
Vol:.(1234567890)

OPSEARCH (2024) 61:1404–1440
https://doi.org/10.1007/s12597-023-00720-6

1 3

THEORETICAL ARTICLE

Confidence Picture fuzzy hybrid aggregation operators 
and its application in multi criteria group decision making

Tanuja Punetha1 · Komal1 

Accepted: 27 December 2023 / Published online: 3 February 2024 
© The Author(s), under exclusive licence to Operational Research Society of India 2024

Abstract
A Picture fuzzy set (PFS) is a set used to quantify uncertainty with the condition 
that the sum of degrees of the membership, the neutral membership, and the non-
membership is equal to or less than one. Utilizing PFS and decision makers’ degrees 
of familiarity with the decision making problem in terms of confidence level, the 
paper proposes some novel aggregating operators such as confidence Picture fuzzy 
weighted averaging, confidence Picture fuzzy ordered weighted averaging, confi-
dence Picture fuzzy hybrid averaging, confidence Picture fuzzy weighted geometric, 
confidence Picture fuzzy ordered weighted geometric and confidence Picture fuzzy 
hybrid geometric. Some desirable properties are also discussed. Finally, a multi cri-
teria group decision making method has been presented by utilizing the proposed 
aggregating operators and applying it to solve a green supplier selection problem. 
Sensitivity analysis has been conducted to examine the effect of different combina-
tions of decision makers’ confidence levels on the aggregated values, while com-
parative analysis has also been conducted to validate the consistency of the proposed 
aggregation operators over some other existing operators. Results are computed, tab-
ulated, and plotted graphically. Some concluding remarks are also provided.
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1 Introduction

Decision making is the cognitive process generally used in upstream of both indus-
tries and academia resulting in the selection of a course of action among a set of 
alternative scenario. In other words, decision making is the study of identifying and 
choosing alternatives based on the values and preferences of the decision maker. 
Analysis of individual decision is concerned with the logic of decision making (or 
reasoning) which can be rational or irrational on the basis of explicit assumptions. 
Logical decision making is an important part of all science based professions, where 
specialists apply their knowledge in a given area to make informed decisions. How-
ever, it has been proved that the decision made collectively tend to be more effective 
than decision made by an individual. Therefore group decision making is a collec-
tive decision making process in which individuals’ decisions are grouped together to 
solve a particular problem. But sometimes, when individuals make decisions as part 
of a group, there may be a tendency to exhibit biasness towards discussing shared 
information, as opposed to unshared information. To overcome such kind of error in 
decision making process, highly experience, dynamic and brilliant experts or prac-
titioners are indeed required to participate and they should have much knowledge 
in the concerned area of judgment. Moreover, decision making is a nonlinear and 
recursive process because most of decisions are made by moving back and forth 
between the choice of criteria and the identification of alternatives. Every decision is 
made within a decision environment, which is defined as the collection of informa-
tion, alternatives, values, and preferences available at the time of the decision. Since 
both information and alternatives are constrained because the time and effort to 
gain information or identify alternatives are limited. In fact decisions must be made 
within this constrained environment. Today, the major challenge of decision making 
is uncertainty, and a major goal of decision analysis is to reduce uncertainty. Recent 
robust decision efforts have formally integrated uncertainty and criterion subjectiv-
ity into the decision making process. Due to such kind of uncertainty and subjectiv-
ity involved in evaluative criterion, fuzziness has come into the picture. The area 
of decision making has attracted the interest of many researchers and management 
practitioners, is still highly debated as there are many multi criteria decision mak-
ing (MCDM) methods which may yield different results when they are applied on 
exactly the same data. This leads to a decision making inconsistency. A detailed 
literature survey for the applicability of picture fuzzy set (PFS) in MCDM has been 
provided in the next section.

1.1  Literature survey

In decision science, MCDM is a very useful research topic, which can be defined as 
the solution of best alternatives according to criteria. Due to imprecise data, there 
are various difficulties and uncertainty in MCDM problems. Therefore, to control 
it, Zadeh [33] introduced the definition of a fuzzy set (FS) which contains elements 
with their membership values ranging in the closed interval [0,  1]. Following its 
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invention, it is now widely used in a variety of fields such as linguistics, decision 
making, image processing, cluster analysis, and so on. Unfortunately, a FS does not 
include the non-membership degree of any element from the set under considera-
tion. So, by including membership degree along with non-membership degree, [1] 
defined a novel FS named the “intuitionstic fuzzy set (IFS)” with the condition that 
the sum of these two degrees not exceed one. IFS is important as it has applications 
in different areas such as pattern recognition, image segmentation, decision making, 
etc. After that, researchers showed interest in IFS, and it has become a more popular 
technique to deal with impreciseness and vagueness in the data. Consequently, Atan-
assov studied some operations having interaction, union, compliment, algebraic sum, 
algebraic product, geometric sum, geometric product, score, and accuracy functions 
[30, 31]. Researchers utilised IFS very efficiently, but it has been observed that in 
some real-life problems whose answers are required in the form of yes, no, abstain, 
and refusal, they cannot be handled by IFS. To handle such problems, the concept 
of Picture fuzzy set (PFS) was introduced by Cuong [3], which includes member-
ship, non-membership, and neutral degrees with the condition that the sum of these 
three degrees does not exceed one. PFS is becoming a more popular research topic 
by incorporating multi-techniques for different operators, operational laws, similar-
ity measures, distance measures, score and accuracy functions [4, 22, 26]. Wei [27] 
studied the averaging and geometric aggregation operators under the PFS environ-
ment. As an application of PFS, Singh [19] explored the correlation coefficients, 
Son [20] and Thoung and Son [21] analysed clustering algorithms, while Wei [25] 
evaluated the cross-entropy of decision making problems. Later on, Garg [7] studied 
some Picture fuzzy aggregation operators. Zhang et  al. [34] proposed a MCGDM 
method for solving a green supplier selection problem. Many authors have devel-
oped different aggregation operators for solving a variety of decision-making prob-
lems under the PFS environment [2, 5, 6, 9, 11–13, 15, 17, 18, 23, 24, 28, 29].

1.1.1  Motivation of this study

From literature survey, it has been observed that the decision makers give their 
suggestions based on the performance of alternatives after their aggregation pro-
cess through a suitable aggregating operator on different criteria, which is called 
the familiarity degree or confidence levels of experts with the evaluation objects. 
From the above mentioned literature, it is clearly seen that the noticed aggregating 
operators do not consider familiarity degree in terms of confidence level under a 
PFS environment. However, Yu [32] incorporated the idea of confidence level and 
developed novel aggregation operators under IFS environment. Then, Garg [8] used 
the concept of confidence level under PyFS environment to solve any MCGDM 
problem. Afterthat, Joshi and Gegov [10] integrated the concept of confidence level 
under q-rung orthopair fuzzy set (q-ROFS) environment. Apart from these, some 
of the researchers incorporate confidence levels under different fuzzy environments 
[14, 16]. Their contributions represent significant advancements in the field and 
offer promising avenues for further research in decision-making and aggregation 
methodologies within complex and uncertain contexts.
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1.1.2  Main contribution of this study

From above motivation and findings from the literature survey, it becomes evi-
dent that, to the best of our knowledge, there exists a notable gap in research 
related to the development of aggregation operators specifically modified for the 
PFS environment while considering confidence levels. No prior investigation has 
addressed this specific context. In light of this observed shortcoming, the primary 
objective of this paper is to fill this by introducing a set of innovative aggregation 
operators within the PFS framework that are explicitly designed to incorporate 
confidence levels. This represents the core idea of the study. The central contri-
bution of this paper lies in the creation and thorough exploration of a series of 
aggregation operators collectively referred to as “confidence Picture fuzzy aggre-
gating operators”. These operators are denoted as CPFWA, CPFOWA, CPFHA, 
CPFWG, CPFOWG, and CPFHG. The paper not only defines and formulates 
these operators but also precisely investigates their essential properties, provid-
ing a comprehensive understanding of their behavior and capabilities. Addition-
ally, the paper explores specific scenarios and special cases where these opera-
tors can be effectively applied, further enhancing their practical utility. Moreover, 
recognizing the broader need for practical decision-making tools in the context 
of MCGDM, this paper introduces a dedicated MCGDM method. This method 
leverages the newly developed aggregation operators to address complex group 
decision-making problems, extending the applicability of these operators to real-
world decision scenarios. In summary, this paper not only addresses a notable 
research gap by introducing aggregation operators modified to the PFS environ-
ment with a focus on confidence levels but also goes the extra mile by thoroughly 
examining their properties and applicability, making a valuable contribution to 
the field of decision science. The introduction of the MCGDM method further 
enhances the practical significance of the proposed operators in the realm of 
group decision-making.

The remaining part of the presented paper is as follows: In Sect. 2, some basic 
definitions are provided such as Picture fuzzy set, operational laws, score and 
accuracy functions. Section  3, develops CPFWA, CPFOWA, CPFHA, CPFWG, 
CPFOWG and CPFHG operators with some of their essential properties. In Sect. 4, 
we discussed a MCGDM method. After that, to exemplify the proposed MCGDM 
approach, an illustrative example for selecting green supplier has been discussed in 
Sect. 5. To show the stability and consistency, section also provides sensitivity and 
comparative analyses with some existing aggregation operators. Finally, paper ends 
with some concluding remarks and possible future extensions of this work.

2  Basic concepts

This section briefly recalls some basic concepts about Picture fuzzy set (PFS), score 
and accuracy functions for Picture fuzzy values (PFVs) and arithmetic operational 
laws for Picture fuzzy numbers (PFNs).
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2.1  Picture fuzzy set (PFS)

Definition 1 (Cuong [3]) Let X be a universal set, then the PFS on X is defined as:

where �P(x), �P(x), �P(x) ∈ [0, 1] are called as the degrees of positive, neu-
tral and negative memberships of x in P, respectively with condition 
0 ≤ �P(x) + �P(x) + �P(x) ≤ 1 , ∀x ∈ X . The degree of refusal membership of x in 
P is then defined as �P(x) = 1 − (�P(x) + �P(x) + �P(x)), ∀x ∈ X . For sake of con-
venience, p = (�p, �p, �p) is called as Picture fuzzy number (PFN).

