVTrNSs, and QSVTrNNSs is provided, establishing the the-
oretical foundation for subsequent discussions. Section 3 proposes the concepts
of quadripartitioned single-valued trapezoidal neutrosophic numbers (QSVTrNN)
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and QSVTrNNSs, defining fundamental operations and introducing the score
function associated with QSVTrNNs. Section 4 focuses on the development of
the quadripartitioned single-valued trapezoidal neutrosophic weighted averaging
(QSVTrNWA) operator for QSVTrNNs, followed by a comprehensive investiga-
tion of their properties. In Sect. 5, the quadripartitioned single-valued trapezoi-
dal neutrosophic weighted geometric (QSVTrNWG) operator is proposed, with a
discussion on its properties and special cases, providing insights into its practical
application. Section 6 presents an illustrative example wherein a company selects
the most suitable green supplier using the developed methodologies, demonstrat-
ing the applicability and effectiveness of the proposed method. Finally, conclud-
ing remarks are provided in Sect. 7, summarizing the contributions of the pro-
posed methodologies and suggesting potential avenues for future research in the
field of neutrosophic decision-making.

2 Preliminaries and basic definitions

In this section, we introduce some definitions of intuitionistic fuzzy sets, g-rung
orthopair fuzzy sets, single valued neutrosophic sets, g-rung orthopair trapezoi-
dal fuzzy sets and single-valued trapezoidal neutrosophic sets are required in this
study.

In 1986, Atanassov [1] generalized the idea of fuzzy set (FS) to intuitionistic
fuzzy set, which is characterized by a membership function and a non- member-
ship function as follows:

Definition 1 [1] An intuitionistic fuzzy set (IFS) A on a fixed set U is an object
having the form

A= {{a, uy(@),n\(@)} : a € U} o

where the functions p, : U — [0,1]and 5, : U — [0, 1] denote the degree of mem-
bership and the degree of non-membership, respectively, and p4(a) + n4(a) € [0, 1]
foralla € U.

In 2010, Wang et al. in [43] presented the concept of single valued neutro-
sophic sets as follows:

Definition 2 [43] A single valued neutrosophic set (SVNS) A on a fixed set U is an
object having the form

A= {{a. m(@.m(@.vy@} : a € U} @

where the functions pu, : U = [0,1],n4 : U = [0,1] and v, : U — [0, 1] denote
the truth-membership, indeterminacy-membership and the falsity-membership func-
tions, respectively, and O < p,(a) + n4(a) + v4(a) < 3foralla € U.
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The theory of a triangular intuitionistic fuzzy ste, which was initially intro-
duced in 2010 by Li et al. in [27], has been applied to many mathematical
branches as follows:

Definition 3 [27] Let ,u:{ and vy be any elements of [0, 1]. A triangular intuitionis-
tic fuzzy set (TrIFS)

A= {<([a at,a’ a] ,uA(x)) ([bl,bz,bS,b4],vA(x))> :xER} 3)

is a special IFS on the real number set R, whose membership function
4 - R — [0, 1]and non-membership function v, : R — [0, 1]are defined as follows

— +
(M) ; ifa; <x<a,

ay—ay
_ ) uy ; ifa, Sx<ay
ﬂA(x) = <(a4—x);4:{ ) .

ifa, <x<a
P 3 4

;  otherwise

and

( Bortechiy ) : ifby <x<b,

2 1
vy ; ifby <x < by
VA(x) = x—b;+(b4—x)v L

( L ) . ifby <x<b,

1 . otherwise.
where 0<ad' <a*<P<a*<1,0<b' <P <P <b* <1 and

Ha(x) +n4(x) € [0, 1] for all x € R.

For real applications of SVNS, Ye [47] introduced single-valued trapezoidal
neutrosophic sets in the following definition.

Definition 4 [47] Let /4/':, m and vy be any elements of [0, 1]. A single-valued trap-
ezoidal neutrosophic set (SVTrNS)

([a",a% a® a*|, uy(x)),
A= < (|6, 02,6, b*], ny (), > :x€R )
([01,02,63,64 ,vA(x))

is a special SVNS on the real number set R, whose truth-membership function
4 - R = [0, 1], indeterminacy-membership function #, : R — [0, 1] and the fal-
sity-membership function v, : R — [0, 1] are defined as follows
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— +
((x @)K} ) . ifa; <x<a,
ar—a
) = e ; ifay, <x<a,
Ha (”4_")”/\ .
; ifay <x<ay
a,—as
0 ;. otherwise,
by—x+(x—b) )y .
( - ; ifb <x<b,
1A (1) = n ; ifb, Sx < by
AV x—by+(by—x)n; .
et A S AV W T <
(o) irp, <x<b
1 ;  otherwise
and
CZ—X"'(X CI)V . lfc < X < c
Cy—Cy ’ 1= 2
vy ; ifey <x<cy
VA('X) - x c3+(c4—x)v .
; ife; <x<ey
1 ;  otherwise.

where a' <a®> <a® <a*,b' <P <P <bh ' <2< <t and 0 < py(x) + 1y
(x) +v4(x) < 3forall x € R.

In 2016, Chatterjee et al. in [10] extended the concept of SVNSs to quadriparti-
tioned single valued neutrosophic sets and defined quadripartitioned single valued
neutrosophic numbers. In what follows, we will first introduce QSVNSs.

Definition 5 [10] A quadripartitioned single valued neutrosophic set (QSVNS)
A on a fixed set U is an object having the form

A= {{a’ /"A(a)’ 19A(a)s "IA(a), VA(G)} Lae U} 5)

where the functions gy, : U —[0,1],94 : U—[0,1],n14 : U —>[0,1] and
vy : U —[0,1] denote the truth-membership, contradiction membership, igno-
rance membership and the falsity membership functions, respectively, and
0 < pyp(@)+94(a) +n4(a) + vy(a) < 4foralla e U.

3 QSVTrNSs

In this study, we have proposed a novel extension of single-valued trapezoidal
neutrosophic sets (SVTINS) to a fuzzy set framework, presenting a trapezoidal
neutrosophic set that combines trapezoidal fuzzy numbers with single-valued
neutrosophic sets. This extension offers a more comprehensive representation of
uncertainty by integrating the gradual membership degrees of trapezoidal fuzzy
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numbers with the handling of indeterminacy, contradiction, and incomplete infor-
mation inherent in neutrosophic sets.

Definition 6 Let " 9t R and Vi be any elements of [0, 1]. A quadripartitioned
single-valued trapezoidal neutrosophic set (QSVTrNS)

(al a2, a3,

a={ il
(

at ,MA(X))
b', b2 b3 b4 9,(0)),
et 3, ct ,nA(x))
d', d2 af3 d*],v,)

x€eR 6)

is a special g-ROQSVNS on the real number set R, whose truth-membership func-
tion pu, : R — [0, 1], contradiction membership function p, : R — [0, 1], igno-
rance-membership function #, : R — [0, 1] and the falsity membership function
4 - R — [0, 1] are defined as follows

<(x a)uy > ifa, <x<a,

ar—ay
ifa, <x<ay

ot ) ifa; <x<ay

a,—as

HA() = 3

otherwise,

) ifb, <x <b,

i
=
(%

N ifb, < x < by

$at =1 (’”"‘) ifhy <x<b,
otherwise,

CZ_H(A c')v ifc, <x<c

Cy
ifc, <x<cy

ife; <x<ey

Cy

(= )

@ =1 Mo
At (arlecds oo ) )
1 otherwise

and

(2R ifa, <x<d,

dy—d,
N ; ifd, Kx<dy
na(x) = x—dy+(d,—x)n
A .
( o, ) ; ifdy <x<d,
1 ;  otherwise.

where 0<d' << <a*<1,0<b' <P <P <H*<1,0<c'<<A<ct<],
0<d' <d?<d<d* <1 and
0<a* +b*+c* +d* <4,0 < (x) + 9, + m(x) + v, (x) < 4 forall x € R.
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al,a?, a?, a* ,/4A(x)),
b, b2 b3 b*|,9,(x)),
cl, et 3,4, Ny (x))

([d", &, d*], v, ()
on the real number set R. In particular, if R has only one element, A is called a
quadripartitioned single-valued trapezoidal neutrosophic number (QSVTrNN).
For convenience, the three QSVTrNNs are denoted by

Remark 1 Note that let A = (( : x € Rt beaQSVTINS

( a',a’,a*,a* ,ﬂA),

a| (.07 6°.6%).9,),
- 6'l,c2,c3,c4 J’A),
([a",d* &% d*|,v,)

Moreover, we denote by ZV(R) the collection of QSVTrNNs on R. Thus we can say
that QSVTINS is the generalization of previously defined concepts related to neutro-
sophic theory. The QSVTrNN gives more opportunities to deal with uncertainty in
data.

