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Abstract

The main objective of this paper is to present an improved solution approach for
a fully neutrosophic generalized multi-level linear programming (MLP) problem in
which de-neutrosophication of coefficients and parameters are carried out with the
proportional probability density functions of each N Number and the use of Laplace
transform. The present paper describes a unique solution methodology for gener-
alized multi-level linear programming involving coefficient parameters in objec-
tives at each level as well as constraints as interval-valued trapezoidal neutrosophic
numbers (IVTrpN numbers), based on Laplace Transform. In this approach, we first
propose to associate the probability density function to each membership function
of each IVTrpN number and obtain an equivalent output value of each N Number
using Laplace transform. The proposed algorithm is novel and unique for solving
the generalized MLLP problem under N Numbers environment, which converts the
neutrosophic problem into an equivalent crisp problem. After that, the multi-level
structure of the crisp problem is tackled by formulating separate membership func-
tions for each objective function at each level and decision variables up to the (T-1)
level with their best values. A simple solution model is formulated to obtain a sat-
isfactory solution to MLLP problem under the neutrosophic environment with the
help of usual goal programming. Further, a comparative study is also carried out
between the use of Laplace transform and Melin transform (as suggested by Tamila-
rasi and Paulraj (SC 26:8497-8507, 2022)) for de-neutrosophication of N numbers
in the context of the present problem. Numerical example and complex real problem
are illustrated to show the functionality and applicability of the proposed improved
approach.

Keywords Multi-level linear programming (MLLP) problem - Interval valued
trapezoidal neutrosophic number (IVTrpNN) - Probability density function -
Laplace transform - Satisfactory solution

<] Kailash Lachhwani
kailashclachhwani @yahoo.com; kailashclachhwani@nitttrchd.ac.in

Department of Applied Science, National Institute of Technical Teachers Training and Research,
Chandigarh 160019, India

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12597-023-00715-3&domain=pdf
http://orcid.org/0000-0002-2209-2191

868 OPSEARCH (2024) 61:867-896

1 Background of the problem and review recap

Multi-level programming (MLP) problem is an important class of mathematical pro-
gramming problems (MPPs) that has an in-built hierarchical structure (level-wise)
within the problem with more than two levels. Such problems are more suitable for
modeling real-world problems as most complex real problems have a hierarchical
structure within them. Bi-level programming problem (BLPP) is a reduced case of
MLP problem with only two hierarchical levels. MLP problems have the essential
characteristic of having interacting decision-making units in the hierarchy, and each
decision-maker (DM) is interested in optimizing their objectives and satisfying a
standard set of constraints. A comprehensive literature review and analysis on MLP
problems and BLPPs have already been detailed by Lachhwani and Dwivedi [1]. In
mathematical format, a multi-level linear programming problem (MLLP problem)
can be described as:

Max {Zl X) = C, X, +Cp Xy + oo+ CIT)_(T} (1st level)
X]

Max {ZZ(X) = Cy X, + CppXy + oo+ czT)_(T} (2nd level)
X5

Max {ZT(X) = Cp X, + CpoXy + oo+ CTT)_(T} (T — th level)
X

Subject to, Ay X, +Ap Xy + oo+ Ap X (<, =,2) bl <1< p

and X, >0, X, >0, ...,X; > 0. (1)

where )_(J_, )_(2, . )_(T are respective set of controlling decision variables at each
level. Z(X) = C X + CpX, + ... + C7 X7, 1 <t < T is the linear objective function
at #-th level DM and other notations have the usual meanings.