2.2  Score and accuracy functions for PFVs

Definition 2 (Wei [27]) Let p = (�, �, �) be a PFN then (S(p)) and (H(p)) are called 
the score and accuracy functions of p, respectively and defined as S(p) = � − � − � , 
and H(p) = � + � + � . Let p1 and p2 be two PFNs then using score and accuracy 
functions, the ranking of these numbers can be done using following criterion. 

(a) if S(p1) > S(p2) , then p1 ≻ p2
(b) if S(p1) = S(p2) , then 

 (i) if H(p1) > H(p2) , then p1 ≻ p2,
 (ii) if H(p1) < H(p2) , then p1 ≺ p2,
 (iii) if H(p1) = H(p2) , then p1 = p2.

2.3  Arithmetic operational laws for PFNs

Definition 3 (Wei [27]) Let p = (�, �, �) , p1 = (�1, �1, �1) and p2 = (�2, �2, �2) be 
three PFNs, and let � be a positive real number. Then, 

 (i) p1 ⊕ p2 = (𝜇1 + 𝜇2 − 𝜇1𝜇2, 𝜂1𝜂2, 𝜈1𝜈2),

 (ii) p1 ⊗ p2 = (𝜇1𝜇2, 𝜂1 + 𝜂2 − 𝜂1𝜂2, 𝜈1 + 𝜈2 − 𝜈1𝜈2),

 (iii) �p=(1 − (1 − �)�, ��, ��),
 (iv) p�=(��, 1 − (1 − �)�, 1 − (1 − �)�).

Using these basic operations, Picture fuzzy weighted averaging (PFWA) and Picture 
fuzzy weighted geometric (PFWG) aggregation operators for a collection of PFNs 
pj(1 ≤ j ≤ n) are defined as follows(Wei [27]):

(1)P = {(x,�P(x), �P(x), �P(x)) ∶ x ∈ X}
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where � = (�1,�2,… ,�n)
T is the associated normalized weight vector.

3  Novel Picture fuzzy aggregation operator with confidence levels

In this section, we proposed series of weighted averaging and geometric aggrega-
tion operators using arithmetic operational laws under confidence levels in the 
PFS environment.

3.1  CPFWA operator

Definition 4 Let pj = (�pj
, �pj , �pj )(j = 1, 2,… , n) be a collection of n PFNs and lj be 

the associated confidence levels of PFNs pj such that 0 ≤ lj ≤ 1 , then the CPFWA 
operator is defined as:

where � = (�1,�2,… ,�n)
T be the weight vector of PFNs (p1, p2,… , pn) such that 

�j ∈ [0, 1] and 
n∑
j=1

�j = 1.

Remark 1 The CPFWA operator is simplified to the PFWA operator if 
l1 = l2 = ⋯ = ln = 1 , then

Theorem 1 Let pj = (�j, �j, �j), (j = 1, 2,… , n) be n PFNs and lj be the associated 
confidence levels of pj then the aggregated value by CPFWA operator is also a PFN 
and

Proof To prove this theorem, mathematical induction is used.
For n = 2:

PFWA(p1, p2,… , pn) =

(
1 −

n∏
j=1

(1 − �j)
�j ,

n∏
j=1

�
�j

j
,

n∏
j=1

�
�j

j

)

PFWG(p1, p2,… , pn) =

( n∏
j=1

�
�j

j
, 1 −

n∏
j=1

(1 − �j)
�j , 1 −

n∏
j=1

(1 − �j)
�j

)

(2)
CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) =⊕n

j=1
𝜔j(ljpj)

=𝜔1(l1p1)⊕𝜔2(l2p2)⊕⋯⊕𝜔n(lnpn)

(3)PFWA(p1, p2,… , pn) = ⊕n
j=1

𝜔jpj = 𝜔1p1 ⊕𝜔2p2 ⊕⋯⊕𝜔npn.

(4)

CPFWA(⟨l1, p1, ⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) =
�
1 −

n�
j=1

(1 − �j)
lj�j ,

n�
j=1

(�j)
lj�j ,

n�
j=1

(�j)
lj�j

�



1410 OPSEARCH (2024) 61:1404–1440

1 3

Then,

which is true.
Now suppose that Eq. (4) holds for n = k , that is

then, we will prove Eq. (4) for n = k + 1 . By the operational laws, for n = k + 1 we 
have

i.e. Eq. (4) holds for n = k + 1 and as a result, Eq. (4) is true for all n. Then,

(l1�1)p1 =(1 − (1 − �1)
l1�1 , �1

l1�1 , �1
l1�1)

(l2�2)p2 =(1 − (1 − �2)
l2�2 , �2

l2�2 , �2
l2�2)

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩)
= (l1𝜔1)p1 ⊕ (l2𝜔2)p2

= (1 − (1 − 𝜇1)
l1𝜔1 (1 − 𝜇2)

l2𝜔2 , 𝜂
l1𝜔1

1
𝜂
l2𝜔2

2
, 𝜈

l1𝜔1

1
𝜈
l2𝜔2

2
)

CPFWA(⟨l1, p1⟩, ⟨l2, p2, ⟩,… , ⟨lk, pk⟩) =
�
1 −

k�
j=1

(1 − �j)
lj�j ,

k�
j=1

(�j)
lj�j ,

k�
j=1

(�j)
lj�j

�

CPFWA(⟨l1, p1⟩, ⟨l2, p2, ⟩,… , ⟨lk+1, pk+1⟩)
= CPFWA(⟨l1, p1⟩, ⟨l2, p2, ⟩,… , ⟨lk, pk⟩)⊕ (lk+1𝜔k+1)pk+1

= (l1𝜔1)p1 ⊕ (l2𝜔2)p2 ⊕⋯⊕ (lk𝜔k)pk ⊕ (lk+1𝜔k+1)pk+1

=

�
1 −

k�
j=1

(1 − 𝜇j)
lj𝜔j ,

k�
j=1

(𝜂j)
lj𝜔j ,

k�
j=1

(𝜈j)
lj𝜔j

�

⊕

�
1 − (1 − 𝜇k+1)

lk+1𝜔k+1 , (𝜂k+1)
lk+1𝜔k+1 , (𝜈k+1)

lk+1𝜔k+1

�

=

�
1 −

k�
j=1

(1 − 𝜇j)
lj𝜔j + 1 − (1 − 𝜇k+1)

lk+1𝜔k+1

−

�
1 −

k�
j=1

(1 − 𝜇j)
lj𝜔j

�
(1 − (1 − 𝜇k+1)

lk+1𝜔k+1),

k+1�
j=1

(𝜂j)
lj𝜔j ,

k+1�
j=1

(𝜈j)
lj𝜔j

�

=

�
1 −

k+1�
j=1

(1 − 𝜇j)
lj𝜔j ,

k+1�
j=1

(𝜂j)
lj𝜔j ,

k+1�
j=1

(𝜈j)
lj𝜔j

�

CPFWA(⟨l1, p1, ⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

�
1 −

n�
j=1

(1 − �j)
lj�j ,

n�
j=1

(�j)
lj�j ,

n�
j=1

(�j)
lj�j

�
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Now, it will be proved that the aggregated value by CPFWA operator is a PFN.
As pj = (�j, �j, �j) for all j is PFN, thus 0 ≤ �j, �j, �j ≤ 1 and �j + �j + �j ≤ 1.
Therefore,

0 ≤ (1 − �j) ≤ 1 which implies that 0 ≤

n∏
j=1

(1 − �j)
lj�j ≤ 1 and hence 

0 ≤ 1 −

n∏
j=1

(1 − �j)
lj�j ≤ 1 ; 0 ≤

n∏
j=1

�
lj�j

j
≤ 1 and 0 ≤

n∏
j=1

�
lj�j

j
≤ 1.

Again,

Thus, the aggregated value by CPFWA operator is a PFN and this completes the 
proof.   ◻

In the following, an example is provided to illustrate the calculation process.

Example 1 Let p1 = ⟨0.70, (0.56, 0.12, 0.20)⟩ , p2 = ⟨0.90, (0.62, 0.14, 0.23)⟩ and 
p3 = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs with associated confidence levels and 
the weights vector that corresponds to them is � = (0.25, 0.40, 0.35)T , then

By Eq. (4),

Some essential properties followed by CPFWA operator are proved hereafter.

Property 1 (Idempotency) If ⟨lj, pj⟩ = ⟨l0, p0⟩ = ⟨l0, (�0, �0, �0)⟩ for all j i.e. 
�j = �0, �j = �0, �j = �0 and lj = l0 then

1 −

n∏
j=1

(1 − �j)
lj�j +

n∏
j=1

�
lj�j

j
+

n∏
j=1

�
lj�j

j
≤

n∏
j=1

�
lj�j

j
+

n∏
j=1

�
lj�j

j
+

n∏
j=1

�
lj�j

j
= 1

3∏
j=1

(1 − �j)
lj�j =(1 − 0.56)0.70×0.25 × (1 − 0.62)0.90×0.40

× (1 − 0.47)0.80×0.35 = 0.5117

3∏
j=1

(�j)
lj�j =(0.12)0.70×0.25 × (0.14)0.90×0.40 × (0.33)0.80×0.35 = 0.2493

3∏
j=1

(�j)
lj�j =(0.20)0.70×0.25 × (0.23)0.90×0.40 × (0.10)0.80×0.35 = 0.2333

CPFWA(⟨l1, p1, ⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

�
1 −

3�
j=1

(1 − �j)
lj�j ,

3�
j=1

(�j)
lj�j ,

3�
j=1

(�j)
lj�j

�

= (0.4882, 0.2493, 0.2333).