For this relation of less than, equality, union, intersection and complement are
defined as follows:

(o aibua)
Definition 7 For any two QSVTINNs A4, = (([b by by.byl, 19A)
(

171717
el eneilm,), |
[d{=dfadf=dﬂ Va,)
([a%,az a3 a%] ,qu)
A, = ([bzl’ b%’ b%’bf] O,): on the real number set R, the corresponding opera-
( [Czl’ ‘322’ C23’ Cz4 M4, )
([dz’dz’dz’dz] VAz)
tions are defined as follows:
1. ([a},a%,cﬁ a] Ha, ) ([aé,ag,a a4] Ha, ) if and only if a <a a% Sag,

a; <ay,af <ayand py <y,
2. ([b1 w53 b, &A]) ([b1 b3,b3,b3],9,,) if and only if b} <b), b} < b3,

%1 %1 22 Y2V by 20
b? sbg,b‘l‘sb‘z‘and8A <9y,
3. ([c},c c c4] nA) ([cz,c c c2] nA) if and only if c1 SCZ,C%SCZ,

3
o Séz, <c andn, <y,

4. (|d). @ & d4] ) 2 (45,45, d3,d5],v,,) if and only if d} <d),d} < dj,

1YYt 22 pr Uy &y 2 =
3 3 4 4
d) <dj,d; <d, andvA <V,
1,2 3 1,2 3 4
5. (al,al,al,al] ,uA) ([az’az’az’%] ) if and only if al \/az,a1 \/a

al Vaz,a1 Va2 and Ha, V My,
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6. ([b},0%.53,b].9,4) U ([, 03,03, b5],8, ) if and only if b} v b}, bV b3,

1YY 2PV Yy 2271
3y h3 Hh oy pé
bivb3,bivbyand 9, VI,
1,2 3 4 1,2 3 4 : : Lyl 24,2
7. ([cl,cl,cl,cl],r]Al)U([cz,cz,cz,cz],r]Az) if and only if Ve, Vo,

33 A 4
o ch,c13v o and Na, N Ny .
1 2 4 ) 4 : e gl 1 2\ 72
8. ([d}.d&.d3,d}]. vy ) U (|d).d3.d3.d3].vs,) if and only if d} vd),d3V dZ,
d? \/d;,d‘l‘ Vdg and v, Vv,
1 2 3 4 1 2 3 4 : e 1 1,2, ,2
9. ([al,al,al,al],uAl) N ([az,az,az,az],yAz) if and only if a, Aa,,aj Aa;,
ay Aaj,ay Adgand py A

10. ([b},53.63,b],94,) N ([b). b3, b3, b3].9,,) if and only if b} Ab),bT ADS,

B AL b A D and 9, A9,

11. ([c},c%,c?,c‘l‘],nAl) N ([C;,ci,cg,c;‘],nAz) if and only if c{ A cé,c? A c%,
c? A c;, c‘l‘ A c‘z1 andny Ay,

12. ([d}.d5.d},dy]. vy ) 0 ([dy. d3,d3,d3],vy)) if and only if dj Ad),d} Ad5,

3 3 g4 . 4
d1 /\dz,d1 /\d2 and Va, A Vg,

13. A, <A, if and only if ([a},al,a}.a}].uy) < ([ay. a3, a3, a5], ma,)
([o1: 00,87 8]. 84, ) < ([ 8303 5].94,) » (e etseiseilma) = ([e. 5,
c;,c‘z‘],nAz)and([dl d*, &3 d4],vAl) > ( dl, d?, &3 d4],vA2),

17171 1 2272272272

14. A, = Ajifandonlyif 4, < Aand A, < A,

is, ([at. a2 at.at] U [ab . a3l g, v i, ).
ATA, = ([b}, 67,63, b1] 0 [b), b3, b3, b3, 94 A9, ),
] (el n e g6l An,).
([d-di.d). di] 0 |dy. di. di. ] vy, A vi,)

>

16. E%ail,ai, ai,aiq N %a%,a%,a%,a%,um /\MAZ;,
| ([P ez 03 b u bl b2, 62, 83],9, v 8,),

ABA= el el vl d el ).
([dl,d2.d;.dt| u|dl,d?, &, di Va, V)

2> 7222

’

[dy.dy.d).dy] vy,

17 ( 1.2 3 4 )
A = ([cl,cl,cl,cl],nA]),
1 ( )

bl

[b1. 51,6763 9,).

lar-ai.at.ai]. pa,)

Motivated by the operations of the trapezoidal neutrosophic numbers and
QSVNNS, in the following, we shall define some operational laws of QSVTrNNs.
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Definition 8 Let

1 2 3 4 1 2 3 4
A _ (I:aA]’aAl,aAl’aAl ’MA1>’< bAl’bA]’bAl’bAl 519A1>?
1=
1 2 3 4 1 2 53 @
<|:CA]’CA]’CA1’CA1 ?”A]>s< dAl’dA]’dAl’dAl 9VA >

1

and

1 2 3 4
( aAz’aAZ’aAz’aAz 9/'{/-\2 )

3
by .b3 by by ,19A2),

1 2 3 4
CAZ’ CA29 CAZ’ CA2 ’ ’1A2 bl

3
([ adi) )

be any QSVTrNNs on the real number set R. For every element A € (0, o), then
their operations are defined as follows:

1 1 _ 11
aA]+aA a dy s
12 1 2 2 20 _ 2 2
| ag],aAl, ® aAfl,aAz, _ af3h+a/3{2 aglagz,
4 4 = _ ’
aAl’ A aAz’ A, af‘}ll +aﬁ2 a“}tl aﬁz’
_aA +aAz—aAlaA2
1 1 1 1
bl + b} = (b4 )(8L,):
[ 21 12 [ 11 2 2 2 (12 2
b3 ,b4 b ,b4 b3 b3 _ b3 b3 ’
A TA A, UA A]+ A A, 4 )
4 4 _ (4 4
o+ - (8)(44)
12 12
c, ,C c, »C
A A A Ay | _ |11 2 2 3 3 4 4
3. 3 ® JCa: = |€a,€a,0 Ca,Ca,0 €4, Ca,0 €a, Ca,
A], A] AZ’ AZ
dl d2 1 2
A %A Ay %A, 1 1 2 2 B3 53 4 54
4. | Afar | g | T =[dddddddd
: 4 344 AL %A A T TA TA A A,
_dAI,dA] | _dA,dA 1A TA A TALTAY TA A,
5 MA1®#A2=MA1+MA2_'MA1”A2’
6 19A1 @ 19A2 —_ 19A1 + 19A2 - 19A11.9A2,
T ny @ Ny, = Mg M4,
8. vy B Vs, = V4 Vap
12 12
a, ,a a, ,a
A %A Ay %A, 11 2 2 3 3 4 4
9 3y ® 2 g =[aaaaaaaa]
: 4 3 44 A A, A TA YA %A, YA %A,
aAl,aA] aAz’aAz 1 A2 1 A2 1 A2 1 A2
bl b2 bl b2
AP TAY A UAY |l pl B2 52 33 33 4
10. bf‘ ,bj ® bf\ B = bAlez,bAlez,bAlez,bAlez ,
1 2
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cjxl+c - Ac}{
1. c%l,c%], ® c%z,caz, ] _ Cé“ +c z\cé
4,0 Ca, €y, Ca, CA]+C €4 Ca,» ’
) ) ) cj +c cj cjz
d1 +d1 —d/l‘ bj‘,
" d%,d%l ® d%z,df}f, ] ~ dz +d§ —dg dg,
dA,dA dAz,alA2 d, +d; —dA dA, ’
d4 +d4 —d4 d4