Over the last fifteen years, a tremendous amount of research has been carried
out in developing new solution methodologies for MLP problems and their other
extension problems i.e. MLMOLP problems (multi-level multiobjective linear pro-
gramming problems), MLMONLP problem (multi-level multi-objective non-linear
programming problem), MLMOLFP/MLMOL +FP problem(multi-level multiob-
jective linear/linear plus fractional programming problem), etc. Some notable recent
research contributions are: Pramanik et al. [2] developed and demonstrated a solu-
tion technique for solving multi-level multiobjective linear plus fractional program-
ming problems (MLMOL + FP problems). Lachhwani [3] modified the existing FGP
methodology for obtaining solutions to MLMOLFP problems comparatively with
very less computations. Osman et al. [4] proposed a solution technique for solving
MLMOP problem with parameters involved as fuzzy demands. Liu and Yang [5]
developed a new technique for solving MLMOLP problem.
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In the present era, fuzzy and intuitionistic data are used in the decision-mak-
ing and problem formulation process of MLP problems due to the availability of
rough information (vague and imprecise) to decision-makers. Many scholars have
suggested important solution methodologies for fuzzy mathematical programming
problems (FMPPs) i.e. Fuzzy LPPs, Fuzzy MOPPs, Fuzzy BLPPs, Fuzzy MLP
problems, etc. Some of the research contributions which involve the use of integral
transform technique in solving FMPP are: Peraei et al. [6] used the concept of Melin
transform for solving FLPP. NA Alauden and MY Sanar [7] used Melin transform
for de-fuzzification of fuzzy numbers in solving FLPPs. But the fuzzy theory has a
major drawback of ignoring two other aspects of information i.e. indeterminacy and
falsity in formulating membership functions. To eliminate the shortcomings of the
fuzzy set (Zadeh [8]) and intuitionistic fuzzy theory (Atanassov [9]), Smarandache
[10] introduced neutrosophic set theory—theory with three parts of information i.e.
truthiness, falsity, and indeterminacy. This theory plays a vital role in describing
industrial problems having vague and indeterminate information. Nowadays, MPPs
are extended towards new and active research areas ‘under neutrosophic environ-
ment’. Many researchers have suggested new research ideas on MPPs in the neutro-
sophic environment: Ye [11] suggested a novel technique for LPPs with N numbers.
Mohamed et al. [12] suggested a method for solving integer programming problems
with trapezoidal N numbers. Abdel-Basset et al. [13] suggested a new type of rank-
ing function for N numbers for conversion of N numbers into equivalent crisp val-
ues and proposed to apply this new ranking function to solve the fully neutrosophic
(IVTrN numbers) linear programming problems (LPPs). Pramanik and Banerjee
[14] developed a solution technique for MOLP problem under N number environ-
ment. Pramanik and Dey [15] suggested another solution technique for solving two-
level programming problems (BLPPs) under N number environments. Bera and
Mahapatra [16] developed a new simplex method (big-M method for N numbers)
to solve real-life problems formulated as neutrosophic LPPs. Darehmiraki [17] pro-
posed a new parametric ranking function to solve neutrosophic linear programming
problems. Basumatary and Broumi [18] proposed a new type of neutrosophic MPP
with parameters as interval-valued triangular N numbers. Khatter [19] proposed a
solution approach to solve neutrosophic LP problem with a possibilistic mean. Maiti
et al. [20] proposed a technique based on goal programming for MLMOP problem
under N numbers. Lachhwani [21] suggested an algorithm for solving fully neutro-
sophic MLMOLP problems with all coefficients and parameters as trapezoidal N
numbers. Ahmad [22] suggested a solution technique for MOPP under neutrosophic
environment with application in the pharmaceutical supply chain planning problems.
Recently, Tamilarasi and Paulraj [23] used Melin transform for de-neutrosophication
of triangular type N numbers for developing the technique for linear programming
problems.

The entire literature on MPPs under neutrosophic environment reveals that
most of the researchers used ranking method, accuracy function value, score func-
tion values, etc. for the de-neutrosophication of N numbers. Except for Tamilarasi
and Paulraj [23] who used Melin transform on triangular type N numbers), the
literature does not provide any use of integral transform for de-neutrosophication
of N numbers till now. This motivates us to extend the use of important integral
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transform i.e. Laplace transform for de-neutrosophication of fully N numbers i.e.
interval values trapezoidal neutrosophic numbers (IVTrpN numbers) in solving
more complex multi-level programming problems. The present study of fully
neutrosophic MLLP problem with Laplace transform has not been studied in the
literature. This makes the proposed study unique and novel in this research area.
The main objectives of the paper:

1. To propose a novel method of defining proportional probability density function
for IVTrpN numbers and de-neutrosophication of IVTrpN numbers with the use
of Laplace transform.