(5)CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) = l0p0



1412 OPSEARCH (2024) 61:1404–1440

1 3

Proof Given that ⟨lj, pj⟩ = ⟨l0, p0⟩ = ⟨l0, (�0, �0, �0)⟩ for all j and 
n∑
j=1

�j = 1 , then by 

Theorem 1,

This completes the proof.   ◻

Example 2 If ⟨lj, pj⟩ = ⟨0.70, (0.56, 0.12, 0.20)⟩ for all j = 1, 2, 3 i.e. 
�j = 0.56, �j = 0.12, �j = 0.20 and lj = 0.70 then

Proof Given that ⟨lj, pj⟩ = ⟨0.70, (0.56, 0.12, 0.20)⟩ for all j = 1, 2, 3 and 
3∑
j=1

�j = 1 , 

then by property 1,

  ◻

Property 2 (Boundedness) Let p− = (minj{lj�j}, maxj{lj�j}, maxj{lj�j}) and 
p+ = (maxj{lj�j}, minj{lj�j}, minj{lj�j}) then

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

�
1 −

n�
j=1

(1 − �0)
l0�j ,

n�
j=1

(�0)
l0�j ,

n�
j=1

(�0)
l0�j

�

=

�
1 − (1 − �0)

n�
j=1

l0�j

, �

n�
j=1

l0�j

0
, �

n�
j=1

l0�j

0

�

=

�
1 − (1 − �0)

l0 , �
l0
0
, �

l0
0

�

= l0p0

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩) = 0.70(0.56, 0.12, 0.20).

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

�
1 −

3�
j=1

(1 − �j)
lj�j ,

3�
j=1

(�j)
lj�j ,

3�
j=1

(�j)
lj�j

�

=

�
1 − (1 − 0.56)

0.70

3�
j=1

�j

, 0.12

0.70

3�
j=1

�j

, 0.20

0.70

3�
j=1

�j�

=

�
1 − (1 − 0.56)0.70, 0.120.70, 0.200.70

�

= 0.70(0.56, 0.12, 0.20).

(6)p− ≤ CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) ≤ p+



1413

1 3

OPSEARCH (2024) 61:1404–1440 

Proof As minj�j ≤ �j ≤ maxj�j, ∀j = 1, 2,… , n , then

Further more,
minj{�j} ≤ {�j} ≤ maxj{�j}, ∀j = 1, 2,… , n this implies that,

Similarly,

Then we have,

⇒ 1 −maxj�j ≤ 1 − �j ≤ 1 −minj�j, ∀j = 1, 2,… , n

⇒

n∏
j=1

(1 −maxj{�j})
lj�j ≤

n∏
j=1

(1 − �j)
lj�j ≤

n∏
j=1

(1 −minj{�j})
lj�j

⇒ (1 −maxj{�j})

n∑
j=1

lj�j

≤

n∏
j=1

(1 − �j)
lj�j ≤ (1 −minj{�j})

n∑
j=1

lj�j

⇒ (1 −maxj{�j})
lj ≤

n∏
j=1

(1 − �j)
lj�j ≤ (1 −minj{�j})

lj

⇒ 1 − (1 −minj{�j})
lj ≤ 1 −

n∏
j=1

(1 − �j)
lj�j ≤ 1 − (1 −maxj{�j})

lj

⇒ minj{lj�j} ≤ 1 −

n∏
j=1

(1 − �j)
lj�j ≤ maxj{lj�j}.

⇒ minj{�j}
lj�j ≤ {�j}

lj�j ≤ maxj{�j}
lj�j

⇒

n∏
j=1

(minj{�j})
lj�j ≤

n∏
j=1

{�j}
lj�j ≤

n∏
j=1

(maxj{�j})
lj�j

⇒ (minj{�j})

n∑
j=1

lj�j

≤

n∏
j=1

{�j}
lj�j ≤ (maxj{�j})

n∑
j=1

lj�j

⇒ (minj{�j})
lj ≤

n∏
j=1

{�j}
lj�j ≤ (maxj{�j})

lj

⇒ (minj{lj�j}) ≤

n∏
j=1

{�j}
lj�j ≤ (maxj{lj�j})

(minj{lj�j}) ≤

n∏
j=1

{�j}
lj�j ≤ (maxj{lj�j})
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Therefore, by definition of score function, we can conclude

This completes the proof.   ◻

Example 3 Let ⟨l1, p1⟩ = ⟨0.70, (0.56, 0.12, 0.20)⟩ , ⟨l2, p2⟩ = ⟨0.90, (0.62, 0.14, 0.23)⟩ 
and ⟨l3, p3⟩ = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs and the weights vector that 
corresponds to them is � = (0.25, 0.40, 0.35)T.

Proof Here,

By using Definition 2, S(p−) = 0.376 − 0.264 − 0.207 = −0.095. Similarly,

By using Definition 2, S(p+) = 0.558 − 0.084 − 0.08 = 0.394.

By using Definition 2,

(minj{lj�j}) ≤ {�j} ≤ (maxj{lj�j}),

(minj{lj�j}) ≤ {�j} ≤ (maxj{lj�j}),

(minj{lj�j}) ≤ {�j} ≤ (maxj{lj�j}).

p− ≤ CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) ≤ p+

p− ≤ CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩) ≤ p+

p− =(min{0.70 × 0.56, 0.90 × 0.62, 0.80 × 0.47},

max{0.70 × 0.12, 0.90 × 0.14, 0.80 × 0.33},

max{0.70 × 0.20, 0.90 × 0.23, 0.80 × 0.10})

=(0.376, 0.264, 0.207)

p+ =(max{0.70 × 0.56, 0.90 × 0.62, 0.80 × 0.47},

min{0.70 × 0.12, 0.90 × 0.14, 0.80 × 0.33},

min{0.70 × 0.20, 0.90 × 0.23, 0.80 × 0.10})

=(0.558, 0.084, 0.08).

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

�
1 −

3�
j=1

(1 − �j)
lj�j ,

3�
j=1

(�j)
lj�j ,

3�
j=1

(�j)
lj�j

�

=

�
1 − (1 − 0.56)0.70×0.25(1 − 0.62)0.90×0.40(1 − 0.47)0.80×0.35,

(0.12)0.70×0.25(0.14)0.90×0.40(0.33)0.80×0.35,

(0.20)0.70×0.25(0.23)0.90×0.40(0.10)0.80×0.35
�

= (0.4882, 0.2493, 0.2333).



1415

1 3

OPSEARCH (2024) 61:1404–1440 

Thus, by ranking results provided in Definition 2, we get

  ◻

Property 3 (Monotonicity) If pj and p′
j
 are two distinct sets of PFNs such that 

pj ≤ p�
j
, ∀j then

Proof Since pj ≤ p�
j
, ∀j,

⇒ �p ≤ ��
p
;�p ≥ ��

p
;�p ≥ ��

p
, ∀j . Then

Furthemore,

Similarly,

Following this way, we have

This completes the proof.   ◻

S(CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)) = 0.4882 − 0.2493 − 0.2333 = 0.0056.

p− ≤ CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩) ≤ p+

(7)
CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) ≤ CPFWA(⟨l1, p�1⟩, ⟨l2, p�2⟩,… , ⟨ln, p�n⟩)

1 − �p ≥ 1 − ��
p

⇒

n∏
j=1

(1 − �p)
lj�j ≥

n∏
j=1

(1 − ��
p
)lj�j

⇒ 1 −

n∏
j=1

(1 − �p)
lj�j ≤ 1 −

n∏
j=1

(1 − ��
p
)lj�j .

�p ≥ ��
p

⇒

n∏
j=1

�p ≥

n∏
j=1

��
p

⇒

n∏
j=1

�p
lj�j ≥

n∏
j=1

��
p

lj�j .

�p ≥ ��
p

⇒

n∏
j=1

�p
lj�j ≥

n∏
j=1

��
p

lj�j

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) ≤ CPFWA(⟨l1, p�1⟩, ⟨l2, p�2⟩,… , ⟨ln, p�n⟩).



1416 OPSEARCH (2024) 61:1404–1440

1 3

Example 4 Let p = {⟨0.70, (0.56, 0.12, 0.20)⟩, ⟨0.90, (0.62, 0.14, 0.23)⟩ , 
⟨0.80, (0.47, 0.33, 0.10)⟩} , p� = {⟨0.70, (0.60, 0.10, 0.18)⟩, ⟨0.90, (0.64, 0.12, 0.20)⟩ , 
⟨0.80, (0.49, 0.29, 0.09)⟩} are two distinct sets of PFNs and the weights vector that 
corresponds to them is � = (0.25, 0.40, 0.35)T.

Then,

Proof For the first collection of PFNs,

Similarly, for the second collection of PFNs,

The score value of first and second collection are 0.0056 and 0.0799, respectively. 
Therefore, by ranking results provided in definition 2, we get

  ◻

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩) ≤ CPFWA(⟨l1, p�1⟩, ⟨l2, p�2⟩, ⟨l3, p�3⟩).

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

�
1 −

3�
j=1

(1 − �j)
lj�j ,

3�
j=1

(�j)
lj�j ,

3�
j=1

(�j)
lj�j

�

=

�
1 − (1 − 0.56)0.70×0.25(1 − 0.62)0.90×0.40(1 − 0.47)0.80×0.35,

(0.12)0.70×0.25(0.14)0.90×0.40(0.33)0.80×0.35,

(0.20)0.70×0.25(0.23)0.90×0.40(0.10)0.80×0.35
�

= (0.4882, 0.2493, 0.2333).

CPFWA(⟨l1, p�1⟩, ⟨l2, p�2⟩, ⟨l3, p�3⟩)

=

�
1 −

3�
j=1

(1 − �j)
lj�j ,

3�
j=1

(�j)
lj�j ,

3�
j=1

(�j)
lj�j

�

=

�
1 − (1 − 0.60)0.70×0.25(1 − 0.62)0.90×0.40(1 − 0.47)0.80×0.35,

(0.10)0.70×0.25(0.12)0.90×0.40(0.29)0.80×0.35,

(0.18)0.70×0.25(0.20)0.90×0.40(0.09)0.80×0.35
�

= (0.5116, 0.2203, 0.2115).

