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Abstract

The Grey Wolf Optimizer (GWO) algorithm is a very famous algorithm in the
field of swarm intelligence for solving global optimization problems and real-life
engineering design problems. The GWO algorithm is unique among swarm-based
algorithms in that it depends on leadership hierarchy. In this paper, a Modified
Grey Wolf Optimization Algorithm (MGWO) is proposed by modifying the
position update equation of the original GWO algorithm. The leadership hierarchy
is simulated using four different types of grey wolves: lambda (4), mu (u), nu (v),
and xi (&). The effectiveness of the proposed MGWO is tested using CEC 2005
benchmark functions, with sensitivity analysis and convergence analysis, and the
statistical results are compared with six other meta-heuristic algorithms. According
to the results and discussion, MGWO is a competitive algorithm for solving global
optimization problems. In addition, the MGWO algorithm is applied to three real-
life optimization design problems, such as tension/compression design, gear train
design, and three-bar truss design. The proposed MGWO algorithm performed well
compared to other algorithms.
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1 Introduction

An optimization problem refers to a problem with multiple possible solutions,
and the process of selecting the optimal solution among these options is known
as optimization [1]. An optimization problem consists of decision variables,
constraints, and an objective function [2, 3]. Advances in science and technology
have led to more complicated and emerging optimization difficulties that require
the use of relevant tools. There are two types of strategies for addressing
optimization problems: deterministic and stochastic [4, 5]. Deterministic
approaches, categorized as gradient-based and non-gradient-based, excel
in solving linear, convex, and basic optimization problems. However, these
approaches are ineffective for complicated, non-differentiable, nonlinear,
non-convex, and NP-hard problems. These are the primary characteristics
of optimization problems in real-life applications. Due to the limitations of
deterministic methods, researchers have developed stochastic approaches like
meta-heuristic algorithms [6]. Meta-heuristic algorithms are widely regarded as
the most effective optimization algorithms due to their robustness, performance
reliability, simplicity, and ease of implementation. Meta-heuristic algorithms
are categorized into literary categories, like: (1) Evolutionary-based algorithms
are based on evolutionary theory. (2) Swarm-based algorithms mimic the social
behavior and decision-making of different groups. These algorithms rely on
bio-community information and collaborative action to achieve certain goals.
(3) Physics-based algorithms are influenced by natural physical principles.
(4) Human behavior-based algorithms are inspired by human social behavior.
(5) Hybrid and advanced algorithms use features from multiple optimization
strategies to improve outcomes. Tables 1 and 2 show the classification of meta-
heuristic algorithms in the literature.

The GWO algorithm is a meta-heuristic based on the hunting behavior and
leadership hierarchy of grey wolves. It has been used to optimize key values in
cryptography algorithms [70], time forecasting [71], feature subset selection
[72], economic dispatch problems [73], optimal power flow problems [74],
optimal design of double later grids [75], and flow shop scheduling problems
[76]. Several algorithms have been developed to improve the convergence
performance of the GWO algorithm, including binary GWO algorithm [77],
parallelized GWO algorithm [78, 79], hybrid DE algorithm with GWO algorithm
[80], hybrid GA algorithm with GWO algorithm [81], hybrid GWO algorithm
using Elite Opposition Based Learning strategy and simplex method [82], Mean
Grey Wolf Optimizer Algorithm (MGWOA) [83], integration of DE algorithm
with GWO algorithm [84], and hybrid PSO algorithm with GWO algorithm
[85]. The optimization problems have been simplified and solved using linear
or integer programming techniques. Existing fuzzy and intuitionistic fuzzy
optimization methods, such as FMODI, IFMODI, IFMZMCM, FHM, IFHM,
and IFRM, can be complicated due to their numerous steps. Usually, fuzzy and
intuitionistic fuzzy optimization problems are 1st translated to equivalent crisp
optimization problems. Then second, to solve TORA software, crisp optimization
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Table 1 Classification of meta-heuristic algorithms