2. To propose an improved solution algorithm for MLLP problem with IVTrpN
numbers as coefficients/ parameters in objective functions and constrained func-
tions.

In abstract form, the present paper describes a unique solution methodology
for generalized multi-level linear programming involving coefficient parameters
in an objective at each level as well as constraints as interval-valued trapezoi-
dal neutrosophic numbers (IVTrp N numbers), based on Laplace transform. In
this approach, we first propose to associate the probability density function to
each membership function of each IVTrpN numbers and obtain an equivalent
output value of each N numbers using Laplace transform. After that, the multi-
level structure of the crisp problem is tackled by formulating separate member-
ship functions for each objective function at each level and decision variables up
to the (T-1) level with their best values. A simple solution model is formulated
to obtain a satisfactory solution of MLLP problem under neutrosophic environ-
ment with the help of usual goal programming. Further, a comparative study is
also carried out between the use of the Laplace transform and Melin transform
(as suggested by Tamilarasi and Paulraj [23]) for de-neutrosophication of SVTrN
numbers. Numerical example and solution of complex real problem are illustrated
to show the functionality and applicability of the proposed improved approach.

This paper is organized as: in the first section of the paper, a background of
the problem along with a review recap on specific MPPs and MPPs under neu-
trosophic environment are suggested. In Sect. 2, literature review analysis is sug-
gested in tabular form on different solution techniques for MLP problems and
extension problems under N number environment. Based on this review analysis,
the research gap and significance of the proposed technique are also discussed.
Some preliminaries on neutrosophic numbers (N numbers) are described in the
next section. The proposed algorithm for MLLP problem with N numbers is pre-
sented in detail in Sect. 4. The introduction of proportional probability density
functions to each N number and the use of the Laplace transform for finding
equivalent crisp values of N numbers are discussed in Sects. 4.1 and 4.2 respec-
tively. The step-by-step process and a flow chart of the proposed algorithm for
solving MLP problems with IVTrpN numbers are also suggested in the same
section. Further, a comparative study is also carried out between the use of the
Laplace transform and Melin transform (as suggested by Tamilarasi and Paulraj
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[23]) for de-neutrosophication of N numbers in Sect. 5. In Sect. 6, a numerical
example is illustrated with the proposed technique to show its computational
simplicity and uniqueness in solving MLP problems with IVTrpN numbers. The
application of the proposed technique in solving the real problem is described
in the same section. Concluding remarks and future research directions are dis-
cussed in the last section.

2 Review analysis and identification of research gap

As detailed in the previous section it can be seen that ‘MPP under N number envi-
ronment’ is a new area of research and limited number of research scholars have
contributed in this area. In continuation of the literature review on solving different
types of MPPs with N numbers can be described in tabular form (Table 1). From
Table 1, it is evident that researchers preferably used score functions or accuracy
functions as ranking methods to convert N numbers. But recently Tamilarasi and
Paulraj [23] used Melin transform for de-neutrosophication of triangular type N
numbers for developing the technique for linear programming problems. This moti-
vates us to extend the use of important integral transform i.e. Laplace transform for
de-neutrosophication of interval values trapezoidal neutrosophic numbers (IVTrpN
numbers) in solving more complex multi-level linear programming problems. Fur-
ther, in the above literature review and analysis, it can be observed that no researcher
has proposed a solution method for MLP problems with IVTrpN numbers using
Laplace transform. In all, the proposed algorithm is improved and unique for solving
MLP problems under N number environment.

3 Neutrosophic set theory—preliminaries

Neutrosophic set theory is a paradigm shift from traditional fuzzy and intuitionis-
tic fuzzy set theory which includes three major parts of information i.e. truthiness,
indeterminacy, and falsity information. This N set theory is used to analyze impre-
cise and inaccurate information. In literature, this theory was extended with prop-
erties of N set and neutrosophic statistics by Smarandache ([24, 25]) respectively.
Some preliminaries on N numbers and related terms are described as:

Definition 1 (Smarandache [10]): a neutrosophic set A in X is characterized as
A={x: u'®), ol(x), vl (x), x € X} where u’(x), 67 (x), v!(x) € (0, 1) repre-
sents degree of membership for truthiness, indeterminacy and falsity parts of infor-
mation respectively along with condition.