CPFWA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩) ≤ CPFWA(⟨l1, p�1⟩, ⟨l2, p�2⟩, ⟨l3, p�3⟩).
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3.2  CPFOWA operator

Definition 5 Let pj = (�pj
, �pj , �pj )(j = 1, 2,… , n) be a collection of n PFNs and lj be 

the associated confidence levels of PFNs pj such that 0 ≤ lj ≤ 1 . Then CPFOWA 
operator can be defined as:

where, w = (w1,w2,… ,wn)
T be the weights vector of CPFOWA operator such that 

wj ∈ [0, 1] , 
n∑
j=1

wj = 1 and (�(1), �(2),… , �(n)) is a permutation of (1, 2,… , n) such 

that p�(j−1) ≥ p�(j) for any j.

Remark 2 The CPFOWA operator is simplified to the Picture fuzzy ordered weighted 
averaging (PFOWA) operator if l1 = l2 = ⋯ = ln = 1 , then

Theorem  2 Let pj = (�j, �j, �j), j = 1, 2,… , n be n PFNs and lj be the associated 
confidence levels then the aggregated value by CPFOWA operator is also a PFN 
and

Proof The proof of Theorem 2 is same as that of Theorem 1.   ◻

In the following, an example is provided to illustrate the calculation process.

Example 5 Let p1 = ⟨0.70, (0.56, 0.12, 0.20)⟩ , p2 = ⟨0.90, (0.62, 0.14, 0.23)⟩ and 
p3 = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs with associated confidence lev-
els and the weights vector that corresponds to them is w = (0.25, 0.40, 0.35)T . 
Then the score values of each PFN is S(p1) = 0.56 − 0.12 − 0.20 = 0.24 , 
S(p2) = 0.62 − 0.14 − 0.23 = 0.25 and S(p3) = 0.47 − 0.33 − 0.10 = 0.04.

Thus p2 > p1 > p3 and therefore p�(1) = ⟨0.90, (0.62, 0.14, 0.23)⟩ , 
p�(2) = ⟨0.70, (0.56, 0.12, 0.20)⟩ and p�(3) = ⟨0.80, (0.47, 0.33, 0.10)⟩.

Now,

(8)

CPFOWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)
= ⊕n

j=1
wj(l𝛿(j)p𝛿(j))

= w1(l𝛿(1)p𝛿(1))⊕ w2(l𝛿(2)p𝛿(2))⊕⋯⊕ wn(l𝛿(n)p𝛿(n))

(9)PFOWA(p1, p2,… , pn) = ⊕n
j=1

wjp𝛿(j) = w1p𝛿(1) ⊕ w2p𝛿(2) ⊕⋯⊕ wnp𝛿(n).

(10)

CPFOWA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

�
1 −

n�
j=1

(1 − ��(j))
l�(j)wj ,

n�
j=1

(��(j))
l�(j)wj ,

n�
j=1

(��(j))
l�(j)wj

�
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Then by Eq. (10),

3.3  CPFHA operator

Definition 6 Let pj = (�pj
, �pj , �pj )(j = 1, 2,… , n) be a collection of n PFNs and lj be 

the associated confidence levels of PFNs pj such that 0 ≤ lj ≤ 1 . Then CPFHA oper-
ator can be defined as:

where ṗ𝛿(j) is the jth largest weighted PFVs ṗj(ṗj = n𝜔jpj, j = 1, 2,… , n) , 
w = (w1,w2,… ,wn)

T is the weighted vector of the CPFHA operator, such that 

wj ∈ [0, 1] , 
n∑
j=1

wj = 1 . � = (�1,�2,… ,�n)
T be the weights vector of these PFNs 

such that �j ∈ [0, 1] , 
∑n

j=1
�j = 1 and n is called the balancing coefficient using it a 

balance between numbers is maintained.

Remark 3 The CPFHA operator is simplified to the Picture fuzzy hybrid averaging 
(PFHA) operator if l1 = l2 = ⋯ = ln = 1 , then

Theorem  3 Let pj = (�j, �j, �j), j = 1, 2,… , n be n PFNs and lj be the associated 
confidence levels then the aggregated value by CPFHA operator is also a PFN and

3∏
j=1

(1 − ��(j))
l�(j)wj =(1 − 0.62)0.90×0.25 × (1 − 0.56)0.70×0.40

× (1 − 0.47)0.80×0.35 = 0.5350

3∏
j=1

(��(j))
l�(j)wj =(0.14)0.90×0.25 × (0.12)0.70×0.40 × (0.33)0.80×0.35 = 0.2602

3∏
j=1

(��(j))
l�(j)wj =(0.23)0.90×0.25 × (0.20)0.70×0.40 × (0.10)0.80×0.35 = 0.2403

CPFOWA(⟨l1, p1, ⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

�
1 −

3�
j=1

(1 − ��(j))
l�(j)wj ,

3�
j=1

(��(j))
l�(j)wj ,

3�
j=1

(��(j))
l�(j)wj

�

= (0.4649, 0.2602, 0.2403)

(11)

CPFHA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)
= ⊕n

j=1
wj(l𝛿(j)ṗ𝛿(j))

= w1(l𝛿(1)ṗ𝛿(1))⊕ w2(l𝛿(2)ṗ𝛿(2))⊕⋯⊕ wn(l𝛿(n)ṗ𝛿(n))

(12)PFHA(p1, p2,… , pn) = ⊕n
j=1

wjṗ𝛿(j) = w1ṗ𝛿(1) ⊕ w2ṗ𝛿(2) ⊕⋯⊕ wnṗ𝛿(n).
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Proof The proof of Theorem 3 is same as that of Theorem 1.   ◻

Example 6 Let p1 = ⟨0.70, (0.56, 0.12, 0.20)⟩ , p2 = ⟨0.90, (0.62, 0.14, 0.23)⟩ and 
p3 = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs with associated confidence lev-
els and the weights vector that corresponds to them is w = (0.25, 0.40, 0.35)T . 
Then, ṗ1 = (0.4598, 0.2039, 0.2991) , ṗ2 = (0.6869, 0.0945, 0.1714) and 
ṗ3 = (0.4866, 0.3122, 0.0891).

By calculating score values of each PFN, we have S(ṗ1) = −0.0432 , 
S(ṗ2) = 0.4210 and S(ṗ3) = 0.0852.

Thus, p2 > p3 > p1 and therefore p�(1) = ⟨0.90, (0.62, 0.14, 0.23)⟩ , 
p�(2) = ⟨0.80, (0.47, 0.33, 0.10)⟩ and p�(3) = ⟨0.70, (0.56, 0.12, 0.20)⟩.

Now, we have

Then by Eq. (13), we have

3.4  CPFWG operator

Definition 7 Let pj = (�pj
, �pj , �pj )(j = 1, 2,… , n) be a collection of n PFNs and lj be 

the associated confidence levels of PFNs pj such that 0 ≤ lj ≤ 1 . Then CPFWG oper-
ator is defined as:

(13)

CPFHA(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

�
1 −

n�
j=1

(1 − 𝜇ṗ𝛿(j)
)l𝛿(j)wj ,

n�
j=1

(𝜂ṗ𝛿(j) )
l𝛿(j)wj ,

n�
j=1

(𝜈ṗ(j) )
l𝛿(j)wj

�

n∏
j=1

(1 − 𝜇ṗ𝛿(j)
)l𝛿(j)wj =(1 − 0.62)0.90×0.25 × (1 − 0.47)0.80×0.40

× (1 − 0.56)0.70×0.35 = 0.5368

3∏
j=1

(𝜂ṗ𝛿(j) )
l𝛿(j)wj =(0.14)0.90×0.25 × (0.33)0.80×0.40 × (0.12)0.70×0.35 = 0.2680

3∏
j=1

(𝜈ṗ𝛿(j) )
l𝛿(j)wj =(0.23)0.90×0.25 × (0.10)0.80×0.40 × (0.20)0.70×0.35 = 0.2318

CPFHA(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

�
1 −

n�
j=1

(1 − 𝜇ṗ𝛿(j)
)l𝛿(j)wj ,

n�
j=1

(𝜂ṗ𝛿(j) )
l𝛿(j)wj ,

n�
j=1

(𝜈ṗ(j))
l𝛿(j)wj

�

= (0.4631, 0.2680, 0.2318).
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where � = (�1,�2,… ,�n)
T be the weight vector of PFNs pj such that �j ∈ [0, 1] 

and 
n∑
j=1

�j = 1.

Remark 4 The CPFWG operator is simplified to the Picture fuzzy weighted geomet-
ric (PFWG)operator if l1 = l2 = ⋯ = ln = 1 , then

Theorem  4 Let pj = (�j, �j, �j), j = 1, 2,… , n be n PFNs and lj be the associated 
confidence levels of PFNs pj then the aggregated value by applying CPFWG opera-
tor is a PFN and

where �j is the weights vector associate with pj such that �j ∈ [0, 1] and 
n∑
j=1

�j = 1.

Proof   Theorem is proved with the help of mathematical induction. 

(1) First, the conclusion is proved for n = 2 . Since 

 then we have, 

 So, conclusion is true for n = 2.
(2) Now, suppose Eq. (16) holds for n = k , i.e. 

(14)
CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) =⊗n

j=1
(p

lj

j
)𝜔j

=(p
l1
1
)𝜔1 ⊗ (p

l2
2
)𝜔2 ⊗⋯⊗ (pln

n
)𝜔n

(15)PFWG(p1, p2,… , pn) = ⊗n
j=1

p
𝜔j

j
= p

𝜔1

1
⊗ p

𝜔2

2
⊗⋯⊗ p𝜔n

n
.