Category Algorithm name References
Evolutionary-based algorithms Differential evolution (DE) [7]
Genetic algorithm (GA) [8]
Genetic programming (GP) [9]
Evolutionary strategy (ES) [10]
Cultural algorithm (CA) [11]
Artificial immune system (AIS) [12, 13]
Biogeography-based optimization (BBO) [14]
Swarm-based algorithms Particle swarm optimization (PSO) [15]
Grey wolf optimization (GWO) [16]
Ant colony optimization (ACO) [17]
Marine predators algorithm (MPA) [18]
Whale optimization algorithm (WOA) [19]
Tunicate search algorithm (TSA) [20]
White shark optimization (WSO) [21]
Horse herd optimization algorithm (HOA) [22]
Snake optimization (SO) [23]
Slime mould algorithm (SMA) [24]
Monarch butterfly optimization (MBO) [25]
Colony predation algorithm (CPA) [26]
Harris hawks optimization (HHO) [27]
Moth search algorithm (MSA) [28]
RUNge Kutta optimization (RUN) [29]
Emperor penguin optimization (EPO) [30]
Orca predation algorithm (OPA) [31]
Artificial hummingbird algorithm (AHA) [32]
Chameleon swarm algorithm (CSA) [33]
Reptile search algorithm (RSA) [34]
Physics-based algorithms Simulated annealing (SA) [35]
Spring search algorithm (SSA) [36]
Gravitational search algorithm (GSA) [37]
Momentum search algorithm (MSA) [38]
Multi-verse optimizer (MVO) [39]
Equilibrium optimizer (EO) [40]
Water cycle algorithm (WCA) [41]
Archimedes optimization algorithm (AOA) [42]
Henry gas solubility optimization (HGSO) [43]
welghted meaN oF vectOrs (INFO) [44]
Thermal exchange optimization (TEO) [45]
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Table 2 Classification of meta-heuristic algorithms

Category Algorithm name References

Human behavior-based algorithms  Teaching-learning based optimization (TLBO) [46]
Following optimization algorithm (FOA) [47]
Inperialist competitive algorithm (ICA) [48]
Poor and rich optimization (PRO) [49]
Group teaching optimization (GTO) [50]
League champion algorithm (LCA) [51]
Hunger games search (HGS) [52]
Political optimizer (PO) [53]
Brain storm optimization algorithm (BSOA) [54]
Dual-population social group optimization (DPSGO)  [55]
Human eye vision algorithm (HEVA) [56]
Human mental search (HMS) [57]

Hybrid and advanced algorithms Modified whale optimisation algorithm [58]
Sine-cosine Harris hawks optimization [59]
Opposition-based learning cooking algorithm [60]
Hybrid binary ant lion optimizer [61]
Evolved opposition-based mountain gazelle optimizer [62]
Hybrid firefly algorithm with grouping attraction [63]
Improvised grey wolf optimization [64]
Modified hybrid GWO-SCA algorithm [65]
Improved moth-flame optimization [66]
Self-adaptive differential evolution [67]
Enhanced opposition-based grey wolf optimizer [68]
FROBL Aquila optimization algorithm [69]

problems are transformed into equivalent linear programming problems. It uses
branch and bound methods to solve problems. The use of fuzzy and intuitionistic
fuzzy sets to solve optimization problems has been in the literature [86-91].
The methodology of estimating theory, statistical learning, and data mining is
known as multivariate adaptive regression splines (MARS) [92]. Nowadays it
is used in many different domains including science, technology, management,
and economics [93—-118]. Non-parametric regression analysis such as MARS
does not require certain preconditions on the functional relationships between
the explanatory and involved response variables. Since it automatically models
interactions and non-linearities, it can be considered an extension of linear
models [119]. MARS is unable to completely handle variable uncertainty despite
all of its accomplishments.

Some of the issues/challenges in the existing literature. A fundamental
challenge is that achieving global optimum value requires sluggish convergence
and considerable computing overhead. A lot of algorithms lack a proper
balance between exploration and exploitation abilities. A few algorithms
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converge prematurely to the local optimum, making them unsuitable for real-life
engineering problems. Another drawback is that the algorithm has a large number
of algorithm-specific parameters, and picking optimum values requires a high
computing load.

The main research question in the study of meta-heuristic algorithms is
whether there is still a need to propose new approaches despite the abundance of
optimization algorithms created. In answer to this difficulty, the No Free Lunch
(NFL) theorem [120] says that an algorithm’s strong performance in dealing with
a set of optimization problems does not ensure the same performance in other
optimization problems. Therefore, claiming that an algorithm is optimal for all
optimization applications is inaccurate. The NFL theorem encourages authors to
propose innovative algorithms to solve optimization problems.

In this paper, a Modified Grey Wolf Optimization Algorithm (MGWO)
is proposed by modifying the position update equation of the original GWO
algorithm. The leadership hierarchy is simulated using four different types of grey
wolves: lambda (4), mu (y), nu (v), and xi (£). The MGWO algorithm addresses
the shortcomings of leading wolves in GWO by enhancing their performance.
The performance of the proposed algorithm has been evaluated on 23 benchmark
functions, and the results were compared to popular meta-heuristic algorithms.
MGWO is applied to three real-life engineering problems, and the results were
compared to popular meta-heuristic algorithms.

