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Abstract
The Grey Wolf Optimizer (GWO) algorithm is a very famous algorithm in the 
field of swarm intelligence for solving global optimization problems and real-life 
engineering design problems. The GWO algorithm is unique among swarm-based 
algorithms in that it depends on leadership hierarchy. In this paper, a Modified 
Grey Wolf Optimization Algorithm (MGWO) is proposed by modifying the 
position update equation of the original GWO algorithm. The leadership hierarchy 
is simulated using four different types of grey wolves: lambda ( � ), mu ( � ), nu ( � ), 
and xi ( � ). The effectiveness of the proposed MGWO is tested using CEC 2005 
benchmark functions, with sensitivity analysis and convergence analysis, and the 
statistical results are compared with six other meta-heuristic algorithms. According 
to the results and discussion, MGWO is a competitive algorithm for solving global 
optimization problems. In addition, the MGWO algorithm is applied to three real-
life optimization design problems, such as tension/compression design, gear train 
design, and three-bar truss design. The proposed MGWO algorithm performed well 
compared to other algorithms.

Keywords Meta-heuristic algorithms · Optimization problems · Statistical analysis · 
Benchmark functions · GWO · MGWO
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D�,D�, and D�  The distance between the current candidate wolves and the best 
three wolves

L, b, L′, and b′  The coefficient vectors
Z, Z′  The grey wolf’s position vector
Z�, Z�, and Z�  The position vectors of � , � , and � wolves
Zp, Z

′
p
  The position vectors of the prey

�  The second best solutions
�  The third best solutions
�  The other solutions
D  The dimension of the problems
M  The maximum number of iterations
n  Swarm size
t  The current iteration
ACO  Ant colony optimization
AIS  Artificial immune system
BBO  Biogeography-based optimization
CA  Cultural algorithm
CPA  Colony predation algorithm
DE  Differential evolution
ES  Evolutionary strategy
FHM  Fuzzy Hungarian method
FMODI  Fuzzy modified distribution method
GA  Genetic algorithm
GP  Genetic programming
GWO  Grey wolf optimizer
HHO  Harris hawks optimization
HOA  Horse herd optimization algorithm
IFHM  Intuitionistic fuzzy Hungarian method
IFMODI  Intuitionistic fuzzy modified distribution method
IFMZMCM  Intuitionistic fuzzy min-zero min-cost method
IFRM  Intuitionistic fuzzy reduction method
IGWO  Improved gray wolf optimization
MBO  Monarch butterfly optimization
MGWO  Modified grey wolf optimization algorithm
MGWOA  Mean grey wolf optimizer algorithm
MPA  Marine predators algorithm
NFL  No free lunch
PSO  Particle swarm optimization
SMA  Slime mould algorithm
SO  Snake optimization
SSA  Salp swarm algorithm
TSA  Tunicate search algorithm
WOA  Whale optimization algorithm
WSO  White shark optimization
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1 Introduction

An optimization problem refers to a problem with multiple possible solutions, 
and the process of selecting the optimal solution among these options is known 
as optimization [1]. An optimization problem consists of decision variables, 
constraints, and an objective function [2, 3]. Advances in science and technology 
have led to more complicated and emerging optimization difficulties that require 
the use of relevant tools. There are two types of strategies for addressing 
optimization problems: deterministic and stochastic [4, 5]. Deterministic 
approaches, categorized as gradient-based and non-gradient-based, excel 
in solving linear, convex, and basic optimization problems. However, these 
approaches are ineffective for complicated, non-differentiable, nonlinear, 
non-convex, and NP-hard problems. These are the primary characteristics 
of optimization problems in real-life applications. Due to the limitations of 
deterministic methods, researchers have developed stochastic approaches like 
meta-heuristic algorithms [6]. Meta-heuristic algorithms are widely regarded as 
the most effective optimization algorithms due to their robustness, performance 
reliability, simplicity, and ease of implementation. Meta-heuristic algorithms 
are categorized into literary categories, like: (1) Evolutionary-based algorithms 
are based on evolutionary theory. (2) Swarm-based algorithms mimic the social 
behavior and decision-making of different groups. These algorithms rely on 
bio-community information and collaborative action to achieve certain goals. 
(3) Physics-based algorithms are influenced by natural physical principles. 
(4) Human behavior-based algorithms are inspired by human social behavior. 
(5) Hybrid and advanced algorithms use features from multiple optimization 
strategies to improve outcomes. Tables 1 and 2 show the classification of meta-
heuristic algorithms in the literature.