(16)

CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

� n�
j=1

�
lj�j

j
, 1 −

n�
j=1

(1 − �j)
lj�j , 1 −

n�
j=1

(1 − �j)
lj�j

�

(p1)
l1�1 =(�1

l1�1 , 1 − (1 − �1)
l1�1 , 1 − (1 − �1)

l1�1 )

(p2)
l2�2 =(�2

l2�2 , 1 − (1 − �2)
l2�2 , 1 − (1 − �2)

l2�2 )

CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩) = (p1)
l1𝜔1 ⊗ (p2)

l2𝜔2

=
�
(𝜇1)

l1𝜔1 (𝜇2)
l2𝜔2 , 1 − (1 − 𝜂1)

l1𝜔1 (1 − 𝜂2)
l2𝜔2 , 1 − (1 − 𝜈1)

l1𝜔1(1 − 𝜈2)
l2𝜔2

�

CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨lk, pk⟩)
= (p1)

l1𝜔1 ⊗ (p2)
l2𝜔2 ⊗⋯⊗ (pk)

lk𝜔k

=

� k�
j=1

𝜇
lj𝜔j

j
, 1 −

k�
j=1

(1 − 𝜂j)
lj𝜔j , 1 −

k�
j=1

(1 − 𝜈j)
lj𝜔j

�
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then, we will prove that Eq. (16) also holds for n = k + 1 . By the operational laws, 
we have

i.e. for n = k + 1 , Eq. (16) holds universally. As a result, Eq. (16) is true for all n. 
Then,

In the following, an example is provided to illustrate the calculation process.   ◻

Example 7 Let p1 = ⟨0.70, (0.56, 0.12, 0.20)⟩ , p2 = ⟨0.90, (0.62, 0.14, 0.23)⟩ and 
p3 = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs with associated confidence levels and 
the weights vector that corresponds to them is � = (0.25, 0.40, 0.35)T then

CPFWG(⟨l1, p1⟩, ⟨l2, p2, ⟩,… , ⟨lk+1, pk+1⟩)
= CPFWG(⟨l1, p1⟩, ⟨l2, p2, ⟩,… , ⟨lk, pk⟩)⊗ (pk+1)

lk+1𝜔k+1

= (p1)
l1𝜔1 ⊗ (p2)

l2𝜔2 ⊗⋯⊗ (pk)
lk𝜔k ⊗ (pk+1)

lk+1𝜔k+1

=

� k�
j=1

𝜇
lj𝜔j

j
, 1 −

k�
j=1

(1 − 𝜂j)
lj𝜔j , 1 −

k�
j=1

(1 − 𝜈j)
lj𝜔j

�

⊗

�
(𝜇k+1)

lk+1𝜔k+1 , 1 − (1 − 𝜂k+1)
lk+1𝜔k+1 , 1 − (1 − 𝜈k+1)

lk+1𝜔k+1

�

=

� k+1�
j=1

𝜇
lj𝜔j

j
, 1 −

k�
j=1

(1 − 𝜂j)
lj𝜔j + 1 − (1 − 𝜂k+1)

lk+1𝜔k+1

−

�
1 −

k�
j=1

(1 − 𝜂j)
lj𝜔j

�
(1 − (1 − 𝜂k+1)

lk+1𝜔k+1),

1 −

k�
j=1

(1 − 𝜈j)
lj𝜔j + 1 − (1 − 𝜈k+1)

lk+1𝜔k+1

−

�
1 −

k�
j=1

(1 − 𝜈j)
lj𝜔j

�
(1 − (1 − 𝜈k+1)

lk+1𝜔k+1)

�

=

� k+1�
j=1

𝜇
lj𝜔j

j
, 1 −

k+1�
j=1

(1 − 𝜂j)
lj𝜔j , 1 −

k+1�
j=1

(1 − 𝜈j)
lj𝜔j

�

CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨lnpn⟩)

=

� n�
j=1

�
lj�j

j
, 1 −

n�
j=1

(1 − �j)
lj�j , 1 −

n�
j=1

(1 − �j)
lj�j

�
.
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Then by Eq. (16), we have

Property 4    

(1) (Idempotency)  If pj = p0 = ⟨l0, (�0, �0, �0⟩ for all j i.e. �j = �0, �j = �0, �j = �0 
and lj = l0 then 

(2) (Boundedness)  Let p− = (minj{lj,�j}, maxj{lj, �j}, maxj{lj, �j}) and 
p+ = (maxj{lj,�j}, minj{lj, �j}, minj{lj, �j}) then 

(3) (Monotonicity)  If pj and p′
j
 are two distinct sets of PFNs such that pj ≤ p′

j
 for 

all j then 

3.5  CPFOWG operator

Definition 8 Let pj = (�pj
, �pj , �pj ),(j = 1, 2,… , n) be a collection of n PFNs and lj be 

the associated confidence levels of PFNs pj such that 0 ≤ lj ≤ 1 . Then CPFOWG 
operator is defined as:

3∏
j=1

(�j)
lj�j =(0.56)0.70×0.25 × (0.62)0.90×0.40 × (0.47)0.80×0.35 = 0.6157

3∏
j=1

(1 − �j)
lj�j =(1 − 0.12)0.70×0.25 × (1 − 0.14)0.90×0.40

× (1 − 0.33)0.80×0.35 = 0.8279

3∏
j=1

(1 − �j)
lj�j =(1 − 0.20)0.70×0.25 × (1 − 0.23)0.90×0.40

× (1 − 0.10)0.80×0.35 = 0.8499

CPFWG(⟨l1, p1, ⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

� n�
j=1

�
lj�j

j
, 1 −

n�
j=1

(1 − �j)
lj�j , 1 −

n�
j=1

(1 − �j)
lj�j

�

= (0.6157, 0.1720, 0.1501).

(17)CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) = p0
l0

(18)p− ≤ CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) ≤ p+

(19)
CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) ≤ CPFWG(⟨l1, p�1⟩, ⟨l2, p�2⟩,… , ⟨ln, p�n⟩)
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where w = (w1,w2,… ,wn)
T is the weights vector of CPFOWG operator such that 

wj ∈ [0, 1] , 
n∑
j=1

wj = 1 and (�(1), �(2),… , �(n)) is a permutation of (1, 2,… , n) such 

that p�(j−1) ≥ p�(j) for any j.

Remark 5 The CPFOWG operator is simplified to the Picture fuzzy ordered 
weighted geometric(PFOWG) operator if l1 = l2 = ⋯ = ln = 1 , then

Theorem  5 Let pj = (�j, �j, �j), j = 1, 2,… , n be n PFNs and lj be the associated 
confidence levels then the aggregated value by applying CPFOWG operator is a 
PFN and

Proof The proof of Theorem 5 is the same as that of Theorem 4.   ◻

In the following, an example is provided to illustrate the calculation process.

Example 8 Let p1 = ⟨0.70, (0.56, 0.12, 0.20)⟩ , p2 = ⟨0.90, (0.62, 0.14, 0.23)⟩ and 
p3 = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs with associated confidence lev-
els and the weights vector that corresponds to them is w = (0.25, 0.40, 0.35)T . 
Then the score values of each PFN is S(p1) = 0.56 − 0.12 − 0.20 = 0.24 , 
S(p2) = 0.62 − 0.14 − 0.23 = 0.25 and S(p3) = 0.47 − 0.33 − 0.10 = 0.04.

Thus p2 > p1 > p3 and therefore p�(1) = ⟨0.90, (0.62, 0.14, 0.23)⟩ , 
p�(2) = ⟨0.70, (0.56, 0.12, 0.20)⟩ and p�(3) = ⟨0.80, (0.47, 0.33, 0.10)⟩.

Now, we have

(20)

CPFOWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) =⊗n
j=1

(p
l𝛿(j)

𝛿(j)
)w(j)

=(p
l𝛿(1)

𝛿(1)
)w(1) ⊗ (p

l𝛿(2)

𝛿(2)
)w(2) ⊗⋯⊗ (p

l𝛿(n)

𝛿(n)
)w(n)

(21)PFOWG(p1, p2,… , pn) = ⊗n
j=1

wjp𝛿(j) = p
w1

𝛿(1)
⊗ p

w2

𝛿(2)
⊗⋯⊗ p

wn

𝛿(n)
.

(22)

CPFOWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

� n�
j=1

(��(j))
l�(j)wj , 1 −

n�
j=1

(1 − ��(j))
l�(j)wj , 1 −

n�
j=1

(1 − ��(j))
l�(j)wj

�
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Then by Eq. (22), we have

3.6  CPFHG operator

Definition 9 Let pj = (�pj
, �pj , �pj )(j = 1, 2,… , n) be a set of n PFNs and lj be the 

associated confidence levels of PFNs pj such that 0 ≤ lj ≤ 1 . Then CPFHG operator 
is defined as:

where, ṗ𝛿(j) is the jth largest of the weighted Picture fuzzy values 
ṗj(ṗj = (pj)

n𝜔j , j = 1, 2,… , n) , w = (w1,w2,… ,wn)
T is the weighted vector of the 

CPFHG operator such that wj ∈ [0, 1] , 
n∑
j=1

wj = 1 . � = (�1,�2,… ,�n)
T be the 

weights vector of these PFNs such that �j ∈ [0, 1] , 
n∑
j=1

�j = 1 and n is the balancing 

coefficient, which plays a role of balance.

Remark 6 The CPFHG operator is simplified to the Picture fuzzy weighted geomet-
ric (PFHG) operator if l1 = l2 = ⋯ = ln = 1 , then

3∏
j=1

(��(j))
l�(j)wj =(0.62)0.90×0.25 × (0.56)0.70×0.40 × (0.47)0.80×0.35 = 0.6180

3∏
j=1

(1 − ��(j))
l�(j)wj =(1 − 0.14)0.90×0.25 × (1 − 0.12)0.70×0.40

× (1 − 0.33)0.80×0.35 = 0.8337

3∏
j=1

(1 − ��(j))
l�(j)wj =(1 − 0.23)0.90×0.25 × (1 − 0.20)0.70×0.40

× (1 − 0.10)0.80×0.35 = 0.8600

CPFOWA(⟨l1, p1, ⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

� 3�
j=1

(��(j))
l�(j)wj , 1 −

3�
j=1

(1 − ��(j))
l�(j)wj , 1 −

3�
j=1

(1 − ��(j))
l�(j)wj

�

= (0.6180, 0.1663, 0.1400).