The paper is organized as follows: Sect. 2 provides a brief introduction to the
GWO algorithm. In Sect. 3 modified version of GWO named MGWO has been
proposed. Results and discussion on CEC 2005 benchmark functions have been
presented in Sect. 4. In Sect. 5 MGWO for solving real-life engineering problems
are presented. Finally, in Sect. 6 we conclude the paper and suggest future works.

2 Grey wolf optimization algorithm (GWO)

The GWO algorithm is inspired by the hierarchy and hunting behavior of grey
wolf groups. The method optimizes grey wolf populations by mathematically
replicating the tracking, surrounding, hunting, and attacking processes. The grey
wolf hunting procedure consists of three steps: social hierarchy stratification,
encircling the prey, and attacking the prey.

2.1 Social hierarchy

Grey wolves are gregarious canids that live at the top of the food chain and have
a tight social dominance structure. The best solution is indicated as the lambda
(4); the second-best solutions are marked as the mu (u); the third-best solutions
are marked as the nu (v); and the other solutions are marked as xi (¢). Figure 1
illustrates its dominating social hierarchy.
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Fig. 1 Hierarchy of wolves

2.2 Encircling the prey of GWO
The wolves encircling approach around the prey is mathematically represented by
the following equations:

Z(t+1)=Z,(1)—LXD, 1)

D= |NXZ,(n-Z@ |, @)

where Z is the grey wolf’s position vector, Z, represents the position vectors of the
prey, t represents the current iteration, and L and N are coefficient vectors.
The vectors L and N are calculated as follows:

L=2%r xb—b, 3)

N =2Xr,, 4)

where b components are linearly decreasing from 2 to 0 over iterations and r,, r, are
random vectors in [0, 1].

2.3 Attacking the prey of GWO

Grey wolves can recognize possible prey locations, and the search is primarily
carried out with the assistance of A, y, and v wolves. The best three wolves (4, u, and
v) in the current population are preserved in each iteration, while the positions of
other search agents are updated based on their position information. The following
formulas are provided in this regard:

Z,=2,~L XD, Z,=Z,~LyxD,, Zy=Z,~ Ly X D,, )
D,=|N,XZ,=Z|,D,=|N,XZ,~Z|, D, =|N;xZ,~Z|,  (6)
VAR AW A

Za+1) =————, @)
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In the above equation, Z,, Zw and Z, are the position vectors of A, y, and v
wolves, respectively; the calculations of L;, L,, and L, are similar to L, while the
calculations of N;, N,, and N; are similar to N. The distance between the current
candidate wolves and the best three wolves is represented by D, D,,, and D,.

Figure 2 shows that the candidate solution eventually falls within the random
circle formed by A, u, and v. The other contenders then update their locations
near the prey at random, guided by the current best three wolves. They begin
searching for prey position information in a disorganized way before focusing on
assaulting the prey.

3 A modified grey wolf optimization algorithm (MGWO)

A Modified Grey Wolf Optimization Algorithm (MGWO) was inspired by the
GWO algorithm, which is already discussed in Sect. 2. Then the mathematical
form of the MGWO algorithm is provided as follows:

@ 7 woit Y
i wolf
O v wolf

” Estimated position of the prey i e

Candidate position of the wolves
Fig.2 Position updating in the gray wolf optimization (GWO)
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3.1 Encircling the prey of MGWO

The wolves’ encircling approach around the prey is mathematically described by
providing the following equations as

Z'@+1)=Z)n - L xD, 8)

L' =2xr xb -V, 9)

where Z' is the grey wolf’s position vector, Zz; represents the position vectors of the
prey, ¢ represents the current iteration, L’ is coefficient vector, ' components are
linearly decreasing from 2 to 0 over iterations and r, is random vectors in [0, 1].

D'=|N'xZn-Z0|, (10)

N =2xr,, (11)

where N’ is coefficient vector, b’ components are linearly decreasing from 2 to 0 over
iterations and r, is random vectors in [0, 1].