13, py, @ pa, = Ha Ha,s
14, 9, ® 9, =8, 9.,

15. ny ®ny, = {/(ml)q + ()" = (1a,)" (ma,)".
+ )

16. vy ®v, = {/(vAl)q

q
1—
17. /1[61:3],ail,azl,a‘t ] = j
q

q
1 12 33 4 _\/
18, 4bh .03 .6%.61 | = \/

q

A
1 2 3 4 _ 1 2 3
19. A[CAI’CA]’CAI,CAI] - (CA1> ’ CA1> ’<CA1

2. Ald).&.d.d | = [(d}{l)l, (df‘l)l, (djh)ﬂ, (djl)l},
20, Ay = 1= (1= gy, )A,
22, A9, =1- 1—8A),

(
23. = (”Al) ,
)’

24, Ay, = (vy)"
! ! ! i
25. [ail,ail,ai],ail]ﬂ= [(a}x]> ,(ail> ,(ai]) ,<af1]> ],
N I (S RCARCARCY
. A]’ A, A ) o \Pa ) o \Pa, ) o\Pa ) )

ey
=
|
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A
1—<1—c/14 ) s
: A
1-(1-¢).
27. [c:‘l,cil, f\],cjl]/lz )
3
1-(1-¢,).
' A
1—(1—c§]>
| !
1-(1-4,),
: A
1-(1-2).
28, |dy .23 4= o
1-(1-4,),
: A
1= (1-a)
) i |
29. pph=(ma,)".
30. 94 A=(9,)",
A
31. nA/I—l—(l—nA),
A
32. vA/I—l—(_l—vAl), _ _
1 2 3 4 1 2 3 4
<a 0%y @ Ay, @y Gy ,MAIGBMAZ),
(b/gl,bf,,bj,bj ® (b),.03,.53, .54 |- 04, @9, ).
B AGA = 12 3 4 2 3 4
( CA[’CAl’CAl’CAlj ® CA ’CAG’CAZ,CAZ ’rlA] ®’1A2>,
1 2 3 4 1 2 3 g4
| ( dA,’dAl’dAl’dAl_ @ dA ’dA ’dA’dA]’vAl ®VA2>
1 2 3 4 1 2 3 4
( a0 a0 a0 9y | ® Ay, O oy ,MA1®HA2),
1 32 33 14 1 3 14
(R RA LI RN K- TR
3. AeA, = 12 3 4 123
[cAl,cA,cAl,cl Q@ €y 0 Caon, s Az] ’7A1®’1A2)
(|d 2.3t ®¢Lﬁ@}@] &)
([ 2 3 4
<A_aAl’aAl’aAl’ A 7/1”A1>7
AbL 0255 b 9, ),
35. 4A, = <f S B
(A' CAI’CA ’CAI,CAI ’A‘UA1>7
1 2 3 4
KAQJM%JAAM>
1 2 3 4
(_A,’aAl’aAl’ A, | A Ha, )
({64223 .53 | 2.9 )
36. (A))" = A f@ !
<_CA’CA1’CA1’ 4, |4 1A, >
1 2 3
_(%JM%,AAM)
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Basic operations related with QSVTrNNs are presented as follows:

Theorem 1 Let

= | Uas-adad-aal, ma) ([ B3, b3 5l 94 )
([eh- ez cncxloma)s ([} dy.dy. di] va)

([ap a3, ay.ap|. ).

oo | Uelet ot ot)

( c%,c%, c%, 024,;13),

( dB’dA’dB’dB]’VB)

([acsag-ag.acl. uc).
([bes b bes b 9c)s
= [ 2 o3 4
and C = ([CC’ Cg’ Cc3’ 4] ’70)7 be any QSVTrNNs on the real number set R. For
( [dlc’ de.de, dc] V)

every elements A, & € (0, ), then the following properties hold.

1. A@B=B® A.
2. AQB=B® A.
3. ABBPC=ADBdO).
4, AQB)RXC=AQ(BRC).
5. MA®B) = 1A AB.
6. (AQ B =A"Q B
7. A+E5HA=AAP EA.
8. AM =A@ A
9. (AH) =A%
Proof 1. Let
Ao ([a).a2. a3, at]. my). ([b). 02,63, b%].9,).
=L (e Ao, (. dbddal]v,)
and
([ak. a2, ad at]. ug),
B= ( b%abéabzgab;} ’193)a
(CB’CAZ’CB?, ‘34”73)
(|dy.d2.d;.db]. vp)

be any QSVTrNNs on R. According to the Definition 8, we have
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[l +a —dlal, T
1 2 3 4 12 3 4 _aé+a§—aa§,
@} a3 a3 ai] @ [ay. g, ap. a3] = S aéag’
%Wl
SR N N
a§+a§—a§a§\,
_ a§+a§—a§aA,
- a,+a —aBa%,
_a§+aA—a4aA ]
_ 1,2 3 4 1,2 3 4
= aB’aB’aB’aBT® [aA’aA’aA’aA]‘
P 1 72 13 34 122 23 341 — [pl 32 13 34
It can be similarly proved that [bA,bA,bA,bA] (a5} [bB,bB,bB,bB] = [bB,bB,bB,bB]
@b}, 02,3, b], py ® pp =g @y and 9, @ 95 =95 @ I9,. Hence it is easily
seen that
1,2 3 4 1,2 3 4] _[1,.1 2,2 33 4.4
[cA,cA,cA,cA]Ga[cB,cB,cB, B] = c?c?,cécg,cécg,cﬁcg
~lgmacacanl |
= |epchchch] @ [} 3. cd ch].

and similarly, it follows that
a3 3. i 3| @ [dy. di dyody] = [dy. dydy, dy] @ [d).didy i) (D)
Na @ tp =1 D1y (3)

Vi @ v =vp D vy. 9)

Therefore we obtain that A @ B= B @ A.
2. The proof is similar to 1.
3—4. Straightforward from the Definition 8, so we omit the proofs of them.
5. Let

and

be any g-ROQSVTrNNs on R. Since
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1.e.,
[l ] [ L, cl, cl,
cléx cg cé cg
}' ?9 @ A §5 — A ?7 @ §7
ca, Cp c, Cpo
| €4 | ¢ s c
It can be similarly proved that
[d!, ] [d!, dl, d.,
dé d§ dé a’g
A é’ @ A g’ — ){ 1%’ @ g’
df};’ dy, df}( dy,
| d, dy d, dy

Ay @ Ang = A(ny ® 1)

and

Ay @ Avg = A(v4 D vg).

(14)

(15)

(16)

A7)

Therefore from Egs. (10), (11), (12), (13), (14), (15), (16) and (17) we have

MAD®B)= 1A AB.
6. The proof is similar to 5.
7. Let

d\,d%,d3,d%].v,)

A TA?

be a QSVTrNN on R. According to the Definition 8, we have
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al al, al,
aé czé aé
G+l 3 [=4 2 94 4 (18)
13’ b ‘a’
ay ay ay
Similarly, it can be revealed that:
b, b, b,
bé bé bé
A+9| 4 [=4,8 |®¢ 7 19)
bﬁ’ b‘ﬂ’ bﬁ’
by by by
(A+pp = Apy @ Epy (20)
and
A+ 8EI, =19, B &EY,. 21
For the ignorance membership degree of (4 + &£).4, we have
.
C2’ Cl ﬂ+/j’ C2 /1+§,
A+ol 4 | = ( /§>/1+§ ( /Z) IHE
4’ | (CA) ’ (CA)
4 _
A ¢ A &
_ | () (@) (@) ]
| (3)" ()" (ed)"(ed)
ie.,
K ¢y
2, 2, 2,
A+ 4 [=4 4 |og 4 (22)
¥ 2} ¥
| €4 | Ca €4
It can be similarly proved that
B dl ] B dl , dl
dé dé dé
A+ A (=4 A (@4 A (23)
d/}f d“}f d‘}f
| 4y ] | 4, dy
(A+Emy = Any © Eny (24)
and
A+ Evy = Av, @ Evy. (25)
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Now, using Eqgs. (18), (19), (20), (21), (22), (23), (24) and (25) we get
A+EA=1A LA
8-9. The proof is similar to 7. a

In what follows, we introduce a score function (accuracy function, certainty
function) for ranking QSVTrNNs by taking into account the truth-membership
function, the contradiction membership function, the ignorance membership
function, and the falsity membership function of QSVTrNNs and discuss some
basic properties.