(23)

CPFHG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩) =⊗n
j=1

(ṗ
l𝛿(j)

𝛿(j)
)wj

=(ṗ
l𝛿(1)

𝛿(1)
)w1 ⊗ (ṗ

l𝛿(2)

𝛿(2)
)w2 ⊗⋯⊗ (ṗ

l𝛿(n)

𝛿(n)
)wn

(24)PFHG(p1, p2,… , pn) = ⊗n
j=1

ṗ
wj

𝛿(j)
= ṗ

w1

𝛿(1)
⊗ ṗ

w2

𝛿(2)
⊗⋯⊗ ṗ

wn

𝛿(n)
.
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Theorem 6 Let pj = (�j, �j, �j) , j = 1, 2,… , n be a set of n PFNs and lj be the associ-
ated confidence levels then the aggregated value by applying CPFHG operator is 
also a PFN and

Proof The proof of Theorem 6 is same as that of Theorem 4.   ◻

In the following, an example is provided to illustrate the calculation process.

Example 9 Let p1 = ⟨0.70, (0.56, 0.12, 0.20)⟩ , p2 = ⟨0.90, (0.62, 0.14, 0.23)⟩ and 
p3 = ⟨0.80, (0.47, 0.33, 0.10)⟩ be three PFNs with associated confidence lev-
els and the weights vector that corresponds to them is w = (0.25, 0.40, 0.35)T . 
Then ṗ1 = (0.4598, 0.2039, 0.2991) , ṗ2 = (0.6869, 0.0945, 0.1714) and 
ṗ3 = (0.4866, 0.3122, 0.0891).

By calculating score values of each PFN, we have S(ṗ1) = −0.0432 , 
S(ṗ2) = 0.4210 and S(ṗ3) = 0.0852.

Thus p2 > p3 > p1 and therefore p�(1) = ⟨0.90, (0.62, 0.14, 0.23)⟩ , 
p�(2) = ⟨0.80, (0.47, 0.33, 0.10)⟩ and p�(3) = ⟨0.70, (0.56, 0.12, 0.20)⟩.

Now, we have

Then by Eq. (25), we have

(25)

CPFWG(⟨l1, p1⟩, ⟨l2, p2⟩,… , ⟨ln, pn⟩)

=

� n�
j=1

(𝜇
l𝛿(j)

ṗ𝛿 (j)
)wj , 1 −

n�
j=1

(1 − 𝜂ṗ𝛿(j))
l𝛿(j)wj , 1 −

n�
j=1

(1 − 𝜈ṗ𝛿 (j))
l𝛿(j)wj

�

n∏
j=1

(1 − 𝜇ṗ𝛿(j)
)l𝛿(j)wj =(0.62)0.90×0.25 × (0.47)0.80×0.40 × (0.56)0.70×0.35 = 0.6119

3∏
j=1

(1 − 𝜂ṗ𝛿(j) )
l𝛿(j)wj =(1 − 0.14)0.90×0.25 × (1 − 0.33)0.80×0.40

× (1 − 0.12)0.70×0.35 = 0.8241

3∏
j=1

(1 − 𝜈ṗ𝛿(j) )
l𝛿(j)wj =(1 − 0.23)0.90×0.25 × (1 − 0.10)0.80×0.40

× (1 − 0.20)0.70×0.35 = 0.8631

CPFHG(⟨l1, p1⟩, ⟨l2, p2⟩, ⟨l3, p3⟩)

=

� 3�
j=1

(𝜇ṗ𝛿(j)
)l𝛿(j)wj , 1 −

3�
j=1

(1 − 𝜂ṗ𝛿 (j))
l𝛿(j)wj , 1 −

3�
j=1

(1 − 𝜈ṗ𝛿(j))
l𝛿(j)wj

�

= (0.6119, 0.1759, 0.1369).
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4  MCGDM approach with confidence levels

Let us consider a MCGDM problem having a collection of n distinct alternatives 
B = {B1,B2,… ,Bn} and m criteria D = {D1,D2,… ,Dm} with weights vector 

� = (�1,�2,… ,�m)
T satisfying the condition �j ∈ [0, 1] and 

m∑
j=1

�j = 1 . Assume 

that there are r set of decision makers denoted by A = {A1,A2,… ,Ar} , whose 

weight vector is � = (�1, �2,… , �r)
T satisfying 𝜏s > 0, s = 1, 2,… , r and 

r∑
s=1

�s = 1 

which are evaluating each alternative Bi with respect to the criteria Dj in the form 
of PFNs. The following steps are executed to implement proposed MCGDM 
method for evaluating the best alternative.

Step 1. For each decision maker Ar , collect the information about each alternative 
Bi under the criteria Dj and represent it in the form of PFNs Cs = ⟨ls

ij
, (�s

ij
, �s

ij
, �s

ij
)⟩n×m 

for i = 1, 2,… , n; j = 1, 2,… ,m and s = 1, 2,… , r as

where ls
ij
 , (0 ≤ ls

ij
≤ 1) denotes the decision makers’ level of confidence that they are 

familiar with the subject under discussion.
Step 2. The following transformation is used to normalized distinct types of 

criteria.

Step 3. Aggregate all the r Picture fuzzy decision matrices Cs, s = 1, 2,… r as 
provided by r decision makers into a collective Picture fuzzy decision matrix by 
employing proposed CPFWA operator

or the CPFWG operator

Step 4. Calculate ṗij = n𝜔jpij for PFHA operator or ṗij = (pij)
n𝜔j for PFHG operator.

Step 5. Calculate the values of score S(pij) and accuracy H(pij) for each ṗij 
(i = 1, 2,… , n; j = 1, 2,… ,m).

Step 6. Aggregate PFNs pij by using PFHA operator

Cs
n×m

=

⎛
⎜⎜⎜⎝

⟨ls
11
, (�s

11
, �s

11
, �s

11
)⟩ ⟨ls

12
, (�s

12
, �s

12
, �s

12
)⟩ … ⟨ls

1m
, (�s

1m
, �s

1m
, �s

1m
)⟩

⟨ls
21
, (�s

21
, �s

21
, �s

21
)⟩ ⟨ls

22
, (�s

22
, �s

22
, �s

22
)⟩ … ⟨ls

2m
, (�s

2m
, �s

2m
, �s

2m
)⟩

⋮ ⋮ ⋮ ⋮

⟨ls
n1
, (�s

n1
, �s

n1
, �s

n1
)⟩ ⟨ls

n2
, (�s

n2
, �s

n2
, �s

n2
)⟩ … ⟨ls

nm
, (�s

nm
, �s

nm
, �s

nm
)⟩

⎞⎟⎟⎟⎠

(26)Q = [qij] =

� ⟨lij, (�ij, �ij, �ij)⟩, for benifit criteria Dj

⟨lij, (�ij, �ij,�ij)⟩, for cost criteria Dj

pij = CPFWA(q1
ij
, q2

ij
,… , qr

ij
) =

(
1 −

r∏
s=1

(1 − �s
ij
)
ls
ij
�s ,

r∏
s=1

(�s
ij
)
ls
ij
�s ,

r∏
s=1

(�s
ij
)
ls
ij
�s

)

pij = CPFWG(q1
ij
, q2

ij
,… , qr

ij
) =

( r∏
s=1

(�s
ij
)
ls
ij
�s , 1 −

r∏
s=1

(1 − �s
ij
)
ls
ij
�s , 1 −

r∏
s=1

(1 − �s
ij
)
ls
ij
�s

)
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or the PFHG operator

Step 7. Calculate the values of score S(pi) and accuracy H(pi) for each alternative 
Bi(i = 1, 2,… , n).

Step 8. Finally, all the alternatives are ranked based on the score and accuracy 
values, and best alternative is then select.

The steps of proposed MCGDM problem is depicted in Fig. 1.

pi = PFHA(pi1, pi2,… , pim) =

(
1 −

m∏
j=1

(1 − 𝜇ṗ𝛿(ij)
)wj ,

m∏
j=1

(𝜂ṗ𝛿(ij) )
wj ,

m∏
j=1

(𝜈ṗ𝛿(ij) )
wj

)

pi = PFHG(pi1, pi2,… , pim) =

( m∏
j=1

ṗ
wj

𝛿(ij)
, 1 −

m∏
j=1

(1 − 𝜂ṗ𝛿(ij) )
wj , 1 −

m∏
j=1

(1 − 𝜈ṗ𝛿(ij) )
wj

)

Fig. 1  Flow chart for proposed MCGDM method
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5  Illustrative example

To illustrate the proposed method, a green supplier selection problem is adapted 
from Zhang et  al. [34]) and analysed by using developed novel aggregating 
operators. In this problem, there are five alternatives Bi(i = 1, 2, 3, 4, 5) . Three 
experts Cs(s = 1, 2, 3) are working as decision makers, whose weights vector is 
� = (0.35, 0.2, 0.45)T . There are mainly four criteria Dj, (j = 1, 2, 3, 4) is considered 
with weights vector � = (0.25, 0.18, 0.35, 0.22)T to assess these green suppliers hav-
ing following details: 

1. Price factor D1,
2. Delivery factor D2,
3. Environmental factors D3 and
4. Product quality factor D4.

5.1  Procedural steps for group decision making

5.1.1  CPFWA operator

Step 1. The experts provide information in the form of PFN matrices 
Qs = ⟨ls

ij
, (�s

ij
, �s

ij
, �s

ij
)⟩ (s = 1, 2, 3) , with weights vector � = (0.35, 0.2, 0.45)T . The 

provided information is presented in Tables 1, 2 and 3.
Step 2. All the criteria are benefit type, so normalization step is not required.