3.2 Attacking the prey of MGWO

Grey wolf attacking technique can be mathematically described by approximating
the prey position using 4, u, and v solutions (wolves). As a result, by using this
estimate, each wolf can update their positions by

2 1 1
2+ 1) =2Z +-Z + =7
( ) 3 1 4 2 12 3° (12)

where Z{, Z, and Z; are calculated by using Eq. 13.
Z, =7, -L xD, Z;:Z;—L’ZXD;, Z,=7 -L,xD., (13)
where L, L), L, D', D; , and D/ are calculated by using Eq. 14 and 15.
L =2xr,xb =V, L)=2xr,xb =b', Ly =2xr,xb -V, (14)
D)= |N|xZ,-Z |, D, =|NyxZ, ~Z'|. D, =|N;xZ. ~Z'|. (15)
where N|, N}, and N; are calculated by using Eq. 16.
Ny =2xr/, Ny=2xr, Ny =2x7r}, (16)

The candidate solution eventually falls within the random circle formed by 4, y, and
v. The other contenders then update their locations near the prey at random, guided
by the current best three wolves. They begin searching for prey position information
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( Update the position of wolves based on }(

the best performing wolves

[ Initialize the population, b’, L', and N’ } v

Calculate the fitness of all grey wolves J

i
v

v

[ Update Z,, Z;,, and Zj, ]

[ Calculate the fitness values of each grey wolf ]

v
[ Find Z}, Z;, and Z;, ] t=t+1

Fig. 3 Flowchart of MGWO

in a disorganized way before focusing on assaulting the prey. The pseudo code of
the MGWO algorithm is presented in Algorithm 1. The flowchart of the MGWO is
given in Fig. 3.

Algorithm 1 Pseudo-code of the MGWO algorithm.

. Initialize the grey wolf population Z] (i =1,2,--- ,n).
. Initialize the parameters o', L', and N'.
: Calculate the fitness of each grey wolves.
Z{ = the first finest grey wolves.
Z,,= the second finest grey wolves.
Z!= the third finest grey wolves.
while (¢ < Maximum no of iterations) do
for each grey wolves do
Update the position of the current grey wolves by Equation 12.
end for
Update b, L/, and N'.
Calculate the fitness of each grey wolves.
Update Z3, Z;,, and Z].
t=t+1.
: end while
: Return ZJ.

© P a RNy
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3.3 Computational complexity

The computational complexity of the proposed MGWO algorithm depends on three
main processes: initialization, evaluation of the fitness function, and updating each
particle. The computational complexity of the basic process with a n particle is O(n),
and updating the MGWO mechanism is equal to O(M X n) + O(M X n X D), where
M signifies the maximum number of iterations and D signifies the dimension of the
problems. Therefore, the total computational complexity of the proposed MGWO is
equals O(n X (M + M X D + 1)).

4 Results and discussion

In this section, to analyze the performance of the MGWO algorithm, seven uni-
modal test functions, six multi-modal optimization functions, and 10 fixed-
dimensional multi-modal optimization functions are selected. Table 4 lists these
functions’ precise expressions, dimensions, search space, and optimal values. The
uni-modal test functions are represented by F1-F7, the multi-modal test functions by
F8-F13, and the fixed dimensional multi-modal test functions by F14—F23. The uni-
modal test function is primarily used to calculate the MGWO’s convergence speed
and accuracy of the solution. The primary purpose of the multi-modal test function
is to gauge the MGWO’s global surveying capability. To increase the experiment’s
accuracy, the six chosen algorithms use identical experimental parameters: swarm
size (n = 30), dimension (D = 30), maximum number of iterations (M = 1000), each
algorithm is run 30 times independently and the results are recorded. The values set
for the control parameters of the competitor algorithms are given in Table 3. The

Table 3 The values set for

Algorithm Parameter Value
the control parameters of the
competitor algorithms MGWO / [—1,1]
r [0, 1]
PSO C1 1.5
Cc2 2
w 0.3
TSA Pin 1
max 4
SSA Leader position update 0.5
probability
MVO WEP_Max 1
WEP_Min 0.2
GWO l [-1,1]
r [0, 1]
IGWO l [-1,1]

r [0, 1]
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Table 4 Twenty-three test functions

Function Dim  Limits Jrnin
Fllo =YL, ¢ 30 [-100,100] 0
F2o) =Y lel+ T lei | 30 [-10,10] 0
: i 2 30 - 100, 100 0
F3o) =X (X ) [ I
FA(c) =max{|c;], 1<i<n} 30 [- 100, 100] 0
F5(c) = X0 [100(csy; — ¢ + (¢; = 1)?] 30 [-=30,30] 0
Fo6(c) = X ([¢; + 0.5]) 30 [- 100, 100] 0
Fl(c) = Z:':l ic? + random|0, 1) 30 [—1.28,1.28] 0
F8(c) =Y, —¢;sin(v/I¢;)) 30 [-500,500]  —12569.5
F9(c) = X, [ — 10cos (27c;) + 10] 30 [-5.12,5.12] 0
F10(c) = —20exp(—0. 2\/— Yo
—exp(— ) | cos 2zc;)) +20 + e 30 [-32,32] 0
F1l(c) = 4000 Yo, 2 =TI, cos (%) +1 30 [— 600, 600] 0
F12(c) = f 10sin zy,)
+ 307 @ = D2+ 10sin?(ay, ]+ (3, — 17
+ Z?_ u(e;, 10,100, 4) 30 [-50,50] 0
=14 9t c;+1
k(c; —a)" ¢ >a
u(c;, a,k,m) = 0 —a<c¢<a
k(—c; —a)" ¢ <-—a
F13(c) = 0.1{sin*(3xc)) + Y, (¢; — D1 + sin®(3zc; + 1)]
+(c, — D1 + sin*2ze,)} + Y, ulc;, 5,100, 4) 30 [-50,50] 0
R 25 1 -1 2 [-65,65]