The GWO algorithm is a meta-heuristic based on the hunting behavior and 
leadership hierarchy of grey wolves. It has been used to optimize key values in 
cryptography algorithms [70], time forecasting [71], feature subset selection 
[72], economic dispatch problems [73], optimal power flow problems [74], 
optimal design of double later grids [75], and flow shop scheduling problems 
[76]. Several algorithms have been developed to improve the convergence 
performance of the GWO algorithm, including binary GWO algorithm [77], 
parallelized GWO algorithm [78, 79], hybrid DE algorithm with GWO algorithm 
[80], hybrid GA algorithm with GWO algorithm [81], hybrid GWO algorithm 
using Elite Opposition Based Learning strategy and simplex method [82], Mean 
Grey Wolf Optimizer Algorithm (MGWOA) [83], integration of DE algorithm 
with GWO algorithm [84], and hybrid PSO algorithm with GWO algorithm 
[85]. The optimization problems have been simplified and solved using linear 
or integer programming techniques. Existing fuzzy and intuitionistic fuzzy 
optimization methods, such as FMODI, IFMODI, IFMZMCM, FHM, IFHM, 
and IFRM, can be complicated due to their numerous steps. Usually, fuzzy and 
intuitionistic fuzzy optimization problems are 1st translated to equivalent crisp 
optimization problems. Then second, to solve TORA software, crisp optimization 
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Table 1  Classification of meta-heuristic algorithms

Category Algorithm name References

Evolutionary-based algorithms Differential evolution (DE) [7]
Genetic algorithm (GA) [8]
Genetic programming (GP) [9]
Evolutionary strategy (ES) [10]
Cultural algorithm (CA) [11]
Artificial immune system (AIS) [12, 13]
Biogeography-based optimization (BBO) [14]

Swarm-based algorithms Particle swarm optimization (PSO) [15]
Grey wolf optimization (GWO) [16]
Ant colony optimization (ACO) [17]
Marine predators algorithm (MPA) [18]
Whale optimization algorithm (WOA) [19]
Tunicate search algorithm (TSA) [20]
White shark optimization (WSO) [21]
Horse herd optimization algorithm (HOA) [22]
Snake optimization (SO) [23]
Slime mould algorithm (SMA) [24]
Monarch butterfly optimization (MBO) [25]
Colony predation algorithm (CPA) [26]
Harris hawks optimization (HHO) [27]
Moth search algorithm (MSA) [28]
RUNge Kutta optimization (RUN) [29]
Emperor penguin optimization (EPO) [30]
Orca predation algorithm (OPA) [31]
Artificial hummingbird algorithm (AHA) [32]
Chameleon swarm algorithm (CSA) [33]
Reptile search algorithm (RSA) [34]

Physics-based algorithms Simulated annealing (SA) [35]
Spring search algorithm (SSA) [36]
Gravitational search algorithm (GSA) [37]
Momentum search algorithm (MSA) [38]
Multi-verse optimizer (MVO) [39]
Equilibrium optimizer (EO) [40]
Water cycle algorithm (WCA) [41]
Archimedes optimization algorithm (AOA) [42]
Henry gas solubility optimization (HGSO) [43]
weIghted meaN oF vectOrs (INFO) [44]
Thermal exchange optimization (TEO) [45]
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problems are transformed into equivalent linear programming problems. It uses 
branch and bound methods to solve problems. The use of fuzzy and intuitionistic 
fuzzy sets to solve optimization problems has been in the literature [86–91]. 
The methodology of estimating theory, statistical learning, and data mining is 
known as multivariate adaptive regression splines (MARS) [92]. Nowadays it 
is used in many different domains including science, technology, management, 
and economics [93–118]. Non-parametric regression analysis such as MARS 
does not require certain preconditions on the functional relationships between 
the explanatory and involved response variables. Since it automatically models 
interactions and non-linearities, it can be considered an extension of linear 
models [119]. MARS is unable to completely handle variable uncertainty despite 
all of its accomplishments.

Some of the issues/challenges in the existing literature. A fundamental 
challenge is that achieving global optimum value requires sluggish convergence 
and considerable computing overhead. A lot of algorithms lack a proper 
balance between exploration and exploitation abilities. A few algorithms 

Table 2  Classification of meta-heuristic algorithms

Category Algorithm name References

Human behavior-based algorithms Teaching-learning based optimization (TLBO) [46]
Following optimization algorithm (FOA) [47]
Inperialist competitive algorithm (ICA) [48]
Poor and rich optimization (PRO) [49]
Group teaching optimization (GTO) [50]
League champion algorithm (LCA) [51]
Hunger games search (HGS) [52]
Political optimizer (PO) [53]
Brain storm optimization algorithm (BSOA) [54]
Dual-population social group optimization (DPSGO) [55]
Human eye vision algorithm (HEVA) [56]
Human mental search (HMS) [57]

Hybrid and advanced algorithms Modified whale optimisation algorithm [58]
Sine-cosine Harris hawks optimization [59]
Opposition-based learning cooking algorithm [60]
Hybrid binary ant lion optimizer [61]
Evolved opposition-based mountain gazelle optimizer [62]
Hybrid firefly algorithm with grouping attraction [63]
Improvised grey wolf optimization [64]
Modified hybrid GWO-SCA algorithm [65]
Improved moth-flame optimization [66]
Self-adaptive differential evolution [67]
Enhanced opposition-based grey wolf optimizer [68]
FROBL Aquila optimization algorithm [69]
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converge prematurely to the local optimum, making them unsuitable for real-life 
engineering problems. Another drawback is that the algorithm has a large number 
of algorithm-specific parameters, and picking optimum values requires a high 
computing load.