Table 1  Picture fuzzy decision matrix given by expert C1

Alter-
native

D1 D2 D3 D4

B1 ⟨0.70, (0.56 0.12 0.20)⟩ ⟨0.70, (0.62 0.15 0.23)⟩ ⟨0.70, (0.47 0.33 0.10)⟩ ⟨0.70, (0.51 0.34 0.15)⟩
B2 ⟨0.70, (0.43 0.25 0.18)⟩ ⟨0.70, (0.50 0.28 0.22)⟩ ⟨0.70, (0.54 0.29 0.17)⟩ ⟨0.70, (0.64 0.17 0.19)⟩
B3 ⟨0.70, (0.60 0.32 0.08)⟩ ⟨0.70, (0.58 0.12 0.30)⟩ ⟨0.70, (0.62 0.11 0.28)⟩ ⟨0.70, (0.80 0.15 0.05)⟩
B4 ⟨0.70, (0.58 0.22 0.10)⟩ ⟨0.70, (0.61 0.13 0.26)⟩ ⟨0.70, (0.55 0.27 0.18)⟩ ⟨0.70, (0.67 0.26 0.07)⟩
B5 ⟨0.70, (0.50 0.13 0.37)⟩ ⟨0.70, (0.65 0.10 0.25)⟩ ⟨0.70, (0.76 0.00 0.24)⟩ ⟨0.70, (0.47 0.35 0.18)⟩

Table 2  Picture fuzzy decision matrix given by expert C2

Alter-
native

D1 D2 D3 D4

B1 ⟨0.90, (0.48 0.35 0.17)⟩ ⟨0.90, (0.53 0.27 0.10)⟩ ⟨0.90, (0.61 0.28 0.19)⟩ ⟨0.90, (0.80 0.15 0.05)⟩
B2 ⟨0.90, (0.53 0.27 0.10)⟩ ⟨0.90, (0.64 0.17 0.19)⟩ ⟨0.90, (0.43 0.37 0.20)⟩ ⟨0.90, (0.23 0.22 0.65)⟩
B3 ⟨0.90, (0.66 0.20 0.14)⟩ ⟨0.90, (0.59 0.21 0.20)⟩ ⟨0.90, (0.18 0.11 0.77)⟩ ⟨0.90, (0.73 0.17 0.10)⟩
B4 ⟨0.90, (0.41 0.28 0.31)⟩ ⟨0.90, (0.18 0.32 0.50)⟩ ⟨0.90, (0.29 0.32 0.39)⟩ ⟨0.90, (0.49 0.34 0.17)⟩
B5 ⟨0.90, (0.07 0.39 0.64)⟩ ⟨0.90, (0.27 0.28 0.45)⟩ ⟨0.90, (0.55 0.27 0.08)⟩ ⟨0.90, (0.68 0.14 0.18)⟩
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Step 3. Aggregate all the three Picture fuzzy decision matrices Cs(s = 1, 2, 3) 
into the single comprehensive Picture decision matrix C by employing proposed 
CPFWA operator, where � = (0.35, 0.2, 0.45)T . The computed values are shown in 
Table 4.

Step 4. Calculate ṗij = n𝜔jpij , where � = (0.25, 0.18, 0.35, 0.22)T , then we have

Step 5. Calculate the score values:

ṗ11 =(0.4377, 0.2946, 0.2975), ṗ12 = (0.5010, 0.2266, 0.2557),

ṗ13 =(0.4429, 0.3228, 0.2766), ṗ14 = (0.3957, 0.3332, 0.3091),

ṗ15 =(0.2527, 0.2762, 0.5870), ṗ21 = (0.4404, 0.3486, 0.3671),

ṗ22 =(0.3848, 0.4237, 0.3399), ṗ23 = (0.3453, 0.3840, 0.4886),

ṗ24 =(0.3759, 0.3914, 0.4408), ṗ25 = (0.3233, 0.4271, 0.4591),

ṗ31 =(0.5618, 0.2467, 0.1424), ṗ32 = (0.4690, 0.0000, 0.2899),

ṗ33 =(0.6472, 0.0998, 0.2164), ṗ34 = (0.5441, 0.2429, 0.1793),

ṗ35 =(0.7005, 0.0000, 0.1404), ṗ41 = (0.4877, 0.2998, 0.2482),

ṗ42 =(0.5102, 0.2504, 0.3580), ṗ43 = (0.5540, 0.3314, 0.1635),

ṗ44 =(0.3354, 0.4394, 0.3418), ṗ45 = (0.5771, 0.2816, 0.2366).

Table 3  Picture fuzzy decision matrix given by expert C3

Alter-
native

D1 D2 D3 D4

B1 ⟨0.80, (0.51 0.24 0.25)⟩ ⟨0.80, (0.70 0.12 0.18)⟩ ⟨0.80, (0.52 0.25 0.23)⟩ ⟨0.80, (0.56 0.12 0.20)⟩
B2 ⟨0.80, (0.69 0.08 0.23)⟩ ⟨0.80, (0.59 0.21 0.10)⟩ ⟨0.80, (0.36 0.00 0.64)⟩ ⟨0.80, (0.76 0.09 0.15)⟩
B3 ⟨0.80, (0.37 0.21 0.42)⟩ ⟨0.80, (0.45 0.23 0.32)⟩ ⟨0.80, (0.73 0.14 0.13)⟩ ⟨0.80, (0.55 0.27 0.08)⟩
B4 ⟨0.80, (0.42 0.25 0.33)⟩ ⟨0.80, (0.66 0.19 0.15)⟩ ⟨0.80, (0.57 0.26 0.17)⟩ ⟨0.80, (0.18 0.32 0.50)⟩
B5 ⟨0.80, (0.26 0.18 0.56)⟩ ⟨0.80, (0.47 0.34 0.19)⟩ ⟨0.80, (0.64 0.17 0.19)⟩ ⟨0.80, (0.82 0.10 0.08)⟩

Table 4  Comprehensive Picture fuzzy decision matrix C using CPFWA operator

Alternative D1 D2 D3 D4

B1 (0.4377 0.2946 
0.2975)

(0.5535 0.2314 
0.2486)

(0.4453 0.3679 
0.2485)

(0.5323 0.2543 
0.2053)

B2 (0.5010 0.2266 
0.2557)

(0.4907 0.3034 
0.2234)

(0.3637 0.0000 
0.4129)

(0.5556 0.2073 
0.3112)

B3 (0.4429 0.3228 
0.2766)

(0.4447 0.2646 
0.3698)

(0.5249 0.1928 
0.3351)

(0.6005 0.2850 
0.1277)

B4 (0.3957 0.3332 
0.3091)

(0.4804 0.2718 
0.3205)

(0.4294 0.3639 
0.2930)

(0.3714 0.3928 
0.2952)

B5 (0.2527 0.2762 
0.5870)

(0.4187 0.3068 
0.3392)

(0.5773 0.0000 
0.2461)

(0.6239 0.2369 
0.1944)
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Thus,

Step 6. Utilize PFHA operator to aggregate all preference values, where 
w = (0.25, 0.18, 0.35, 0.22)T . The computed values are shown in Table 5.

Step 7. Since S(B1) = −0.0586 , S(B2) = 0.1888 , S(B3) = −0.0387 , 
S(B4) = −0.2318 and S(B5) = 0.1560.

Step 8. Hence, S(B2) > S(B5) > S(B3) > S(B1) > S(B4) . Thus, B2 is best 
alternative.

5.1.2  CPFWG operator

Step 1 and Step 2 are similar to Sect. 5.1.1.
Step 3. Aggregate all the Picture fuzzy decision matrices Cs(s = 1, 2, 3) into the 

single comprehensive Picture decision matrix C′ by employing proposed CPFWG 
operator, where � = (0.35, 0.2, 0.45)T . The computed values are shown in Table 6.

Step 4. Calculate ṗij = (pij)
n𝜔j , where � = (0.25, 0.18, 0.35, 0.22)T , then we have

S(ṗ11) = −0.1544, S(ṗ12) = 0.0187, S(ṗ13) = −0.1566, S(ṗ14) = −0.2466,

S(ṗ15) = −0.6105, S(ṗ21) = −0.2752, S(ṗ22) = −0.3788, S(ṗ23) = −0.5272,

S(ṗ24) = −0.4563, S(ṗ25) = −0.5629, S(ṗ31) = 0.1727, S(ṗ32) = 0.1791,

S(ṗ33) = 0.3310, S(ṗ34) = 0.1219, S(ṗ35) = 0.5601, S(ṗ41) = −0.0603,

S(ṗ42) = −0.0982, S(ṗ43) = 0.0591, S(ṗ44) = −0.4458, S(ṗ45) = 0.0589.

ṗ𝛿(11) = (0.5010, 0.2266, 0.2557), ṗ𝛿(12) = (0.4377, 0.2946, 0.2975),

ṗ𝛿(13) = (0.4429, 0.3228, 0.2766), ṗ𝛿(14) = (0.3957, 0.3332, 0.3091),

ṗ𝛿(15) = (0.2527, 0.2762, 0.5870), ṗ𝛿(21) = (0.4404, 0.3486, 0.3671),

ṗ𝛿(22) = (0.3848, 0.4237, 0.3399), ṗ𝛿(23) = (0.3759, 0.3914, 0.4408),

ṗ𝛿(24) = (0.3453, 0.3840, 0.4886), ṗ𝛿(25) = (0.3233, 0.4271, 0.4591),

ṗ𝛿(31) = (0.7005, 0.0000, 0.1404), ṗ𝛿(32) = (0.6472, 0.0998, 0.2164),

ṗ𝛿(33) = (0.4690, 0.0000, 0.2899), ṗ𝛿(34) = (0.5618, 0.2467, 0.1424),

ṗ𝛿(35) = (0.5441, 0.2429, 0.1793), ṗ𝛿(41) = (0.5540, 0.3314, 0.1635),

ṗ𝛿(42) = (0.5771, 0.2816, 0.2366), ṗ𝛿(43) = (0.4877, 0.2998, 0.2482),

ṗ𝛿(44) = (0.5102, 0.2504, 0.3580), ṗ𝛿(45) = (0.3354, 0.4394, 0.3418).