0% < Sup pi(x) + Sup o’ (x) + Sup vl (x) <3~

Definition 2 (Interval valued trapezoidal neutrosophic number IVTrpN number)
(Abdel-Basset et al. [13]) Let yz, o3, v; € [0, 1]and a; € R, R the real numbers and
a, £ ay £ ay < a,. Then an interval-valued trapezoidal neutrosophic number is
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given as: @ = <(a], ay, a3, ay); [yg, ,ug], [%L,, o-é/], [vé, vg]> whose membership
function for truthiness, indeterminacy and falsity are

,uy<x_a‘ ), a; <x<a,,

a \ a,—a,
U
Moy ay <x < as,
pz(x) = U 54_)( 2)
(i) asxsa,
0, otherwise,
( L
ay—x+o-(x—a,)
————, a, Lx<a,,
a,=a,
L
o=, a, <x<a,,
GH(X) =9 x—a3+o;(ay—x) (3)
————, a3 < x < ay,
as—das
1, otherwise,
( a —)C+l)£’ X—a
z—a(‘)’ a, <x<a,,
az—Lal
v, a, <x < as,
UE(X) =1 x—az+v(a,—x) “)
+, (13 S X S a4’
ag—as
1, otherwise,

L

In view of this definition, there is not much significance of yé, O'EU and z)g
in achieving membership values. Therefore for simplicity, we here assume
1 = pz, 0% = o7 and vk = v;. Accordingly, IVTrp N numbers are rewritten as:

5= <(a]9a29 a37a4);l’l’zl’s o-a‘a UE>' (5)

Definition 3 (Single valued triangular neutrosophic number SVTrN number) (Tami-
larasi and Paulraj [23]) Let 5, o3, v; € [0, 1]and a; € R, R the real numbers and
a, £ a, < as. Then a single valued triangular neutrosophic number is given as:

a={(a,. a, @), O, vé) whose membership function for truthiness, indeter-
minacy and falsity are

a\ a,—a,
Hes X = a,,
Ha(x) = s << (6)
'uﬁ ‘14—“3)’ G =1 = a3
0, otherwise.
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-
a,—x+o.(x—a,)
#, a, <x<a,,
ar—a,
O, X = az,
O-E(x) =9 x—a3+0'ft(u4—x) (7
——, 4, <x<ay
a,—az
1, otherwise.
.
[ a,-x+v,(i-a))
ay—x+o.(x—a
¥’ al S X S az,
a,—a,
v, X =a,,
Dﬁ(x) =9 x—a2+u:(a3—x) (8)
— a4 <x< as,
a3 —ay
1, otherwise.

\

Definition 4 (Score function) (Khatter [19]): the score function for the interval val-
ued neutrosophic number @ = <(a1, ay, Ay, ay); [,ué, ,ug], [aé, o-éj], [vé, vg]> is
defined as:
1
S(a) = E(al +a, + a; +ay)(1 +,u§+,uéj—c7§— E‘/—vé—vg+ D. O
Definition 5 (Accuracy function) (Khatter [19]): accuracy function for IVTrp N

number @ = ((ay, a, a3, a,); [yg, ,ug], [Ué’, O'g], [vé, vg]>is defined as:
1
A(a):g(al—az—a3+a4)(l+y§+yé’—v§—v§+1)- (10)

Definition 6 (Ranking function for interval valued trapezoidal N num-
ber) (Abdel-Basset et al. [13]): ranking function for IVTrpN number Let
a=(a,, ay, as, a,,; 4z Oz Uz), then corresponding ranking function for maximi-
zation purpose is defined as:

R@) = <a1 +ay + 2(ay +a4)> N (/4

~ v)- (1)

2 a~ %

It is important to mention that score function, accuracy function and ranking
function are used to convert N numbers into equivalent crisp values.