The main research question in the study of meta-heuristic algorithms is 
whether there is still a need to propose new approaches despite the abundance of 
optimization algorithms created. In answer to this difficulty, the No Free Lunch 
(NFL) theorem [120] says that an algorithm’s strong performance in dealing with 
a set of optimization problems does not ensure the same performance in other 
optimization problems. Therefore, claiming that an algorithm is optimal for all 
optimization applications is inaccurate. The NFL theorem encourages authors to 
propose innovative algorithms to solve optimization problems.

In this paper, a Modified Grey Wolf Optimization Algorithm (MGWO) 
is proposed by modifying the position update equation of the original GWO 
algorithm. The leadership hierarchy is simulated using four different types of grey 
wolves: lambda ( � ), mu ( � ), nu ( � ), and xi ( � ). The MGWO algorithm addresses 
the shortcomings of leading wolves in GWO by enhancing their performance. 
The performance of the proposed algorithm has been evaluated on 23 benchmark 
functions, and the results were compared to popular meta-heuristic algorithms. 
MGWO is applied to three real-life engineering problems, and the results were 
compared to popular meta-heuristic algorithms.

The paper is organized as follows: Sect. 2 provides a brief introduction to the 
GWO algorithm. In Sect. 3 modified version of GWO named MGWO has been 
proposed. Results and discussion on CEC 2005 benchmark functions have been 
presented in Sect. 4. In Sect. 5 MGWO for solving real-life engineering problems 
are presented. Finally, in Sect. 6 we conclude the paper and suggest future works.

2  Grey wolf optimization algorithm (GWO)

The GWO algorithm is inspired by the hierarchy and hunting behavior of grey 
wolf groups. The method optimizes grey wolf populations by mathematically 
replicating the tracking, surrounding, hunting, and attacking processes. The grey 
wolf hunting procedure consists of three steps: social hierarchy stratification, 
encircling the prey, and attacking the prey.

2.1  Social hierarchy

Grey wolves are gregarious canids that live at the top of the food chain and have 
a tight social dominance structure. The best solution is indicated as the lambda 
( � ); the second-best solutions are marked as the mu ( � ); the third-best solutions 
are marked as the nu ( � ); and the other solutions are marked as xi ( � ). Figure 1 
illustrates its dominating social hierarchy.
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2.2  Encircling the prey of GWO

The wolves encircling approach around the prey is mathematically represented by 
the following equations:

where Z is the grey wolf’s position vector, Zp represents the position vectors of the 
prey, t represents the current iteration, and L and N are coefficient vectors.

The vectors L and N are calculated as follows:

where b components are linearly decreasing from 2 to 0 over iterations and r1 , r2 are 
random vectors in [0, 1].

2.3  Attacking the prey of GWO

Grey wolves can recognize possible prey locations, and the search is primarily 
carried out with the assistance of � , � , and � wolves. The best three wolves ( � , � , and 
� ) in the current population are preserved in each iteration, while the positions of 
other search agents are updated based on their position information. The following 
formulas are provided in this regard:

(1)Z(t + 1) =Zp(t) − L × D,

(2)D = ∣ N × Zp(t) − Z(t) ∣,

(3)L =2 ∗ r1 × b − b,

(4)N =2 × r2,

(5)Z1 =Z� − L1 × D�, Z2 = Z� − L2 × D�, Z3 = Z� − L3 × D� ,

(6)D� = ∣ N1 × Z� − Z ∣, D� = ∣ N2 × Z� − Z ∣, D� = ∣ N3 × Z� − Z ∣,

(7)Z(t + 1) =
Z1 + Z2 + Z3

3
,

Fig. 1  Hierarchy of wolves
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In the above equation, Z� , Z� , and Z� are the position vectors of � , � , and � 
wolves, respectively; the calculations of L1 , L2 , and L3 are similar to L , while the 
calculations of N1 , N2 , and N3 are similar to N . The distance between the current 
candidate wolves and the best three wolves is represented by D� , D� , and D�.

Figure 2 shows that the candidate solution eventually falls within the random 
circle formed by � , � , and � . The other contenders then update their locations 
near the prey at random, guided by the current best three wolves. They begin 
searching for prey position information in a disorganized way before focusing on 
assaulting the prey.