5
*2‘ 47Al "AP | be any QSVTINN on the real num-
A

ber set R. Then the score functlon (accuracy function) of A can be defined as
follows:

Hohimad
1 3+a' hézl—C —d2+ 3 + +
L f Ha
SC(.A)—16 w{_ <_'9A_’7A_VA ) (26)
3+aA —bj‘\ —C4 _dj\
f
1 1
a, —d/2‘+
1 ai—dA-i-
CEN = 7ol f Z by |(ma—va): @7
4 _‘u
a,—d,

Remark 2 1t is clear that if truth-membership degree ([a a a ,a ] yA) is bigger

and the contradiction membership degree ([b},5%,b3,b%],9 A) ignorance member-
ship degree ([c ci, e ] nA) and falsity membershlp degree ([dl s d2, di, di] , VA)
are smaller, then the score value of the QSVTrNN

12 4

(aA’aA’aA’aA  Ha)s

([, 62,5%,b%],9,),
c/'{,c2 c3

A2 e
(|d}.d2.d3.d5).vs)

is greater.

It is noted that the score function SC(A) and accuracy function AC(A) has
some desirable properties as below.
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Theorem 2 Let

cl et 3¢ N ),
A’ A > YA A
(a2, 2, ] vy)

be any QSVTrNN on the real number set R. Then the following properties hold.
1. 0<SCA) <L
2. -1 <ACA L L.

Proof 1. Let

be a QSVIINN on R. Since OSa/ﬁ,bfl\, ci, di <1, we have

1 1 1 1 1 1 1 1 1 I 1 1 :
a,—-b,—-c,—-d,<a,<landa, -b,—c,—d, >-b, —c, —d, > -3,ie,

_ 34al —bl —¢l —d!
:3 3< A A A A<3+1=

0 1. 28
4 = 4 - 4 (28)
Similarly, we can show that
34+ 2 _b2 _ 2 _d2
P S Sk S (29)
4
34+ 3 _b3 _ .3 _d3
S aA A CA A S 1’ (30)
4
3 + 4 —b4 _ 4 _d4
< aA A CA A <1 (31)
4
and
0< FHa T 32)

< n <
Now, using Egs. (28), (29), (30), (31) and (32) we get
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3+al b\ —ci—d}
—a4 4 4 A4

pe | TR s
=16 3+af‘—hi—c/§—d3+ =
3+ui—bj—cA—dg
4

and hence 0 < SC(A) < 1.
( al Cl2 a3 a4 )
b/“ b/é bgvbf“ ,SA )
2. Let A= ( 1 C2 A A ’nA>)’ be a QSVTINN on R. Since 0 < al,d} < 1,
s A )

( dl d2 jg di].vs)

1 1 1 1
wehaveaA—cASaAslandaA—cAz AZ—lle,
-1<a,-d, <1 (33)

It can be similarly proved that

-1< af‘ —di <1, (34)

-1<d -d <1, 35)

-1<ay-d; <1 (36)
and

—“1<py—vy <1 (37)

Therefore, from Eqs. (33), (34), (35), (36) and (37) we have

a/;l —d%+
1| ay —di+
—1 S Z ai —d§+ (MA VA) <1
a —dy
and hence -1 < AC(A) < 1. O

4 QSVTrNWA operators

In this section, we introduce the notion of quadripartitioned single-valued trapezoi-
dal neutrosophic weighted averaging operator along with their some properties.
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Based on Definition 6, we propose the following an aggregation operator of quad-
ripartitioned single-valued trapezoidal neutrosophic numbers.

Definition 10 Let

Q
}»—
Q
NI}
Q
N
)
NS
x
b

3]
N

)

e~~~ T
S
o —
>
N
=Sk
=)
N
S~— N —

;;P:.

25 2

=5 PN
NN
N

i

N——

4
’dA ’VA

i i ‘

i

be a collection of QSVTrNNs on the real number set R and 4 = (4, 4, ..., An)T be

the weight vector of A indicates the importance degree of A satisfying
n

Aty Agy ooy A, €10, 1] and Z A; = 1, and let quadripartitioned single-valued trap-
i=1

ezoidal neutrosophic weighted averaging (QSVTrNWA)

WA : (TNR))" — TNR) if

WA(AL Ay A) = P AA (38)
i=1

then the function QSVTrNWA is called the QSVTrNWA-operator.

Thus, from the above definition, it is clear that quadripartitioned single-valued trap-
ezoidal neutrosophic weighted averaging operators are a generalization of quadriparti-
tioned single valued neutrosophic weighted averaging operators. Based on the opera-
tional rules of QSVTrNNSs in Definition 10, we can derive the following theorem.

Theorem 3 Let

be a collection of QSVIrNNs on the real number set R and A = (Al, Ay A )T

> n

be the weight vector of A where A; indicates the importance degree of A, satisfying
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0< A4y, ..., 4, < land Y, | 4; = 1. Then their accumulated outcome utilizing the
OSVITrNWA- operator is again QSVTrNN, and

l—a,

i= 1
n

(-a)"
: H<1 4)"
(1-a)"
(1-a)

i

(39)

1 2 3 4 — i=1
@’li [“A,.’“A,.’“A,.’“A,] = n
i=1 II 1—a;

i’l

Hla
=1

A

A

(1-2)

L2 b bt = fi1< ) (40)
LR (oY
(1-2)

1 2 3 4 _ i=1 i=1 .
@Ai[cAi,cAi,cAi,cAi] = A | 41)

@uld.&.a.a] =5 5 “2)
i=1

Aipy, =1 - (1 - ”A.)A‘ 43)
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and

WA(A, Ay, ...

A,) =

| @um

| @)
GBMA)
)

|_|

7@%’%\

@MA>

(44)

(45)

(46)

(47)

Proof The proof of Eq. (39) can be done by means of mathematical induction.

Therefore we have the following.
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Step 1. Now for n = 2, we get

_ 1,2 3 4 1 2 3 4
@A[a a a a] —Al[aAl,aAl,aA],aAl]@ﬂz[aA,aA,aAz,aAz]

and
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(43)
pringer

As

2.