Fl4(e) = (55 + X7, s

=yl _ alithie) o 4 [-5,5] 0.0003
FlS(C) - Zi:l [ai b,2+b,c3+c,,,
F16(c) = 4cj = 2.1} + 5 L0+ cioy — 4k +4c 2 [-5.5] —1.0316
FIT0) = (6~ 32+ 3¢, =6)’ +101 — Lycose, +10 2 (=351 0.398
F18(c) = [1 + (¢; + ¢, + D?(19 — 14¢,+
3cf — 14c, + 6¢ic, + 3c§)]
X[30 + (2¢; — 3¢,)*(18 = 32¢; + 12¢% + 48¢c, — 36¢c, +27c3)] 2 [-2,2] 3
F19(c) = = X1, bexp(— 2]3_ az(¢; = py)*) 3 [1,3] -3.86
F20(C) z, 1 ,exp( z, 1 y / _pij)z) 6 [0’ 1] - 332
F21(c) = — Z,'=1 [(C —a;)(C - ai) + bi]fl 4 [0, 10] —10.1532
F22(c) = = Y, [(C = a)(C = a)" + b1 4 [0, 10] —10.4028
F23(c) = = X2, [(C = a)(C = a)T +b;]! 4 [0, 10] -10.5363
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experiments are performed on Windows 11, Intel Core i3, 2.10GHz, 8.00 GB RAM,
MATLAB R2022b (Table 4).

4.1 Sensitivity analysis

The proposed MGWO algorithm employs two parameters, i.e., the number of grey
wolves and the maximum number of iterations.

4.2 Number of grey wolves

The MGWO algorithm was simulated for different values of grey wolf (i.e., 10, 15,
20, 25, 30). Figure 4 shows the variations of different numbers of search agents
on benchmark test functions. Figure 4 shows that the value of the fitness function
reduces as the number of search agents rises.

4.3 Maximum number of iterations

The MGWO algorithm was run for different numbers of iterations. The values of
Maximum iteration used in experimentation are 200, 400, 600, 800, and 1000.
Figure 5 demonstrates the impact of the number of iterations on benchmark test

F1 F4
10° n=10 i n=10
n=15 10 =15
n=20 n=20
—_—=25 —n=25
=30 =30
e \
10
10
2 2
8 1
8 8
@ @ \
g \ 4 N\
@ 490 \ “ o0
i | —
10 — 10 15
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Iterations Iterations
F7 F12
2
10 —0 108 —n=10
— S — =15
n=20 n=20
10! —=26 — =25
n=30 108 n=30
0
o 10 ®
8 8 10
@ ‘l a
- %
& k4
a @
l 102
w—_—
3 \
-\ 10°
10

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Iterations Iterations

Fig.4 Sensitivity analysis of the proposed MGWO algorithm for the number of grey wolves
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5
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e g T
8 8
@ @
4 4
@ @
10 10
-\\
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100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
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F7 F12
10? {
M=200 10° M=200
M=400 M=400
~M=600 e M=600
10! M=800 —M=800
\ 2 2 B
M=1000 108 M=1000
10°
e 4
8 8 10*
@ @
o bl
g 10 \ 8
© @
Al 102
102 =
b= " 8
102 | —— 10 k
o
——
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Iterations Iterations

Fig.5 Sensitivity analysis of the proposed MGWO algorithm for the number of iterations

functions. As the number of iterations increases, the MGWO algorithm converges to
the optimum.