3  A modified grey wolf optimization algorithm (MGWO)

A Modified Grey Wolf Optimization Algorithm (MGWO) was inspired by the 
GWO algorithm, which is already discussed in Sect.  2. Then the mathematical 
form of the MGWO algorithm is provided as follows:

Fig. 2  Position updating in the gray wolf optimization (GWO)
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3.1  Encircling the prey of MGWO

The wolves’ encircling approach around the prey is mathematically described by 
providing the following equations as

where Z′ is the grey wolf’s position vector, Z′
p
 represents the position vectors of the 

prey, t represents the current iteration, L′ is coefficient vector, b′ components are 
linearly decreasing from 2 to 0 over iterations and r1 is random vectors in [0, 1].

where N′ is coefficient vector, b′ components are linearly decreasing from 2 to 0 over 
iterations and r2 is random vectors in [0, 1].

3.2  Attacking the prey of MGWO

Grey wolf attacking technique can be mathematically described by approximating 
the prey position using � , � , and � solutions (wolves). As a result, by using this 
estimate, each wolf can update their positions by

where Z′
1
 , Z′

2
 , and Z′

3
 are calculated by using Eq. 13.

where L′
1
 , L′

2
 , L′

3
 , D′

�
 , D′

�
 , and D′

�
 are calculated by using Eq. 14 and 15.

where N′
1
 , N′

2
 , and N′

3
 are calculated by using Eq. 16.

The candidate solution eventually falls within the random circle formed by � , � , and 
� . The other contenders then update their locations near the prey at random, guided 
by the current best three wolves. They begin searching for prey position information 

(8)Z�(t + 1) =Z�
p
(t) − L� × D�

,

(9)L� =2 × r1 × b� − b�,

(10)D� = ∣ N� × Z�
p
(t) − Z�(t) ∣,

(11)N� =2 × r2,

(12)Z�(t + 1) =
2

3
Z�
1
+

1

4
Z�
2
+

1

12
Z�
3
,

(13)Z�
1
= Z�

�
− L�

1
× D�

�
, Z�

2
= Z�

�
− L�

2
× D�

�
, Z�

3
= Z�

�
− L�

3
× D�

�
,

(14)L�
1
=2 × r�

1
× b� − b�, L�

2
= 2 × r�

2
× b� − b�, L�

3
= 2 × r�

3
× b� − b�,

(15)D�
�
= ∣ N�

1
× Z�

�
− Z� ∣, D�

�
= ∣ N�

2
× Z�

�
− Z� ∣, D�

�
= ∣ N�

3
× Z�

�
− Z� ∣,

(16)N�
1
= 2 × r��

1
, N�

2
= 2 × r��

2
, N�

3
= 2 × r��

3
,
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in a disorganized way before focusing on assaulting the prey. The pseudo code of 
the MGWO algorithm is presented in Algorithm 1. The flowchart of the MGWO is 
given in Fig. 3.
Algorithm 1  Pseudo-code of the MGWO algorithm.

Fig. 3  Flowchart of MGWO
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3.3  Computational complexity

The computational complexity of the proposed MGWO algorithm depends on three 
main processes: initialization, evaluation of the fitness function, and updating each 
particle. The computational complexity of the basic process with a n particle is O(n), 
and updating the MGWO mechanism is equal to O(M × n) + O(M × n × D) , where 
M signifies the maximum number of iterations and D signifies the dimension of the 
problems. Therefore, the total computational complexity of the proposed MGWO is 
equals O(n × (M +M × D + 1)).

4  Results and discussion

In this section, to analyze the performance of the MGWO algorithm, seven uni-
modal test functions, six multi-modal optimization functions, and 10 fixed-
dimensional multi-modal optimization functions are selected. Table  4 lists these 
functions’ precise expressions, dimensions, search space, and optimal values. The 
uni-modal test functions are represented by F1–F7, the multi-modal test functions by 
F8–F13, and the fixed dimensional multi-modal test functions by F14–F23. The uni-
modal test function is primarily used to calculate the MGWO’s convergence speed 
and accuracy of the solution. The primary purpose of the multi-modal test function 
is to gauge the MGWO’s global surveying capability. To increase the experiment’s 
accuracy, the six chosen algorithms use identical experimental parameters: swarm 
size (n = 30), dimension (D = 30), maximum number of iterations (M = 1000), each 
algorithm is run 30 times independently and the results are recorded. The values set 
for the control parameters of the competitor algorithms are given in Table 3. The 

Table 3  The values set for 
the control parameters of the 
competitor algorithms

Algorithm Parameter Value

MGWO l [− 1, 1]

r [0, 1]
PSO C1 1.5

C2 2
W 0.3

TSA Pmin 1
Pmax 4

SSA Leader position update 
probability

0.5

MVO WEP_Max 1
WEP_Min 0.2

GWO l [− 1, 1]

r [0, 1]
IGWO l [− 1, 1]

r [0, 1]
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Table 4  Twenty-three test functions