Table 5  The aggregated 
information in the form of PFNs

Alternative PFHA

B1 (0.4847 0.2876 0.2557)
B2 (0.4972 0.0000 0.2898)
B3 (0.4961 0.2656 0.2692)
B4 (0.4158 0.3450 0.3025)
B5 (0.4755 0.0000 0.3195)
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Step 5. Calculate the score values:

Thus,

ṗ11 = (0.5966, 0.1875, 0.1745), ṗ12 = (0.6347, 0.1454, 0.1493),

ṗ13 = (0.5724, 0.1971, 0.2163), ṗ14 = (0.5454, 0.2003, 0.2108),

ṗ15 = (0.3219, 0.1768, 0.4471), ṗ21 = (0.7718, 0.0975, 0.1052),

ṗ22 = (0.7284, 0.1334, 0.0938), ṗ23 = (0.6897, 0.1138, 0.1745),

ṗ24 = (0.6589, 0.1212, 0.1690), ṗ25 = (0.6431, 0.1554, 0.1671),

ṗ31 = (0.4901, 0.3059, 0.1983), ṗ32 = (0.3910, 0.2086, 0.4701),

ṗ33 = (0.4701, 0.1353, 0.4249), ṗ34 = (0.4492, 0.3002, 0.2491),

ṗ35 = (0.6252, 0.1590, 0.1986), ṗ41 = (0.6947, 0.1443, 0.1076),

ṗ42 = (0.6597, 0.1036, 0.2314), ṗ43 = (0.7502, 0.1515, 0.0527),

ṗ44 = (0.4759, 0.2235, 0.2326), ṗ45 = (0.7507, 0.1394, 0.0957).

S(ṗ11) = 0.2345, S(ṗ12) = 0.3400, S(ṗ13) = 0.1591, S(ṗ14) = 0.1342,

S(ṗ15) = −0.3020, S(ṗ21) = 0.5690, S(ṗ22) = 0.5013, S(ṗ23) = 0.4014,

S(ṗ24) = 0.3688, S(ṗ25) = 0.3207, S(ṗ31) = −0.0140, S(ṗ32) = −0.2876,

S(ṗ33) = −0.0900, S(ṗ34) = −0.1001, S(ṗ35) = 0.2676, S(ṗ41) = 0.4428,

S(ṗ42) = 0.3247, S(ṗ43) = 0.5460, S(ṗ44) = 0.0198, S(ṗ45) = 0.5156.

Table 6  Comprehensive Picture fuzzy decision matrix C′ using CPFWG operator

Alternative D1 D2 D3 D4

B1 (0.5966 0.1875 
0.1745)

(0.6978 0.1328 
0.1431)

(0.6009 0.2296 
0.1460)

(0.6611 0.1623 
0.1214)

B2 (0.6347 0.1454 
0.1493)

(0.6440 0.1804 
0.1278)

(0.5114 0.1539 
0.3647)

(0.6233 0.1169 
0.2585)

B3 (0.5724 0.1971 
0.2163)

(0.5970 0.1545 
0.2339)

(0.5833 0.0986 
0.3264)

(0.7214 0.1703 
0.0597)

B4 (0.5454 0.2003 
0.2108)

(0.5603 0.1642 
0.2267)

(0.5646 0.2250 
0.1851)

(0.4301 0.2498 
0.2598)

B5 (0.3219 0.1768 
0.4471)

(0.5417 0.2091 
0.2243)

(0.7150 0.1164 
0.1462)

(0.7219 0.1569 
0.1081)



1432 OPSEARCH (2024) 61:1404–1440

1 3

Step 6. Utilize PFHG aggregation operator to aggregate all preference values, where 
w = (0.25, 0.18, 0.35, 0.22)T . The computed values are shown in Table 7.

Step 7. Since S(B1) = 0.3027 , S(B2) = 0.2223 , S(B3) = 0.2419 , S(B4) = 0.0676 
and S(B5) = 0.1859.

Step 8. Hence, S(B1) > S(B3) > S(B2) > S(B5) > S(B4) . Thus, B1 is best 
alternative.

5.2  Sensitivity analysis

In this section, sensitivity analysis has been conducted to examine the effect of dif-
ferent combination of three decision makers’ confidence levels 
l = (l1

ij
, l2
ij
, l3
ij
), i = 1, 2, 3, 4;j = 1, 2, 3 on the final decision making when CPFWA 

and CPFWG operators are used to solve current MCGDM problem. The computed 
results are tabulated in Tables 8 and 9 and plotted in Figs. 2 and 3 for CPFWA and 
CPFWG operators respectively by taking all the considered combinations. From 
Tables 8 and 9 and Figs. 2 and 3, it is observed that alternatives have different score 
values for different combinations of l. From all the selected combinations, the best 
alternatives are always B2 and B1 for CPFWA and CPFWG operators, respectively, 
while B4 is the worst alternative for the both the operators. Thus, we can conclude 
that both operators are consistent and provide stable results for varying confidence 
levels.

ṗ�(11) = (0.6347, 0.1454, 0.1493), ṗ�(12) = (0.5966, 0.1875, 0.1745),

ṗ�(13) = (0.5724, 0.1971, 0.2163), ṗ�(14) = (0.5454, 0.2003, 0.2108),

ṗ�(15) = (0.3219, 0.1768, 0.4471), ṗ�(21) = (0.7718, 0.0975, 0.1052),

ṗ�(22) = (0.7284, 0.1334, 0.0938), ṗ�(23) = (0.6897, 0.1138, 0.1745),

ṗ�(24) = (0.6589, 0.1212, 0.1690), ṗ�(25) = (0.6431, 0.1554, 0.1671),

ṗ�(31) = (0.6252, 0.1590, 0.1986), ṗ�(32) = (0.4901, 0.3059, 0.1983),

ṗ�(33) = (0.4701, 0.1353, 0.4249), ṗ�(34) = (0.4492, 0.3002, 0.2491),

ṗ�(35) = (0.3910, 0.2086, 0.4701), ṗ�(41) = (0.7502, 0.1515, 0.0527),

ṗ�(42) = (0.7507, 0.1394, 0.0957), ṗ�(43) = (0.6947, 0.1443, 0.1076),

ṗ�(44) = (0.4759, 0.2235, 0.2326), ṗ�(45) = (0.6597, 0.1036, 0.2314).

Table 7  The aggregated 
information in the form of PFNs

Alternative PFHG

B1 (0.6330 0.1793 0.1510)
B2 (0.6036 0.1464 0.2349)
B3 (0.6136 0.1618 0.2099)
B4 (0.5091 0.2148 0.2268)
B5 (0.5720 0.1572 0.2290)
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5.3  Comparative analysis

To investigate the stability of the proposed aggregating operators, a comparative 
analysis has been done in this section. To compare the results, calculation is done 
for PFWA, PFOWA, PFHA, PFWG, PFOWG and PFHG operators [27]. The com-
puted results are shown in Table 10 and plotted in Fig. 4.

From the comparative analysis, following observations have been noticed. 

 (i) All the existing methods under PFS environment have been developed in the 
assumptions that all the experts are 100% familiar with the evaluated objects. 
But these types of limitations are not fully met in dealing with real life prob-
lems. In other side, proposed approach considered the situation where the 
experts are not fully familiar with evaluated objects.
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 (ii) The ranking order obtained from different operators depends upon the type of 
the aggregation operator and the algebraic operations applied. From Table 10, 
it is observed that, the ranking results obtained from existing operators are 
differ from the proposed method. Because, these existing operators for PFN 
does not consider confidence level of decision maker, which reflects the famili-
arity of the decision maker with the problem under consideration. Whereas, 
the proposed operators incorporated the idea of confidence level in decision 
making.

 (iii) Fig. 4 represents the score values of each alternative for different operators, 
and here the scale of grid is −1 to 1. In this figure, the alternatives B1 , B2 , B3 , 
B4 and B5 are represented by the green, red, purple, yellow and blue lines, 
respectively. Here ranking of alternatives is done, according to the occur-
rence of score values of each alternative, from center to circumference in the 
particular direction of the operators applied. As an example, if we move center 
to circumference in the direction of PFWA operator, then first we will reach in 
order to yellow, green, purple, red and blue lines, and hence the ranking order 
of alternatives will be B5 > B2 > B3 > B1 > B4 . Similar observations can be 
done for other operators.

 (iv) When the confidence level l = 1 is applied to the proposed CPFWA, CPFOWA, 
CPFHA, CPFWG, CPFOWG, and CPFHG operators, they undergo a trans-
formation, effectively becoming the existing PFWA, PFOWA, PFHA, PFWG, 
PFOWG, and PFHG operators, respectively. This transition occurs because, at 
a confidence level of 1, the two sets of operators become equivalent, thereby 

Fig. 4  Radar graph for quantitative comparison in which scale of grid is -1 to 1 representing score values
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simplifying the choice between them. Consequently, this equivalence provides 
a streamlined approach in decision-making and aggregation, making the deci-
sion process more straightforward and consistent.

Thus, it has been observed that the proposed aggregating operators are more gen-
eral, flexible, stable and consistent in comparison to some existing aggregating 
operators and provide more realistic results to handle MCGDM problems under PFS 
environment.

6  Conclusions

The paper investigated a MCGDM problem in a PFS environment by involving the 
familiarity degree of an expert through a confidence level and utilising arithme-
tic operational laws. The paper developed some novel aggregating operators such 
as CPFWA, CPFOWA, CPFHA, CPFWG, CPFOWG, and CPFHG. The proposed 
aggregation operators not only take into account the evaluation information of 
the decision makers in terms of PFNs but also consider the degrees to which they 
are familiar with the problem under consideration in terms of confidence level. In 
addition, some desirable properties and special cases for the proposed aggregating 
operators are also discussed. Then, a MCGDM problem of green supplier selection 
based on novel aggregating operators was examined. Finally, to examine the validity 
and effectiveness of the proposed aggregation operators, sensitivity and comparative 
analyses have also been conducted. The main notice points for the considered prob-
lem and proposed aggregation operators are as follows: 

(a) All the novel and existing aggregating operators provide the same conclusion, 
i.e., the alternative B4 is the worst.

(b) The proposed novel aggregating operators are more general, flexible, stable, 
and consistent, and they provide more realistic results by incorporating decision 
makers’ familiarity degree with the problem in terms of confidence levels.

Due to the broader acceptance of PFS, we will make an effort in the future to apply 
the concept of PFS to solve real-life problems such as fuzzy cluster analysis, uncer-
tain programming, pattern recognition, and so on. In addition, we will also focus on 
developing some new operational laws and aggregation operators for PFS.
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