4 Proposed improved solution technique for MLLP problem
with IVTrpN numbers

In this part of the paper, we describe the proposed solution methodology for MLLP
problem with IVTrpN numbers in three subsections ahead. Firstly, we propose to
associate proportional probability density function (p.d.f.) and introduce the use of
Laplace transform on p.d.f. to obtain the equivalent crisp value of the corresponding
IVTrpN numbers in the following subsections:
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4.1 Proportional probability density function to membership functions

Here, we propose to associate proportional p.d.f. corresponding to its truthi-
ness, indeterminacy and falsity membership functions of IVTrpN number
a=((a, ay, a3, a,); p, 0, v_). For this, let f,(x), f,(x), f,(x) be the p.d.f. cor-
responding to membership functions i, o, v. respectively. Then f,(x) = k p_(x),
f,(x) = kyo.(x) and f3(x) = k3v_(x) where k;, k, and k; are constants to be obtained
using properties of p.d.f.

@) ffl(x)dx—1=>k1 /,ua< — )dx+/,uudx+/ ﬂa(a4 )dx] =1

aipg apy @iz i ] -1

=k |—agu - +(=ay + ay)u; + =
LT 2=ay +ay)  2-a; +ay) (az ¥ @i + apig + 2(-a3 +ay) 2(—a3+a4)

This will give us k; =—(a T h g —an (12)
114y — a3 — dy)Hy

(ii) f5(x) = kyo54(x), then ]0 Hxdx =1

a,

— + . — + " —
:wg/<a'xaﬁ %»ﬂ+/mﬂ+/ < % 0% @)u=1
a, —a; 4 — a3

a)

= k(= + 4o = 3@ = a1+ 0) = 2as a1 +0)| = 1.

. 2
It give us k, = — .
glveus & (a,—ay,+ay;—ay)+o,(a +a,—a; —ay) (13)
(iii) Similarly for f5(x) = k3v;(x) and / Jf3(x)dx = 1 which yield
o )
ky = — : (14)

(aj—ay,+ay—ay)+v,(a +a,—az;—ay)

Now let f(x) be the complete probability density function of IVTrpN num-
ber [defined in (5)] in consideration of all membership functions, then f(x) can be
defined as:

F&x) = A4,f1(0) + A,f5,(x) + A53f5(x)
e f(x) = A1k p(x) + A ky0(x) + A3k30-(x) (15)

where 4, 4,, 43 € [0, 1] are relative weights to different functions selected by
decision maker in accordance with preference information available to DM with
condition A; + 4, + A3 = L.
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4.2 Use of Laplace transform

Integral transform is normally used to convert a hard function into a simple one
according to functional specifications. The integral transform of a specifically
defined linear function is associated with the unique equivalent value of that
function. Here we propose to use Laplace Transform on proportional complete
probability density function to obtain an equivalent value of N number.

Definition 7 Laplace transform of function f(x) (0 < x < o) of class ‘A’ is defined
as

oo

Ly(s) = / e f(x)dx,

0

Whenever it exists. Here f(x) is complete probability density function associ-
ated with IVTrpN number and X denotes the random variable corresponding to the
IVTrpN numbers. Laplace Transform has the unique property of one-to-one cor-
respondence in two domains (x, s) i.e. f(x) « Ly(s). This property is taken as a tool
for finding equivalent value for each of IVTrpN number with the assumption of least
value of s, i.e. s = 1. Laplace transform of p.d.f. of IVTrpN number (12) can be
described as:

o0

Ly(s) = / e[ 1 () + Ayf5(X) + A3f5(x)]dx

0

ay a3
24 . x—a _ “ a, —x
>Ly(s)= ——— | [ ey dx+ [ e pzdx + ez dx
(a3 +ay —a; —ay)uz a, —a; a3 ag —as

ay ap

ay asz
_ 24, /E_u(a2 _x+65(x_al)>dx+/e'“o~dx
(ay — ay + a3 — ag + o0, + 630, — 6za5 — 0za,) a, —a, “
a ay
+/“4 eﬂ)_(x—a3 + o5(ay _x)>dx
a3 ay —as

ap a3
21 a, —x+uvz(x—ay)
3 —ox 2 1 s
- e —————— )dx+ [ e vzdx
(@) —ay + a3 — ag + vza; + vz0, — vza3 — Vza,) ay = a