Function Dim Limits fmin

F1(c) =
∑n

i=1
ci

2 30 [− 100, 100] 0
F2(c) =

∑n

i=1
�c� + ∏n

i
�ci � 30 [− 10, 10] 0

F3(c) =
∑n

i=1
(
∑i

j=1
cj )

2 30 [− 100, 100] 0

F4(c) = maxi
{|ci|, 1 ≤ i ≤ n

}
30 [− 100, 100] 0

F5(c) =
∑n−1

i=1
[100(ci+1 − c2

i
)2 + (ci − 1)2] 30 [− 30, 30] 0

F6(c) =
∑n

i=1
([ci + 0.5])2 30 [− 100, 100] 0

F7(c) =
∑n

i=1
ic4

i
+ random[0, 1) 30 [− 1.28, 1.28] 0

F8(c) =
∑n

i=1
−ci sin (

√�ci�) 30 [− 500, 500] − 12569.5

F9(c) =
∑n

i=1
[c2

i
− 10 cos (2�ci) + 10] 30 [− 5.12, 5.12] 0

F10(c) = −20exp(−0.2

�
1

n

∑n

i=1
c2
i
)

−exp(
1

n

∑n

i=1
cos (2�ci)) + 20 + e 30 [− 32, 32] 0

F11(c) =
1

4000

∑n

i=1
c2
i
−
∏n

i=1
cos (

ci√
i
) + 1 30 [− 600, 600] 0

F12(c) =
�

n
10 sin �y1)

+
∑n−1

i=1
(yi − 1)2[1 + 10sin2(�yi+1)] + (yn − 1)2

+
∑n

i=1
u(ci, 10, 100, 4) 30 [− 50, 50] 0

yi = 1 +
ci+1

4

u(ci, a, k,m) =

⎧⎪⎨⎪⎩

k(ci − a)m ci > a

0 − a < ci < a

k(−ci − a)m ci < −a

F13(c) = 0.1{sin2(3�c1) +
∑n

i=1
(ci − 1)2[1 + sin2(3�ci + 1)]

+(cn − 1)2[1 + sin2(2�cn)} +
∑n

i=1
u(ci, 5, 100, 4) 30 [− 50, 50] 0

F14(c) = (
1

500
+
∑25

j=1

1

j+
∑2

i=1
(ci−aij)

6
)
−1 2 [− 65, 65] 1

F15(c) =
∑11

i=1
[ai −

c1(b
2

i
+bic2)

b2
i
+bic3+c4

]2 4 [− 5, 5] 0.0003

F16(c) = 4c2
1
− 2.1c4

1
+

1

3
c6
1
+ c1c2 − 4c2

2
+ 4c4

2
2 [−5, 5] −1.0316

F17(c) = (c2 −
5.1

4�2 c
2

1
+

5

�
c1 − 6)

2
+ 10(1 −

1

8�
) cos c1 + 10

2 [− 5, 5] 0.398

F18(c) = [1 + (c1 + c2 + 1)2(19 − 14c1+

3c2
1
− 14c2 + 6c1c2 + 3c2

2
)]

×[30 + (2c1 − 3c2)
2(18 − 32c1 + 12c2

1
+ 48c2 − 36c1c2 + 27c2

2
)] 2 [− 2, 2] 3

F19(c) = −
∑4

i=1
biexp(−

∑3

j=1
aij(cj − pij)

2) 3 [1, 3] − 3.86

F20(c) = −
∑4

i=1
biexp(−

∑6

j=1
aij(cj − pij)

2) 6 [0, 1] − 3.32

F21(c) = −
∑5

i=1
[(C − ai)(C − ai)

T + bi]
−1 4 [0, 10] − 10.1532

F22(c) = −
∑7

i=1
[(C − ai)(C − ai)

T + bi]
−1 4 [0, 10] − 10.4028

F23(c) = −
∑10

i=1
[(C − ai)(C − ai)

T + bi]
−1 4 [0, 10] − 10.5363
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experiments are performed on Windows 11, Intel Core i3, 2.10GHz, 8.00 GB RAM, 
MATLAB R2022b (Table 4).

4.1  Sensitivity analysis

The proposed MGWO algorithm employs two parameters, i.e., the number of grey 
wolves and the maximum number of iterations.

4.2  Number of grey wolves

The MGWO algorithm was simulated for different values of grey wolf (i.e., 10, 15, 
20, 25, 30). Figure  4 shows the variations of different numbers of search agents 
on benchmark test functions. Figure 4 shows that the value of the fitness function 
reduces as the number of search agents rises.