4.4 In comparison to other algorithms

To further evaluate the performance of the MGWO, the MGWO algorithm was
tested on 23 benchmark functions, and the results were compared with the PSO
[15], TSA [20], SSA [121], MVO [39], GWO [16], and IGWO [122] algorithms.
Each algorithm is evaluated using the average values and standard deviation after
30 runs, the solution with the highest accuracy is bolded in the table. Tables 5 and
6 displays the results of the 23 test functions. The MGWO’s convergence accuracy
and optimization capacity can be seen in the average values and standard deviation
shown in Tables 5 and 6. When solving the F1-F5 and F7 functions for the seven
uni-modal functions, the MGWO performs better in terms of accuracy and standard
deviation, even though the optimization accuracy falls short of the theoretically
ideal value of 0. When solving the F9 and F11 functions, the optimization accuracy
for the six multi-modal functions reaches the theoretical optimal value of 0, and the
algorithm’s great robustness and precision of the solution are clearly demonstrated.
Meanwhile, when solving the F8 and F10 functions, the MGWO also yields a better
result when compared to other optimization techniques. When it comes to the ten
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Table5 The results of the 23 test functions are mentioned in bold; these results are the global best

solutions
Functions PSO TSA SSA MGWO
Ave Std Ave Std Ave Std Ave Std
F1 0.000155  0.000208  6.113E— 2.22E—41 1.845E— 4.009E—  1.284E—  3.294E—60
42 08 09 60
F2 0.041444  0.066589  9.712E— 7.147E—27 8.541046  23.58543 2.718E—  3.142E737
27 37
F3 31.69417 7391107  3.395E— 0.000001231  850.2645 5603619 1.753E—  6.39E—14
07 14
F4 0.84832 0.231127  0.044329  0.055212 1147617  4.679967 9.856E—  1.107E—14
15
F5 71.26033  56.07651  28.72735  0.625842 185.6412  312.1713  27.13666  1.06715
F6 0.000183  0.000249  3.837973  0.583829 1.894E—  4.241E—  1.134553  0.324337
08 09
F7 0.092081  0.022263  0.006225  0.001512 0.139053  0.044611  0.000606  0.000395
F8 —6610.02 709.0768 —15979.17 657.4813 —46074.8 10101.01 —9941.92 548.6993
F9 56.13828  13.6469 192.6031  58.19319 7230015  21.43404 0 0
F10 0.51122 0.582879  0.83678 1.423064 2318048 0.803747 8.73E—15 2.52E—15
F11 0.016364  0.017539  0.010615  0.010982 0.009364  0.007439 0 0
F12 0.020742  0.057099 9.065166  4.51854 7.53672 4.261936  0.077354  0.031404
F13 0.00296 0.00493 2.82514 0.412012 11.73447  12.63357 0.961357  0.329458
Fl14 3.484566  3.485953  7.814166  5.521635 1.19602 0.753589  0.998 4.516E—16
F15 0.000873  0.000154  0.008181  0.015421 0.001063  0.000111  0.000309  0.0000052
F16 —1.0316 6.775E— —1.0316 6.775E—16 —1.0316 6.775E— —1.0316 6.775E—16
16 16
F17 0.39789 1.693E—  0.397914  0.000019 0.39789 1.693E—  0.39789 1.693E—16
16 16
F18 3 0 8.4 20.55035 3 0 3 0
F19 —3.8628 3.161E— —3.86216 0.001974 —3.8628 3.161E- —3.8628 3.161E—15
15 15
F20 —3.24273  0.057008 —3.15373 0.397481 —3.25371 0.065302 —3.322 1.806E—15
F21 —7.20113 3.304531 —6.228666 3.637145 —6.978966 3.53603 —10.1524 0.00055
F22 —8.07678 3.39022 —6.98956  3.542498 —7.974533 3.108462 —10.4022 0.00047
F23 —8.50334 2975559 —7.56722 3.539034 —7.292253 3.606672 —10.5355 0.00043

fixed dimensional multi-modal functions, F14, F15, and F20-F23 outperforms
other algorithms in terms of value, while the remaining functions’ outcomes mostly
agree with the contrast algorithm’s.

4.5 Statistical analysis

This subsection presents a statistical analysis of the performance of competitor
algorithms and MGWO to establish whether or not MGWO has a statistically
significant advantage. The Wilcoxon rank sum test [123] is utilized to ascertain the
statistically significant difference between the average of two data samples. Using
an index defined as a p-value, the Wilcoxon rank sum test is used to establish
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Table6 The results of the 23 test functions are mentioned in bold; these results are the global best