ay a
. /a4 e_’“(x —ay +vz(ay — x) >dx
a3 a4 —as
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880
24 oM — =38 et (925 4 415(1 + a5 — ays))
> Lx(s) = M — Hz 3
(a3 +ay —ay — ay)py s (a; — ay)s
(@3 +a4)3 (35 4 945(] 4 ays — ays))
+Huz 2
(ay —ay)s
24, WA (—e 25 (—1 — ay5 + ays + 03)
(a) — ay + az — a, + 00, + 050, — 0703 — 65a4) (a; — ay)s?
e~ @1+ (o5 (=1 + 05 — a, 505 + G,567)) N e™(@3+ (—=35 (=1 + azs — ays + 07))
(a) — ay)s? (a3 — ay)s? (16)
e~@3%3 (0445 (=1 + 0 + ays05 — ay5073)) . (e72% — e™3%)o;
(ay — ay)s? s
243 [e'(“1+“2>“(e_“2‘(—1 —a;s+ ays +vy))
) — Va3 — Vzay) (a; — ay)s?

(ay —ay + a3 — ay + vza, + vz
e~(@3+a3(—e=035 (=1 + G35 — ays + vy))

e~ @1+ (o5 (=1 + vy — ay 507 + dysV;))
+
(a) = ay)s? (a3 — ay)s?
67(“3“‘4)&@“43(—1 + 07 + a3 505 — aysv;)) . (e7925 — 67“33)1};]
s

(a3 — ay)s?

In order to find equivalent crisp values E(a) of each of neutrosophic coefficient/

parameter of the problem with minimum mathematical computation, here we have
considered the least value of s i.e. s= 1. It is to be noted that E(@) only represents the

corresponding equivalent crisp value of N number.
For s= 1, the corresponding equivalent value will be as:
e—al—az—a3—a4((_al + az)ea]+a2+a3 + (al _ az)ea]+a2+a4

24
(a) —ax)(az —ay)

E@) =
(a3 +ay, —a, —a,)
e—a1—112—113—114((a3 _ a4)ea1+a3+a4 + (_a’; + a4)ea2+a3+a4)):|
(a) —ay)az —ay)

24,

[e‘(”1+”2)(—e_“2(—1 —a,+a,+03)
(a; —ay)

—i—(a2 —as +a, — 0za, + 0505 + oza, — a(1 + o3)
e~ Wt (eh (=1 4 65 — a 05 + ay05)) e @TW(—e=B(—1 + a3 — ay + 03))
(a; —ay) (a3 —ay)
e~ @t (eh (=1 + 05 + ayo; — a,05) (€72 — e"%)oy
(a3 —ay) 1 ]
214 e~ @t (—e=0 (1 —a, + a, + vy)
+(a2—a3+a4—v‘7a2+v5a3+v‘;a4—al(1+va)[ (a; —ay)
e @t (e (=1 + v; — ayoy + ayv;)) e G (—e (=1 + a; — ay + vy))
(a; —ay) (a3 —ay)
e~ @t (eh (=1 + vy + ayo; — agvz)) (€72 — e By
(a3 —ay) 1 ]
a7

This gives the unique equivalent value corresponding to each of IVTrpN number,
therefore it is proposed to use this equivalent value for the purpose of converting the

problem into crisp problem.
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4.3 Improved solution of MLLP problems with interval valued TrpN numbers:
Laplace transform approach

In this section, we apply the proportional p.d.f. to each N number and Laplace trans-
form on complete p.d.f. to obtain equivalent crisp values in solving MLLP problem
under N number environment in following manner:

Mathematically MLLP problem with interval valued trapezoidal N numbers is
described in matrix form as:

Max/Min {Zl()_() = Cy X, + CrXy + o+ E;J?T}
X,

Max/Min {Zz()_() =X, + CppXy + o+ Z’Z;XT}
X,

Max/Min {Z(i) = CnX, + CpoXy + oo+ @?T}
i

Subject to, A, X, + A, X, + ... + A, X (<, =, >)b

And X,,X,,...X; > 0. (18)

where XJ = [cTij], b= [b~ij], 1 <i<T;1 <j<T and superscript ~indicates all coeffi-
cients/parameters are IVTrp N number in format @ = {(a,, a,, a3, a,); Uz, 0z Us).
With the techniques discussed in Sects. 4.1 and 4.2, these interval valued trapezoidal
neutrosophic coefficients/parameters are translated into equivalent crisp values as
given in Eq. (14), then accordingly MLLP problem with IVTrp N numbers reduces
into equivalent crisp problem as:

Max/Min {[E(é])]?l +EC)IX, + [ECr)IX;s + .. + [E('cﬁ)])_(r}
Xl

Max/Min { [ECo)IX, + [ECo)IXy + [EC)IXs + .+ [ECon) X, |

X,

Masx/Min {[15('5;1)])_(l +EC)IX, + [ECy)IXs + oo+ [E(ET;)])?T}

X7

Subject to, A, X + A, X, + ... + A, X (<, =, >)b
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And X, X,,...X; >0. (19)
where E(Cyy). E(Cpy), ... E(Cpp); ...E(C1)), E(Cpy), s E(Cpy);

A(ay;); Aay;) , ..., Alar;) and b; are corresponding equivalent values of parameters
and coefficients obtained by technique discussed in Sect. 4. Now, to tackle the multi-
level structure of crisp problem (16), we extend the modified approach suggested by
Lachhwani [3] for a multi-level single objective linear programming problem. For
this, we estimate the ideal values of each objective function at each level (Z, and Z,)

of the crisp problem (19). Then, we construct the linear membership functions for
each objective function with individual maximum and minimum values as:

NV AOSSYA
— 2,X~2, - —
M (Z,(X)) = 77 2, <2X)<7Z Vt=12,.T (20)

0 fzM<7

Further, in order to avoid decision deadlock in between of different levels due
to multi-level structure we construct the linear membership function for the deci-
sion vector X, (up to T-1 levels) as:

1 for X, 2)7,
r_Xr -
NX,(Xt)z _— fOF&SX[SXI Vt=1,2,..,.T -1 (21)

X=X,
for X, <X,

S
>

where )7, and X, are considered as respective values of decision vectors at ¢-th level

vVt=1,2,.., T_—_ 1) which yield the maximum and minimum values of crisp objec-
tive functions (Z,(X) and Z,(X)) of problem (19). The flexible membership goals

[(22) and (23)] having aspi_red level unity and negative deviational variables only
can be described as:

Mr(Zt()_()) +d, >1 1<t<T (22)

NX,(Xt)"'d,_Z] 1<t<T-1 (23)

Now using the simplest version of goal programming, the solution model based
on proposed algorithm for MLLP problem with IVTrpN numbers can be given as:

4.3.1 Solution model

T T-1
mu=2g+24
=1 =1
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Subjectto, ~Z, +Z,+d;(Z,~Z)>0 1<t<T
X, +X,+d (X, ~X) >0
AX| +AX, + .+ AXp (S, =, 2)b

And X,,X,,...X; > 0. (24)

With the above discussion, the proposed improved solution methodology for
MLLP problem with IVTrpN numbers can be summarised in the following stepwise
algorithm:

1. Obtain the corresponding probability density function for each membership func-
tion and complete probability density function of IVTrpN numbers as described
in sub-Sect. 4.1.

2. Set the value 4,, 4,, 45 € [0, 1] as per the decision maker’s information on the
relative importance of truthiness, intuitionistic and falsity of information and
write a complete p.d.f. of each N numbers as given in (15).

3. Obtain the equivalent value (17) of each p.d.f. using Laplace transform as given
in sub-Sect. 4.2.

4. Convert each interval-valued trapezoidal neutrosophic coefficient and parameters
of MLLP problem into corresponding crisp values using equivalent function
values and convert the problem into an equivalent crisp problem (19).

5. Estimate ideal values for each objective function at each level along with ideal
values of decision variables (up to T-1 levels) irrespective of multi-level structure.