Step 2. When n = k, by using Eq. (39), we obtain

Step 3. When n = k + 1, by applying Egs. (39) and (48), we can get

Thus, the result is true for n

and
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k
k+1 4
@ll[a a a aA]EB
@i[aA,aA,aA,aA] =

i=1

A [al a & at ]
kL [P P A A T A

—
|
/)
—
|
Q
o —
=
st
SN———
N
2
h

|
~ ~ — N —
|
T~
—
—
|
S
..>._‘
SN———
>~
\_/\/

_.
|
e I
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[
|
QN
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+
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N — N =
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ht
SN——
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=
h

I
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H
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N——
>
+
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—_
|
S
(95)
~
o
2
ko

|
N — N =
|
E:»
N
—
|
Q
2w
SN———
>
\_/v

—
|
N
—
|
D>Qw
=
ht
S~—"
N
T
hat

4
)+

—_
|
— -
/N
—
|
Q
NS

Il
-

—
|
/
—
|
S
S
-
st
SN——
~
K
st

|
—
|
S
~—
E
N——

k

— ( i=1
'1k+l

<1—<1—a;§k+]) )

that is, according to the above results, we obtain Eq. (39) for any n. Similarly, we can
prove Egs. 40 and 43. For the ignorance membership degree of WA(A,, ..., A,).
By utilized the technique of mathematical induction on n. Therefore we have the
following.
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Step 1. Now for n = 2, we get

2

1 2 3 4| _ 1 2 3 4 1 2 3 4
@Ai[cA[,cA[,cAi,cA[] —ﬂ.l[CAI,CAI,CAI_,CAI EBAZ[CAZ,cAz,cAZ,cAZ]
i=1

[ A A A A
1 1 2 2
A 4 A
3 4 4
) CA2> ’ (CAI) CA:)

Thus, the result is true for n = 2.
Step 2. When n = k, by using Eq. (41), we obtain

‘ I1

1 2 3 4]_|i= ' =
Difel-dacle] =] | @

i=1

Step 3. When n = k + 1, by applying Egs. (41) and (49), we can get
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k+1 2 3 4
] - D]
i CA;’CA"CAI»’ CAi -

i=1

k
4 ’lk+1
II C3 6‘3
A: Ak+l ’
i=1
<C4 >1i<C4 Akﬂ
A AAH
L =1 .
k+1 | A k+1 , A
(CAi> ’ (CA[> ’
— i=1 i=1
k+1 X A k+1 . il
<cAi> ’ (CAf)
i=1 i=1

that is, according to the above results, we obtain Eq. (41) for any n. Similarly, we

can prove Eqgs. (42), (43), (44), (45) and (46). Hence, by Eqs. (39), (40), (41), (42),
(43), (44), (45) and (46), we get

<® A [a‘ii’aii’aii’aj\i_ ’ @ Ai#Ai)’
i=1 T o=l
At = | (Dot ] D )

i=1 T o=l
(@it Dam )
L T o=l
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In the following, we will prove that WA( A, A,, ..
d* <1, we have

4
51nce0<aA,bA, oS

s<az> (#1) ’<c1i>“¢ (@1)“‘ <1

NCIRE

0<1 (1

i=

A[
Therefore we obtain that 0<1-T]7, (1 - ai) +1-11, <1 - bja.)

/‘Li /li
+11, <Ci,-> + 1, (dj\,> < 4. This completes the proof.

In the following,
QSVTrNWA-operator.

Theorem 4 Let 4 A; =

we describe

some

desirable

tion of QSVTrNN:v on the real number setR. If A, = A =

foreveryi=1,...,

Proof Then, since A,

n, then WA

=A2=

1 2 3

444
CysCysC

o~
—

a,,ay,a,,a
b1 b2 b3 b4
361 971A
1o

dA’dA’dA’dA]’VA)

Ay, ...

4

7An)

A’”A ’

A.

= A, = Aby Eq. 39, we have

properties

., A, ) is also a QSVTINN. Then,

A;
)=t

4

O

of the

> be a collec-
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i.e.,

é A [“A

i=1

Similarly, we can prove

P e} 63538 | = ok
i=1

and

@ Springer

A
1—(1—-a})=!
/11‘
_ 1-(1-a2)i=!
>
= (1=} T
2
1—(1—a})=!
[1-(1-a!),
_|r-0-a).
1-(1-a)",
| 1-(1-a})’
@ .ad | = [0 adad].

b3, b, b}

A’TATA

n
D 4, =y
i=1

é A, =0,
i=1

(50)

61y

(52)

(53)
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For the ignorance membership degree of W.A(Al, ,.An). From these calculations,
we obtain

~
2]
~> -
gpw
..:::w
~>QJ>
[ ——
|
-
9}
..> -
S~
N
ND:"\)
N—
~

ie.,

I 2 03 4]_[1 .2 .3 4
@Ai[CA‘-’CA-’CA»’CA‘] = [ey carcqnci]- (54)

Similarly, we obtain that

éﬂi[dli,d/ﬁi,dji,dji] = [, d, &%, "] (55)
i=1
G_n? Aifla, = Ma (56)
and
é AiVa, = Vy. (57)
i=1
Thus, from Egs. (50), (51), (52), (53), (54), (55), (56) and (57) we have
WA(ALA,, ... A,) = A O

The following Theorem 5 (Monotonicity) establishes some properties of
QSVTrNWA-operator.

Theorem 5 Let

[ ([ 1+ 2 3 .4 ]
( aA»’aA»’aA»’aA» 5,uA )’
1 2 3 4
< by by 40, ’19Ai>’ .
da, = CUA AL A, Li=1,2,3,....n%
1 2 3 4
CA,-’CA,-’CAi’CA,- ’r]Ai ’
1 2 3 4
( dAi,dAi,dAi,dAi],vA)

and
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o '>> 1i=1,2,3,...,n

be two collections of QSVIrNNs on the real number set R. If A, < B, for every

i=1,...,n, thenWA(Al,...,.An) < WA(BI,...,Bn).

Proof Then, since A, < B; for every i

1 2 3 1 2 3
(ot ) ([ )

Similarly, we obtain that

1—ﬁ<1 —aj[)li <1 —ﬁ<1 —ag[)j’

and

=TT 0= () <1 =TT 0= ()"

i=1 i=1

Hence, by m Eqgs. (58), (59), (60), (61) and (62), we get

i=1

Similarly,

@ Springer

we have

(58)

(59)

(60)

(61)

(62)

<éAi[a/l‘i,aii,aii,aii],éli,uA) (@/l[a a a a]@/ly3>
i=1

(63)
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(@ lohoto ) Do, ) = (Do
i=1 i=1 i=l

A
From these calculations, we obtain (ci_) >

3\ % 4\ 4\
(c;“_) 2<c3i> and(cAi> Z<CB,-> ,1.e.,

and

._.
I
—_

=

Thus, by Egs. (65), (66), (67), (68) and (69), we have

n n n
1 2 3 4 1
@ /1" [CA," CAi’ CAi’ CA:] ’ @ ﬂir]Ai z @ /li [CBI" ¢
i=1 =1 i=1

It can be similarly proved that

2 13 34
B’ bB,’ bB,] ’ @ }”i’gB,-)'
i=1

(65)
(66)
(67)

(68)

(69)

n
2 3 4
B’ CB," CBi] ’ @ /1"’131’ )
i=1

(70)

(D4l D) = (D4l D )
i=1 i=1 i=1 i=1

By Egs. and

WA(A,, ...

(63),  (64),
JA,) <K WA(B,, ...

(70)
B,).

(71)

Now, we prove properties of QSVTrNWA-operator.

Theorem 6 Let

(71)
that,
O

which  implies

@ Springer



OPSEARCH

il

2 4
4 €4 Ca, | A,

4
. ’VA,>

1i=1,2,3,...,n

be a collection of QSVIrNNs on the real number set R. If

.A+

and

e

then A= < WA( A, A,, ...

Proof For the truth-membership degree of W.A(.A, )

@ Springer
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JA,) < A%

(11 32 13 4]
DYCRRARNY
_9’1Al,>’

(1 2 3 4
N ( _dAi,dAi,dAi,dAi],vA

’ﬂAi>’

$’7A

. An), we have
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(72)

and

pringer

& s
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(73)
(74)
(75)

(76)

Thus, from Egs. (72) and (73) we have

It can be similarly proved that

pringer

As
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/n\aj‘ < 4 - 'n (1- <a1i>q>/1[ < \n/aj‘ (77

and

/\uA q\Jl—]ﬁ[(l— <\/MA (78)

i=1

Hence, by Egs. (74), (75), (76), (77) and (78), we get

OV ([ehoio ot ] <@i[a i a]@m>

(79)
< U ([aii,aii,aii,aii],m‘.)-
i=1
It can be similarly proved that
1 2 3 4 1 2 3 4
N (CRANARN 5( P [bAi,bAi,bAi,bAi],@/1,-&)
i=1 = i=1 (80)
5U ([o-22,.0%.54 ] 84, )-

For the ignorance membership degree of WA(AI A An), we have

n }‘i n 2 n }”i
e ) <IT(e) < & "
i=1 \li=l i=1 ' i=1 \i=l @1
n

=
=

(82)

Il
—_
Il
N
Il
—
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=

and

=

It can be similarly proved that

n

1 2 3 4
ﬂ <[dA,-’dA,-’dA,-’dA,]’VAi)

i=1

=

=

IA

i=1

By Egs. (79), (80), (86) and (87), we have A~ <« WA(A,, A, ...