4.3  Maximum number of iterations

The MGWO algorithm was run for different numbers of iterations. The values of 
Maximum iteration used in experimentation are 200, 400, 600, 800, and 1000. 
Figure  5 demonstrates the impact of the number of iterations on benchmark test 

Fig. 4  Sensitivity analysis of the proposed MGWO algorithm for the number of grey wolves
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functions. As the number of iterations increases, the MGWO algorithm converges to 
the optimum.

4.4  In comparison to other algorithms

To further evaluate the performance of the MGWO, the MGWO algorithm was 
tested on 23 benchmark functions, and the results were compared with the PSO 
[15], TSA [20], SSA [121], MVO [39], GWO [16], and IGWO [122] algorithms. 
Each algorithm is evaluated using the average values and standard deviation after 
30 runs, the solution with the highest accuracy is bolded in the table. Tables 5 and 
6 displays the results of the 23 test functions. The MGWO’s convergence accuracy 
and optimization capacity can be seen in the average values and standard deviation 
shown in Tables 5 and 6. When solving the F1–F5 and F7 functions for the seven 
uni-modal functions, the MGWO performs better in terms of accuracy and standard 
deviation, even though the optimization accuracy falls short of the theoretically 
ideal value of 0. When solving the F9 and F11 functions, the optimization accuracy 
for the six multi-modal functions reaches the theoretical optimal value of 0, and the 
algorithm’s great robustness and precision of the solution are clearly demonstrated. 
Meanwhile, when solving the F8 and F10 functions, the MGWO also yields a better 
result when compared to other optimization techniques. When it comes to the ten 

Fig. 5  Sensitivity analysis of the proposed MGWO algorithm for the number of iterations
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fixed dimensional multi-modal functions, F14, F15, and F20–F23 outperforms 
other algorithms in terms of value, while the remaining functions’ outcomes mostly 
agree with the contrast algorithm’s.

4.5  Statistical analysis

This subsection presents a statistical analysis of the performance of competitor 
algorithms and MGWO to establish whether or not MGWO has a statistically 
significant advantage. The Wilcoxon rank sum test [123] is utilized to ascertain the 
statistically significant difference between the average of two data samples. Using 
an index defined as a p-value, the Wilcoxon rank sum test is used to establish 

Table 5  The results of the 23 test functions are mentioned in bold; these results are the global best 
solutions

 Functions PSO TSA SSA MGWO

Ave Std Ave Std Ave Std Ave Std

F1 0.000155 0.000208 6.113E−
42

2.22E−41 1.845E−
08

4.009E−
09

1.284E−
60

3.294E−60

F2 0.041444 0.066589 9.712E−
27

7.147E−27 8.541046 23.58543 2.718E−
37

3.142E−37

F3 31.69417 7.391107 3.395E−
07

0.000001231 850.2645 560.3619 1.753E−
14

6.39E−14

F4 0.84832 0.231127 0.044329 0.055212 11.47617 4.679967 9.856E−
15

1.107E−14

F5 71.26033 56.07651 28.72735 0.625842 185.6412 312.1713 27.13666 1.06715
F6 0.000183 0.000249 3.837973 0.583829 1.894E−

08
4.241E−
09

1.134553 0.324337

F7 0.092081 0.022263 0.006225 0.001512 0.139053 0.044611 0.000606 0.000395
F8 − 6610.02 709.0768 − 5979.17 657.4813 − 46074.8 10101.01 − 9941.92 548.6993
F9 56.13828 13.6469 192.6031 58.19319 72.30015 21.43404 0 0
F10 0.51122 0.582879 0.83678 1.423064 2.318048 0.803747 8.73E−15 2.52E−15
F11 0.016364 0.017539 0.010615 0.010982 0.009364 0.007439 0 0
F12 0.020742 0.057099 9.065166 4.51854 7.53672 4.261936 0.077354 0.031404
F13 0.00296 0.00493 2.82514 0.412012 11.73447 12.63357 0.961357 0.329458
F14 3.484566 3.485953 7.814166 5.521635 1.19602 0.753589 0.998 4.516E−16
F15 0.000873 0.000154 0.008181 0.015421 0.001063 0.000111 0.000309 0.0000052
F16 − 1.0316 6.775E−

16
− 1.0316 6.775E−16 − 1.0316 6.775E−

16
− 1.0316 6.775E−16

F17 0.39789 1.693E−
16

0.397914 0.000019 0.39789 1.693E−
16

0.39789 1.693E−16

F18 3 0 8.4 20.55035 3 0 3 0
F19 − 3.8628 3.161E−

15
− 3.86216 0.001974 − 3.8628 3.161E−

15
− 3.8628 3.161E−15

F20 − 3.24273 0.057008 − 3.15373 0.397481 − 3.25371 0.065302 − 3.322 1.806E−15
F21 − 7.20113 3.304531 − 6.228666 3.637145 − 6.978966 3.53603 − 10.1524 0.00055
F22 − 8.07678 3.39022 − 6.98956 3.542498 − 7.974533 3.108462 − 10.4022 0.00047
F23 − 8.50334 2.975559 − 7.56722 3.539034 − 7.292253 3.606672 − 10.5355 0.00043