solutions
Functions MVO GWO IGWO MGWO
Ave Std Ave Std Ave Std Ave Std
F1 0.536762 0.105211 2.441E— 4.034E— 9.507E-52 2.192E— 1.284E— 3.294E—
50 50 51 60 60
F2 0.474956 0.160011 1.076E— 8.037E— 2.593E—32 2.252E— 2.718E— 3.142E—
29 30 32 37 37
F3 91.28513 35.4451 9.972E— 3.368E— 1.631E-07 4.918E— 1.753E— 6.39E-14
12 11 07 14
F4 1.366814 0.393004 3.95E—12 3.261E— 2.994E—09 4.114E— 9.856E— 1.107E—
12 09 15 14
F5 177.8109 148.2866 26.94643 0.642726 23.22303 0.218961 27.13666 1.06715
F6 0.483774 0.132243 0.928531 0.452457 0.0000011 9.553E— 1.134553 0.324337
07
F7 0.024403 0.007886 0.001334 0.000848 0.001984  0.000736 0.000606 0.000395
F8 —7906.93 644.4043 —5987.92 737.3029 —5925.33 785.0471 —9941.92 548.6993
F9 113.9333 2594823 0.759486 1.97742 22.58737  8.155451 0 0
F10 2.376974 4.735421 1.891E— 531E— 1.607E—-14 2.89E—- 8.73E— 2.52E-15
14 15 15 15
F11 0.674638 0.100008 0.005999 0.011864 0.004427  0.008278 0 0
F12 2.097126 0.888537 0.082644 0.148359 7.884E—08 8.976E— 0.077354 0.031404
08
F13 0.099031 0.058758 0.887274 0.23722 0.013723  0.033489 0.961357 0.329458
F14 0.998 4.516E— 7.182926 4.759544 0.998 4.516E— 0.998 4.516E—
16 16 16
F15 0.010113 0.016749 0.005721 0.008982 0.000368  0.000232 0.000309 0.0000052
Fl16 —1.0316 6.775E— -—1.0316 6.775E— —1.0316 6.775E— —1.0316 6.775E—
16 16 16 16
F17 0.39789 1.693E— 0.397898 0.000030 0.39789 1.693E— 0.39789 1.693E—
16 16 16
F18 3 0 3 0 3 0 3 0
F19 —3.8628 3.161E— —3.86052 0.003228 —3.8628 3.161E— —3.8628 3.161E—
15 15 15
F20 —3.26598 0.060909 —3.2534 0.085244 —3.29822 0.048373 —3.322 1.806E—
15
F21 —8.46286 2.431177 —9.81278 1.293253 —9.1202 2.04485 —10.1524 0.00055
F22 —7.11098 3.243966 —10.4025 0.000243 —10.4029 7.226E— —10.4022 0.00047
15
F23 —8.91722 2.799761 —9.99496 2.058642 —10.5364 9.033E— —10.5355 0.00043
15

whether or not the statistical advantage of MGWO over any of the competing
algorithms is significant. Two-tailed r-tests [124] have been
different statistical outcomes at a consequence of 0.05. The ¢ values are determined
with the help of average and std values. A -¢ value indicates that the statistical
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outcomes of the MGWO optimization mistakes are significantly less, and vice
versa. The corresponding ¢ value is highlighted if the difference is a statistically
significant error. The symbols +/ = /— represent that MGWO wins functions, ties
functions, and loses functions. The statistical outcomes of the optimization mistakes
demonstrate that MGWO has much superior total achievement when compared with
the other algorithms. Tables 7 and 8 present results of the Wilcoxon rank-sum test
and t-test on 23 benchmark functions and validation of the Wilcoxon rank-sum test
and t-test on 23 benchmark functions comparing the performance of competing
algorithms with MGWO. MGWO outperforms the corresponding algorithm
statistically in situations where the p-value and t-value are less than 0.05, according
to these data.

4.6 Convergence analysis

Figures 6, 7, and 8 displays the convergence graph of MGWO and other algorithms.
As illustrated in Figs. 6, 7, and 8 the suggested method in uni-modal functions
adheres to a certain pattern that prioritizes the exploitation stage (functions F1 and
F3). The proposed method exhibits a distinct pattern in multi-modal functions with
numerous local optimal values. It gives more consideration to the early algorithmic
stages of the exploration process. Nevertheless, exploration is carried out in broken
form (functions F12 and F13) during the algorithm’s final stages, which are often the
exploitation phase. The suggested algorithm offers a superior pattern of convergence
for almost all functions.

5 MGWO for solving real-life engineering problems

This section evaluates the proposed algorithm performance in three real-life
engineering problems using constrained engineering benchmarks. The tension/
compression spring, the gear train, and the three-bar truss are all part of the
engineering design problems. The MGWO runs independently for each engineering
problem 30 times, with a selected grey wolf population size of 30, with 1000
iterations, and a number of function evaluations (NFEs) of 15,000.