5 QSVTrNWG operators

1 2 3 4
/li [dAi’ dA,” dA,” dA,] ’ @ AiVAi>
i=1

1 2 53 4
= U ([dAi’dA,’dA,’dAi]’vAi>'
i=1

A < AN O

(83)

(84)

(85)

(86)

87)

In this section, we introduce the notion of quadripartitioned single-valued trapezoidal

neutrosophic weighted geometric operator along with their some properties.

Based on Definition 6, we propose the following an aggregation operator of quadri-
partitioned single-valued trapezoidal neutrosophic numbers.
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Definition 11 Let

( ) A’ A ,#A
<bj‘,bf‘,bf‘,bj_ M,

s Vg,

)
> ri=1,...,np
)
)

be a collection of QSVTINNs on the real number set R and A= (4,... ,An)T
be the weight vector of A, where 4; indicates the importance degree of A, sat-
isfying 4,,...,4, € [0,1] and z?:l A;=1, and let quadripartitioned sin-
gle-valued trapezoidal neutrosophic weighted geometric (QSVITrNWG)
WG : (TN(R))" = TNR) if

WG (A Ay .. A,) = Q) AL, (88)
i=1
then the function QSVTINWG is called the QSVTrNWG-operator.
Remark 3 When we need to weight the ordered positions of the quadripartitioned
single-valued trapezoidal neutrosophic arguments instead of weighting the argu-
ments themselves, quadripartitioned single valued neutrosophic weighted geometric

can be generalized to single valued neutrosophic weighted geometric.

The general expression of the QSVTrNWG-operator is constructed in the fol-
lowing theorem:

Theorem 7 Let

A=<A = 1" 2" 3" 4" ' i=1,...,n¢
CAi’CA‘-’CAi’CA,' 7’/IAI. ’
1 2 3 4
( dy»dy.dy.d, ’VA,>

be a collection of QSVTrNNs on the real number set R and A = (ll, Agyeens n) be
the weight vector of A, where J; indicates the importance degree of A, satisfying

A Ay A, €10,1] and Z A; = 1. Then their accumulated outcome utilizing the

i=1
OSVIrNWG-operator is again QSVIrNN, and
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~~ o~
D (=)
x =
N Nl
f T
~ " < < - <
— / —
< + < <<
RS S T <
~— ~_ —
S il e Y ) sl
< ~< < <
— I/ —
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~~ —_ —_
— Q a
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< ~ = ~ ~ < < ~<
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& ()4 = 1= (1-n)" (95)

=
=

(va)ai=1-T[(1-v)" (96)

[aA,aA,aA,aA Aps ® ﬂA /l
i=1

1 2 13 14
[bA,bA,bA,bA A ® 9,,) A
i=1

WG(A Ay, .. A, = (97)

®=

R
cA, A, A,cA Aps ® nA /1
i=1 -

n n
( .8 |20 ) ()4
L i=1

i=1

/\/-\/_\
S
\“_/\/\_/\_/

In the following, we describe some desirable properties of the
QSVTrNWG-operator.

Theorem 8 Let

,b4 )
CUATTANTAL A) ci=1,23,....n¢

2
Cy>CasCa |oMa

A, ’VA,>

be a collection of QSVIrNNs on the real number set R. If
( ai az‘,az‘,aﬁx ,yA)
A=A _(bbbb SA)
! ( A ,'7A s
( dl d2 d3 di].vs)
foreveryi=1,2,...,n, then WQ(AI,AQ, ,.An) =A.

The following Theorem 9 (Boundedness) establishes some properties of
QSVTrNWG-operator.
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Theorem 9 Let

[ ([ 1+ 2 3 4
a ,a®,d a* |,
( A A %A %A, ”A-)’
({68 52.83,.5% |9, ).
1A = A ‘ 1i=1,2,3,...,n

( CA"CA-’CA»’CA‘ ,”IA/.>,

) 4
([ 3.2 |va,)

be a collection of QSVIrNNs on the real number set R. If

At =

and

then A~ < WG(A,, Ay, ...

1 3
[CA,.’CA;‘A.’CA. ,Vy

; ’”Ai>’

1 2 3 4]
aA.’aA.’aA.’aA. H“Ai
1 2 3 4
aA ’aA-’aA-’aA- 3MAv

i
i

)
)
)

bl BB b“],nAi)

A TA A TA;

i
bl
s

A,) < AT

6 Multi-criteria decision making method under quadripartitioned
single-valued trapezoidal neutrosophic information

In this section, we define a multi-criteria decision-making method termed quadri-
partitioned single-valued trapezoidal neutrosophic multi-criteria decision-making
(QSVTrNMCDM) method. This approach is adopted from a body of existing litera-
ture [8, 17, 22, 23, 26, 35, 36, 39, 41].
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The proposed QSVTrNMCDM approach employs quadripartitioned single-
valued trapezoidal neutrosophic aggregation operators to determine the weights
of real numbers within a quadripartitioned single-valued trapezoidal neutrosophic
environment. Here, the QSVTTNMCDM method is applied to identify the most
favorable alternative for a company selecting the most suitable supplier.

Let A represent a discrete set of alternatives, such that A = {Al, ,Am}, for all
i=1,2,...,mand G={G,G,,...,G,} is a set of attributes with weight vector
A= (A4 4,)"  of the atributes G ={G,.G,,...,G,}, where
0<4,45,...,4,<1 and Z?:] A;=1. The expert’s decisions are stated as

QSVTiNNs, ie., A= (”A,,-’nA,-,-’VA,-,)’ such that 0 < HagotagsVa, <1 and
P r q
0< <,uA[/_> + (nA[/_> + (vA[/> < 1. Hence, the quadripartitioned single-valued

trapezoidal neutrosophic decision matrix is given as

[ ([1 2 3 a4

( Gay ap da, 9, ’ﬂA"/>’
1 712 13 34

( bA..’bA..’bA..’bA.. ’19A-->’

D= A._z ij ij ij if ¥

v 1 2 3 4

CAij’CAij’CAij’CAij My, )

d a2 & dt |y )

| | ( Ay Ay Ay TA L A ) s
and presented as follows:
.A,-j .A,-j . A,-j
b | A Ay Ay | o)

A,»j A[j . A,-j

The algorithm follows a QSVTrNMCDM method to interpret a QSVITNMCDM
problem under quadripartitioned single-valued trapezoidal neutrosophic information
using QSVTrNWA and QSVTrNWG-operators. Through this methodology, we aim
to provide a systematic and effective approach for decision-making in complex and
uncertain environments, particularly in scenarios where neutrosophic information is
prevalent.