 OPSEARCH

1 3

whether or not the statistical advantage of MGWO over any of the competing 
algorithms is significant. Two-tailed t-tests [124] have been used to compare 
different statistical outcomes at a consequence of 0.05. The t values are determined 
with the help of average and std values. A -t value indicates that the statistical 

Table 6  The results of the 23 test functions are mentioned in bold; these results are the global best 
solutions

 Functions MVO GWO IGWO MGWO

Ave Std Ave Std Ave Std Ave Std

F1 0.536762 0.105211 2.441E−
50

4.034E−
50

9.507E−52 2.192E−
51

1.284E−
60

3.294E−
60

F2 0.474956 0.160011 1.076E−
29

8.037E−
30

2.593E−32 2.252E−
32

2.718E−
37

3.142E−
37

F3 91.28513 35.4451 9.972E−
12

3.368E−
11

1.631E−07 4.918E−
07

1.753E−
14

6.39E−14

F4 1.366814 0.393004 3.95E−12 3.261E−
12

2.994E−09 4.114E−
09

9.856E−
15

1.107E−
14

F5 177.8109 148.2866 26.94643 0.642726 23.22303 0.218961 27.13666 1.06715
F6 0.483774 0.132243 0.928531 0.452457 0.0000011 9.553E−

07
1.134553 0.324337

F7 0.024403 0.007886 0.001334 0.000848 0.001984 0.000736 0.000606 0.000395
F8 − 7906.93 644.4043 − 5987.92 737.3029 − 5925.33 785.0471 − 9941.92 548.6993
F9 113.9333 25.94823 0.759486 1.97742 22.58737 8.155451 0 0
F10 2.376974 4.735421 1.891E−

14
5.31E−

15
1.607E−14 2.89E−

15
8.73E−
15

2.52E−15

F11 0.674638 0.100008 0.005999 0.011864 0.004427 0.008278 0 0
F12 2.097126 0.888537 0.082644 0.148359 7.884E−08 8.976E−

08
0.077354 0.031404

F13 0.099031 0.058758 0.887274 0.23722 0.013723 0.033489 0.961357 0.329458
F14 0.998 4.516E−

16
7.182926 4.759544 0.998 4.516E−

16
0.998 4.516E−

16
F15 0.010113 0.016749 0.005721 0.008982 0.000368 0.000232 0.000309 0.0000052
F16 − 1.0316 6.775E−

16
− 1.0316 6.775E−

16
− 1.0316 6.775E−

16
− 1.0316 6.775E−

16
F17 0.39789 1.693E−

16
0.397898 0.000030 0.39789 1.693E−

16
0.39789 1.693E−

16
F18 3 0 3 0 3 0 3 0
F19 − 3.8628 3.161E−

15
− 3.86052 0.003228 − 3.8628 3.161E−

15
− 3.8628 3.161E−

15
F20 − 3.26598 0.060909 − 3.2534 0.085244 − 3.29822 0.048373 − 3.322 1.806E−

15
F21 − 8.46286 2.431177 − 9.81278 1.293253 − 9.1202 2.04485 − 10.1524 0.00055
F22 − 7.11098 3.243966 − 10.4025 0.000243 − 10.4029 7.226E−

15
− 10.4022 0.00047

F23 − 8.91722 2.799761 − 9.99496 2.058642 − 10.5364 9.033E−
15

− 10.5355 0.00043
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outcomes of the MGWO optimization mistakes are significantly less, and vice 
versa. The corresponding t value is highlighted if the difference is a statistically 
significant error. The symbols +∕ = ∕− represent that MGWO wins functions, ties 
functions, and loses functions. The statistical outcomes of the optimization mistakes 
demonstrate that MGWO has much superior total achievement when compared with 
the other algorithms. Tables 7 and 8 present results of the Wilcoxon rank-sum test 
and t-test on 23 benchmark functions and validation of the Wilcoxon rank-sum test 
and t-test on 23 benchmark functions comparing the performance of competing 
algorithms with MGWO. MGWO outperforms the corresponding algorithm 
statistically in situations where the p-value and t-value are less than 0.05, according 
to these data.

4.6  Convergence analysis

Figures 6, 7, and 8 displays the convergence graph of MGWO and other algorithms. 
As illustrated in Figs.  6,  7, and  8 the suggested method in uni-modal functions 
adheres to a certain pattern that prioritizes the exploitation stage (functions F1 and 
F3). The proposed method exhibits a distinct pattern in multi-modal functions with 
numerous local optimal values. It gives more consideration to the early algorithmic 
stages of the exploration process. Nevertheless, exploration is carried out in broken 
form (functions F12 and F13) during the algorithm’s final stages, which are often the 
exploitation phase. The suggested algorithm offers a superior pattern of convergence 
for almost all functions.