5.1 Tension/compression spring design problem

This problem aims to optimize the weight of a tension/compression spring [125], as
shown in Fig. 9. The problem has constraints on minimum deflection, shear stress,
surge frequency, outside diameter limits, and design variables. The design variables
are the mean coil diameter D, the wire diameter d, and the number of active coils
N. Table 9 presents the outcomes of this experiment. The MGWO algorithm
outperformed other algorithms in this problem.
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MGWO versus
IGWO

MGWO versus TSA MGWO versus SSA MGWO versus MVO MGWO versus GWO

MGWO versus PSO

Table 8 Validation of Wilcoxon rank-sum test and t-test on 23 benchmark functions

Functions
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Fig. 6 Convergence graph of MGWO and other algorithms

5.2 Gear train design problem

Sandgren presented the gear train design problem [126, 127], an unconstrained
discrete problem in mechanical engineering. This benchmark task aims to minimize
the gear ratio, which is the ratio of the angular velocity of the output shaft to the
input shaft. The number of teeth of gears C,, C,, C;, and C, are considered as the
design variables, as shown in Fig. 10. Table 10 presents the outcomes of this
experiment. The MGWO algorithm outperformed other algorithms in this problem.
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5.3 Three-bar truss design problem
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This optimization problem from civil engineering has a confined and troublesome
space [128]. The primary goal of this challenge is to reduce the weight of bar
constructions. The restrictions for this problem are determined by the stress
constraints of each bar. The resulting problem contains a non-linear objective
function and three non-linear constraints, as shown in Fig. 11. The results are
presented in Table 11 The proposed method successfully identified the optimal

value for the problem.
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Fig.8 Convergence graph of MGWO and other algorithms

Fig.9 The design of the tension/compression spring problem
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Table 9 The comparison outcomes of the tension/compression spring problem
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Best score obtained so far
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Best score obtained so far
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fteration

Objective space

Iteration

Algorithms Optimal values for variables Optimum weight
D d N

MGWO 0.051437039 0.350447807 11.68029942 0.012684

TSA 0.057637718 0.517253228 5.72736214 0.013278

SSA 0.13678061 1.432553267 1.089018486 7.63E+14

MVO 0.069209835 0.941963233 2.026422819 0.018167

GWO 0.05 0.317347426 14.04051804 0.012726

IGWO 0.050388413 0.326167535 13.34326875 0.012706

Best result highlighted in bold
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Fig. 10 The design of the gear train problem

Table 10 The comparison outcomes of the gear train problem

Algorithms Optimal values for variables Optimum weight
G G G Cy
MGWO 43.23451442 19.48161573 16.80898646 52.49664159 9.444E-15
TSA 41.38908813 14.89380456 22.81969856 56.91350992 1.153E-11
SSA 50.80890822 14.00937474 29.37997485 42.34395302 0.0022119
MVO 30.42669549 1551261593 12 42.40446052 1.896E—12
GWO 60 30.57637562 15.04813329 53.1507917 1.386E-12
IGWO 59.38921756 13.10291292 12.58277378 19.24141193 2.135E-12

Best result highlighted in bold

6 Conclusion

The original GWO algorithm has premature convergence and poor accuracy while
solving global optimization problems. In this study, a modified GWO is proposed
to overcome the shortcomings. The MGWO algorithm is proposed by modifying
the position update equation of the original GWO algorithm. We investigated 23
functions with various features, including uni-modal, multi-modal, and fixed-
dimensional multi-modal, and compared the outcomes to six algorithms. The
experimental results indicate that the MGWO algorithm outperforms compare with
six different algorithms in terms of optimization performance and stability. Then
three real-life engineering optimization design problems (tension/compression
spring, gear train, and three-bar truss) are solved using various objective functions,
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Al = A3
P P
Fig. 11 The design of the three-bar truss problem
Table 11 The comparison Algorithms Optimal values for variables Optimum weight
outcomes of the three-bar truss
problem A A,
MGWO 0.78930035 0.40648617 263.8964694
TSA 0.79533361 0.38978063 263.9323795
SSA 0.73708847 0.63847416 272.3275195
MVO 0.78649751 0.41444474 263.8995652
GWO 0.78473988 0.41952331 263.9102876
IGWO 0.78998884 0.40457536 263.9001244

Best result highlighted in bold

constraint conditions, and features. Meanwhile, the Wilcoxon rank-sum test and
t-test were used to evaluate the results of the MGWO algorithm. The experimental
results demonstrate that the MGWO algorithm outperforms other comparison
algorithms and is capable of dealing with engineering design problems. However,
the proposed MGWO algorithm has shown insignificant and mediocre results for
one uni-modal (F6) and two multi-modal (F12 and F13) functions. In future work,
the MGWO suggests several improvements, such as the inclusion of adaptive inertia
factors, image segmentation, feature selection, levy flight distribution, binary, and
multi-objective problems.
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