Algorithm

Input: quadripartitioned single-valued trapezoidal neutrosophic information

Output: Best alternative

Step 1. Calculate the quadripartitioned single-valued trapezoidal neutrosophic
decision matrix.
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Step 2. In order to eliminate the influence of attribute type, we consider the
following technique and obtain the standardize matrix R = [RU] s’ where

1 2 3 4
( aA..’aAv.’aA.,’aA.. ’MA-f>’
ij ij ij ij E
1 2 3 4
< bA..’bA..’bA.’bA.. "9Ai,->’ .
R;= (A A is QSVTrNN. Then we have
/ et n
A[/" A[/" A[/" A[j ) Az_‘j )
d & & d |y )
< Ay Ay A TA Ay

R, A; 3 for benefit type attribute

Aj 5 for cost type attribute. ©9)
Step 3. Based on the standardize matrix, as obtained from step 2, the overall aggre-
gated value of the alternative A, for all i = 1,2, ..., m, under the different criteria Gj
forall j =1,2,...,nis obtained by using either

1= WA(Ry, Rigs -, Riy) (100)
or
i =WG(Ri, Rips s Riy) (101)

operator and hence get the collective value r; for each alternative A; for all
i=1,2,...,m

Step 4. Next, the score values of SC(ri) (i=1,2,3,...,m) of the over-
all QSVTINNs of ri(i=1,2,3,...,m) is obtained to rank the alternatives
A(i=1,2,...,m). If the score values of SC( ) and SC ( ) are equal for two alterna-
tives A; and A then it is required to calculate accuracy degrees of AC ( ) and AC ( )
with respect to the overall collective QSVTrNNSs to rank the alternatives A; and A

respectively, based on the aforementioned accuracy degrees AC ( ) and AC ( )

Step 5. We select the best alternative from the rankmgs of all alternatlves A,
(i=1,2,...,m)according to SC(r;) (SC(r;) )i = 1,2, ..., m).

Step 6.: Stop

6.1 Anillustrative example

We begin by considering a multi-criteria decision-making (MCDM) problem focus-
ing on the selection of green suppliers for a critical part in the product assembly
process of a product design company. The QSVTTNMCDM strategy proposed in
this study is illustrated through the resolution of a specific MCDM problem adapted
from [44].

The MCDM problem at hand involves selecting the most appropriate green sup-
pliers from a pool of four final alternatives, namely:

A,: Shantui Construction Machinery Company Limited

A,: Taikai Electric Group Company Limited,
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Table 1 Evaluations of decisi
‘ valuations of decision G, G, G;
makers

A 06, 1 | (0.5, | 1 06, | 1
0.7, 0.6, 0.7,
08, ,0.6 07, ,0.3 08. ,0.7
[ 09 | | 09 ] L 0.9
023, 0.4, 03,
0.4, 0.5, 0.4,
o5 |03 06 |03 s 06
[ 06| | 0.8 | 0.6 |
0.3, 0.2, 0.4,
0.4, 0.4, 0.5,
0.5, 02 0.5, 04 0.6, 02
[ 06| | 06| | 0.7 |
0.1, 0.5, 0.3,
0.2, 0.6, 04,
04, ,0.2 07, ,0.2 0.5, ,0.4
| 05 | | 0.8 | | 0.7 ]

Az [ 0.3, ] ] 7_0,6, ) i [ 0.6, 7 ~
0.4, 0.7, 0.7,
os. |06 0g 02 0g 06
[ 0.6 | | 0.9 | | 0.9 |
0.4, 0.3, 0.3,
0.5, 0.4, 04,
o6 02 o5 [03 os. 03
[ 0.7 ] | 06 ] L 0.6
0.3, 0.3, 0.3,
0.4, 0.4, 0.4,
o |02 06 |02 s 02
[ 07 ] | 07 ] L 0.6
0.3, 0.1, 0.3,
0.4, 0.2, 0.4,
o5 |03 o4 02 06 [0
07 | [ 05 | 07 ]

Ay Jros, 7] [lo4 ] 1 [104 T 1
0.7, 0.5, 0.5,
08, [0¢ 06, 07 07, [
[ 09 | | 0.8 | 0.8 |
0.6. 0.1, 0.3,
0.7, 0.3, 0.5,
05 [0 0s. [*2 06, [
[ 09 | | 0.6 | 0.7 |
0.7, 0.3, 0.1,
0.8, 0.4, 0.2,
09, 93 06, [ o6, [
1] [ 07 ] | 08 |
0.4, 0.1, 0.3,
0.5, 0.2, 05,
07, ,0.2 023, ,0.4 0.6, ,0.3
[ 09 | | 04 | | 0.8
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Table 1 (continued) G G G
1 2 3
Ay [To4, ] 1 [Tro4, [T 0.5, 1
0.5, 0.5, 0.6,
07, ,0.4 0.6. ,0.6 07, ,0.3
[ 08| | 07 0.9
0.5, 0.5, 0.4,
0.6, 0.6, 0.6,
0.7, 0.2 0.7, 0.1 0.7, 04
[ 09 | | 08 | 0.8
0.3, 0.2, 0.2,
0.5, 0.4, 0.4,
0.6. ,0.5 05, ,0.4 05, ,0.4
[ 08| | 0.8 | 0.6
0.1, 0.3, 0.5,
0.2, 0.5, 0.6,
0.4, ,0.5 0.6, ,0.3 07, ,0.3
0.6 0.7 0.8

Aj: Sino Trunk,
A,: Howden Hua Engineering Company.

To evaluate the alternatives, a decision-making group comprising three experts
from the engineering, production, and quality inspection departments is formed. The
experts identify three independent criteria to serve as evaluation principles:

G,: environment management,
G,: product quality,
Gj: pollution control.

Suppose that the four experts’risk attitudes are 4, = 0.4, 4, =0.2 and 4; = 0.4.

The evaluation information is described by QSVTrNNs, as shown in Table 1.

6.2 The QSVTrNMCDM steps based on QSVTrNWA and QSVTrNWG-operators:

Step 1. Calculate the quadripartitioned single-valued trapezoidal neutrosophic
decision matrix. These five alternatives A;, A,, A5 and A, are to be evaluated by
an expert under the three aspects G, G, and G5 by using quadripartitioned sin-

gle-valued trapezoidal neutrosophic decision matrix D = [Au]

responding rating values are shown in Eq. (102).

“411 "412 A13

D=

Ay, A
Ay A
Ay A

22
32
42

Az
Ass
Ag

and their cor-

(102)

Step 2. The three criteria G,(j = 1,2, 3) are regarded as the benefit-type criterion,
so the quadripartitioned single-valued trapezoidal neutrosophic decision matrices

change nothing.
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Table 2 Aggregated values _
of the alternatives using ! (10.58,0.68,0.78,0.901, 0.60),
QSVTiNWA-operator ([0.32,0.42,0.52,0.65],0.44),
([0.31,0.44,0.54,0.64], 0.23),
([0.21,0.33,0.49,0.63],0.26)

) [ ([0.50,0.60,0.71,0.83],0.54),
([0.34,0.44,0.54,0.64],0.26),
([0.30,0.40, 0.52,0.66], 0.20),
([0.24,0.35,0.51,0.65],0.19)

r [ ([0.44,0.59,0.73,0.85],0.53),
(10.41,0.56,0.68, 0.8],0.43),
(10.27,0.40,0.71,0.85],0.19),
| (10.27,0.42,0.56,0.73],0.27)

Ty [ ([0.44,0.54,0.68,0.84],0.41),
([0.46,0.60, 0.70, 0.85], 0.27),
([0.24,0.44,0.54,0.71], 0.44),

([0.24,0.37,0.54,0.69],0.37)

Table 3 Aggregated values _ _
of the alternatives using " (10.54,0.67,0.79, 0.901, 0.56),

QSVT:NWG-operator ([0.32,0.42,0.52,0.64], 0.40),
([0.32,0.44,0.54,0.64], 0.24),
| ([0.28,0.38,0.51,0.66],0.29)

r [ ([0.45,0.56,0.66,0.771,0.48),
([0.34,0.44,0.54,0.64], 0.26),
([0.30,0.40,0.52,0.66], 0.20),
([0.26,0.36,0.53,0.67],0.21)

3 [ ([0.44,0.57,0.72,0.84],0.47),
([0.32,0.52,0.65,0.75], 0.25),
([0.45,0.57,0.77,1.0],0.23),
([0.31,0.45,0.60, 0.81],0.28)

Ty [ ([0.44,0.54,0.68,0.821,0.39),
([0.46,0.60,0.70,0.84], 0.23),
([0.24,0.44,0.54,0.74], 0.44),

| ([0.32,0.45,0.58,0.71],0.39)

Table 4 Score values of

. . QSVTrNWA-operator QSVTINWG-
alternatives using QSVTINWA operator
and QSVTrNWG-operators
Sc(ry) 0.27 0.26
SC(ry) 0.25 0.29
SC(ry) 0.23 0.22
8C(ry) 0.21 0.21
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Table 5 Ranking order of the

: Aggregation operator
alternatives ggreg P!