5  MGWO for solving real‑life engineering problems

This section evaluates the proposed algorithm performance in three real-life 
engineering problems using constrained engineering benchmarks. The tension/
compression spring, the gear train, and the three-bar truss are all part of the 
engineering design problems. The MGWO runs independently for each engineering 
problem  30 times, with a selected grey wolf population size of 30, with 1000 
iterations, and a number of function evaluations (NFEs) of 15,000.

5.1  Tension/compression spring design problem

This problem aims to optimize the weight of a tension/compression spring [125], as 
shown in Fig. 9. The problem has constraints on minimum deflection, shear stress, 
surge frequency, outside diameter limits, and design variables. The design variables 
are the mean coil diameter D, the wire diameter d, and the number of active coils 
N. Table  9 presents the outcomes of this experiment. The MGWO algorithm 
outperformed other algorithms in this problem.
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5.2  Gear train design problem

Sandgren presented the gear train design problem [126, 127], an unconstrained 
discrete problem in mechanical engineering. This benchmark task aims to minimize 
the gear ratio, which is the ratio of the angular velocity of the output shaft to the 
input shaft. The number of teeth of gears C1 , C2 , C3 , and C4 are considered as the 
design variables, as shown in Fig.  10. Table  10 presents the outcomes of this 
experiment. The MGWO algorithm outperformed other algorithms in this problem.

Fig. 6  Convergence graph of MGWO and other algorithms
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5.3  Three‑bar truss design problem

This optimization problem from civil engineering has a confined and troublesome 
space [128]. The primary goal of this challenge is to reduce the weight of bar 
constructions. The restrictions for this problem are determined by the stress 
constraints of each bar. The resulting problem contains a non-linear objective 
function and three non-linear constraints, as shown in Fig.  11. The results are 
presented in Table  11 The proposed method successfully identified the optimal 
value for the problem.

Fig. 7  Convergence graph of MGWO and other algorithms



1 3

OPSEARCH 

Fig. 8  Convergence graph of MGWO and other algorithms

Fig. 9  The design of the tension/compression spring problem

Table 9  The comparison outcomes of the tension/compression spring problem

Best result highlighted in bold

Algorithms Optimal values for variables Optimum weight

D d N

MGWO 0.051437039 0.350447807 11.68029942 0.012684
TSA 0.057637718 0.517253228 5.72736214 0.013278
SSA 0.13678061 1.432553267 1.089018486 7.63E+14
MVO 0.069209835 0.941963233 2.026422819 0.018167
GWO 0.05 0.317347426 14.04051804 0.012726
IGWO 0.050388413 0.326167535 13.34326875 0.012706
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6  Conclusion

The original GWO algorithm has premature convergence and poor accuracy while 
solving global optimization problems. In this study, a modified GWO is proposed 
to overcome the shortcomings. The MGWO algorithm is proposed by modifying 
the position update equation of the original GWO algorithm. We investigated 23 
functions with various features, including uni-modal, multi-modal, and fixed-
dimensional multi-modal, and compared the outcomes to six algorithms. The 
experimental results indicate that the MGWO algorithm outperforms compare with 
six different algorithms in terms of optimization performance and stability. Then 
three real-life engineering optimization design problems (tension/compression 
spring, gear train, and three-bar truss) are solved using various objective functions, 

Fig. 10  The design of the gear train problem

Table 10  The comparison outcomes of the gear train problem

Best result highlighted in bold

Algorithms Optimal values for variables Optimum weight

C1 C2 C3 C4

MGWO 43.23451442 19.48161573 16.80898646 52.49664159 9.444E−15
TSA 41.38908813 14.89380456 22.81969856 56.91350992 1.153E−11
SSA 50.80890822 14.00937474 29.37997485 42.34395302 0.0022119
MVO 30.42669549 15.51261593 12 42.40446052 1.896E−12
GWO 60 30.57637562 15.04813329 53.1507917 1.386E−12
IGWO 59.38921756 13.10291292 12.58277378 19.24141193 2.135E−12
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constraint conditions, and features. Meanwhile, the Wilcoxon rank-sum test and 
t-test were used to evaluate the results of the MGWO algorithm. The experimental 
results demonstrate that the MGWO algorithm outperforms other comparison 
algorithms and is capable of dealing with engineering design problems. However, 
the proposed MGWO algorithm has shown insignificant and mediocre results for 
one uni-modal (F6) and two multi-modal (F12 and F13) functions. In future work, 
the MGWO suggests several improvements, such as the inclusion of adaptive inertia 
factors, image segmentation, feature selection, levy flight distribution, binary, and 
multi-objective problems.
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