Ranking ordered

QSVTrNWA-operator
QSVTrNWG-operator

A > Ay > A > A,
Ay > A > A3 > A,

Step 3. By following the QSVTINWA and QSVTrNWG-operators given in
Egs. (100) and (101), we obtain the overall rating values of each alternative A;
(Tables 2, 3).

Step 4. Calculate the scores function of r; for alli = 1,2, 3,4 (Table 4).

Step 5.

The results of ranking order of the alternatives based on QSVTrNWA and
QSVTrNWG-operators are presented in Table 5. When QSVTrNWA-operator,
we obtained a rank of alternatives as A; > A, > A; > A,, here, A, is the best
choice, A, is the best second choice and A; is the best third choice, but, when
QSVTrNWG-operator, we obtained a rank of alternatives as A, > A; > A; > A,,
here, A, is the best choice, A, is the best second choice and Aj is the best third

choice. Thus, the overall best rank is A,.

Table 6 Comparison between

existing work with the proposed Aggregation operator The score function Ranking

work QSVNPDOWAA operator [11] Cannot be calculated No
QSVNPDOWGA operator [11]  Cannot be calculated No
TNCLHFWAA operator [14] Cannot be calculated No
TNCLHFWGA operator [14] Cannot be calculated No
TrNDFWA operator [15] Cannot be calculated No
SVNTrDWA operator [21] Cannot be calculated No
SVTrNDWGA operator [21] Cannot be calculated No
SVTNNWBM operator [28] Cannot be calculated No
SVTNWAA operator [29] Cannot be calculated No
SVTNWGA operator [29] Cannot be calculated No
SVTNWMSM operator [30] Cannot be calculated No
QSVNDWAA operator [31] Cannot be calculated No
QSVNDWGA operator [31] Cannot be calculated No
SVTNWHA operator [34] Cannot be calculated No
SVTNOWHA operator [34] Cannot be calculated No
SVTNGOWHA operator [34] Cannot be calculated No
SVTNPA operator [44] Cannot be calculated No
SVTNPG operator [44] Cannot be calculated No
TNWAA operator [47] Cannot be calculated No
TNWGA operator [47] Cannot be calculated No
The propounded methodology
QSVTrNWA-operator Ay > A, >A; > A, Yes
QSVTrNWG-operator Ay>A >A; > A,  Yes
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6.3 Comparative analysis

In this manuscript, we undertake a comprehensive comparison analysis to eval-
uate the performance of QSVTrNWA and QSVTrNWG operators in relation
to several benchmark operators. Specifically, we compare the results obtained
using QSVNPDOWAA and QSVNPDOWGA operators [11], TNCLHFWAA
and TNCLHFWGA operators [14], TTNDFWA operator [15], SVNTrDWA and
SVTrNDWGA operators [21], SVITNNWBM operator [28], SVTNWAA and
SVTNWGA operators [29], SVTNWMSM operator [30], QSVNDWAA and
QSVNDWGA operators [31], SVINWHA, SVTNOWHA and SVTNGOWHA
operators [34], SVTNPA and SVTNPG operators [44] and TNWAA and TNWGA
operators [21], as summarized in Table 6.

From the comparative analysis presented in Table 6, several key merits of the
proposed operators, namely QSVTrNWA and QSVTrNWG, emerge:

1. Distinct decision outcomes: Our results indicate that both the QSVTrNWA and
QSVTrNWG operators yield comparable outcomes. However, a nuanced differ-
ence arises in the selection of the best third choice, denoted as A for QSVITNWA
and A, for QSVTINWG. This distinction underscores the authenticity and practi-
cal applicability of our method in real-world MCDM scenarios, particularly in
supplier selection processes.

2. Flexibility and generality: The QSVTTNMCDM model, encapsulating the pro-
posed operators, demonstrates remarkable flexibility, versatility, and generality.
Its ability to accommodate diverse decision-making problems, utilizing varying
values, underscores its suitability for addressing a wide spectrum of MCDM
challenges

3. Handling of quadripartitioned single-valued trapezoidal neutrosophic informa-
tion: Existing operators, as documented in Debnath [11], Fahmi et al. [14, 15],
Jana et al. [21], Liang et al. [28, 29], Liu and Zhang [30], Mohanasundari and
Mohana [31], Paulraj and Tamilarasi [34], Wang et al. [44], and Ye [47], do not
adequately address scenarios wherein data are presented in quadripartitioned
single-valued trapezoidal neutrosophic information form. In contrast, our pro-
posed approach demonstrates enhanced accuracy and precision in handling such
data representations, thus offering a more robust solution for MCDM problems.

7 Conclusion

In this study, we have explored the application of QSVTrNS and QSVTINN as
effective tools for modeling evaluation values in decision-making processes. By lev-
eraging the expansive range of membership grades offered by QSVTrNS, we have
demonstrated their utility in handling more complex and uncertain circumstances
compared to conventional SVNS, SVTINS, and QSVNS. Our primary contribu-
tion lies in the development of new aggregation operators, namely the QSVTINWA
operator and QSVTrNWG operator. These operators enable the fusion of quadri-
partitioned single-valued trapezoidal neutrosophic information, offering enhanced
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precision and accuracy in decision-making processes. Additionally, we have intro-
duced the concept of quadripartitioned single-valued trapezoidal neutrosophic
multi-criteria decision making (QSVTrNMCDM) method, exemplified through
the development of green supplier selection criteria. By utilizing operators such as
QSVNDWAA or QSVNDWGA, we have provided a systematic approach for com-
panies to select the most suitable green suppliers, thereby contributing to sustain-
able and environmentally conscious decision-making practices. As future directions,
we suggest exploring weighted average and weighted power geometric operators
over QSVTrNNs, with the aim of further enhancing the efficacy and applicability of
MCDM methods. Additionally, continued research into innovative MCDM method-
ologies based on these operators holds promise for addressing increasingly complex
decision-making challenges across various domains.

The quadripartitioned single-valued trapezoidal neutrosophic set (QSVTrNS)
can supply with more doubtful circumstances than single valued neutrosophic set
(SVNS), single-valued trapezoidal neutrosophic set (SVIrNS) and quadriparti-
tioned single valued neutrosophic set (QSVNS) because of their larger range of
depicting the membership grades. The quadripartitioned single-valued trapezoi-
dal neutrosophic number (QSVTrNN) is a useful tool to model evaluation val-
ues in decision-making (DM) process. To solve multi-criteria decision making
(MCDM) problem with quadripartitioned single-valued trapezoidal neutrosophic
evaluation values. Thus, the main work of this paper is to develop some new
aggregation operators (AOs) to fuse quadripartitioned single-valued trapezoi-
dal neutrosophicinformation. Also, we define the new concepts of a quadripar-
titioned single-valued trapezoidal neutrosophic number (QSVTrNN), the basic
operational relations of QSVTrNNs, and the score function of QSVTrNNs. Then,
we develop a quadripartitioned single-valued trapezoidal neutrosophic weighted
averaging (QSVTrNWA) operator and quadripartitioned single-valued trapezoi-
dal neutrosophic weighted geometric (QSVTrNWG) operator to aggregate quad-
ripartitioned single-valued trapezoidal neutrosophic information and investigate
their properties. Furthermore, we discussed about quadripartitioned single-val-
ued trapezoidal neutrosophic multi-criteria decision making (QSVTrNMCDM)
method for developing green supplier selection criteria using QSVNDWAA or
QSVNDWGA operator and also an illustrative example of a company selecting
the most suitable green supplier is given for the proposed method which gives
a detailed results to select the best alternative based upon the ranking orders. In
future works, the weighted average operator, weighted power geometric operator
over QSVTrNNs may be investigated and study a MCDM methods depending on
these operators.
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