6. Construct the fuzzy linear membership function for each objective function (for
T levels) and the decision variables (up to T-1 levels) as defined in Egs. (20) and
(21), respectively.

7. Formulate the solution model (24) for this reduced problem.

8. Solve solution model (24) with programming technique or software tool to obtain
a satisfactory solution of MLLP problem with IVTrpN numbers.

The flow chart of the proposed algorithm for MLP problems under N number
environment can be presented (in Fig. 1) as:

5 Comparison between laplace and melin transform on SVTrN
numbers

Tamilarasi and Paulraj [23] used Melin transform for de-neutrosophication (con-
verting neutrosophic numbers into equivalent crisp values) of single valued trian-
gular neutrosophic (SVTrN) numbers for developing the technique for linear pro-
gramming problems. In this section, we explore the use of the Laplace Transform
on SVTrN numbers and compare the problem’s coefficients/parameters as SVTrN
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numbers with that obtained through the Melin Transform as given by Tamilarasi and
Paulraj [23].

Leta = ((al, ay, a3);p, O, vE> be SVTrN numbers (as defined in Definition 3)
given as coefficients/parameters of the problem under consideration. Let f;(x),f;(x)
.J3(x) be the p.d.f. corresponding to membership functions i, o3, v. respectively

ar

then these p.d.f. can be described (Tamilarasi and Paulraj [23]) as:

<ﬂ>’ al S_x S az’

(ay=ay)(az—a)
2

— X =d,,
fi= (@—a)) ?
(—2(”3_x) > a, <x < aj,

(a3—ay)(az—ay)

(25)

otherwise.

s

([ ay—x+o,(x—a;) 2

a, <x<a
a,-a, (a—a)(l+c.)’ 1 =7 =72
§ a

Oy——— X=a
Hx) =1 4 (ay—a,)(1+0;)’ 2
x—az+o;(a;—x)

(26)

<x<
ay—as (a3—a,)(1+07)’ G =X = a3

0, otherwise.

(ay—x+o_(x—a;) 2

a,<x<a
a,—a, (a3—a1)(l+va)’ L ="="52
2

UOy————— X=a
() =1  (ay—a,)(1+4v;)” 2
x—a,+vz(a;—x) 2

27)

a,<x<a
az—a, (a3—a])(1+1)5)’ 2="="53

0, otherwise.

\

Accordingly, probability density function for single valued triangular neutrosophic
(SVTrN) number g = ((a 1> o, a3);ua, s Ua) can be described as:

J@) =410 + (1 = AHh() + (1 = D) (28)

Now, we apply Laplace transform on p.d.f. (28) of SVTrN number of the problem
in following manner as:

—(@1+02)5 (25 4 o915(1 — ;5 + dly5)) . e (@+a35(— 25  35(1 + ay5 — ay5))

N 22 4
= Ly(s) “@—a) [

(a, — ay)s* (ay — a3)s*
2(1=2) e™(@2a3)5(—e2S + ¢835(1 + ays — ays))(1 — vy)
@ —ap(+vy) (@ —ay)s?
=1+ (—e®25 (=1 — a5 + ays + vy) + €15 (=1 — aysvz + aysvz + l)g))]
(ay — ay)s?

2(1-2) [e’(“2+“3)5(—e’“25 +e35(1 + as — azs))(1 — o3)

(a3 —a)(1 +03) (a, — az)s?
TS (—e25 (=1 — ays + ay5 + 07) + €15(=1 — a;505 + a,50; + v;))
(a, — ay)s*

(29)
For s= 1, the corresponding equivalent value will be as:
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Obtain the corresponding p.d.f. and complete probability density function of IVTrpN

numbers

Set the value A,,4,,4,€ [0,1]

Obtain the equivalent value (14) of each p.d.f using Laplace Transform

Convert each IVTrpN number of MLLP problem into corresponding crisp Values\

using equivalent function values and transform the problem into an equivalent crisp

S problem. )

Estimate ideal values for each objective function at each level along and ideal Values\

of decision variables (up to T-1 levels) irrespective of multi-level structure.

Formulate the solution model for crisp problem andsolve this model with
programming technique or software tool to obtain a satisfactory solution of MLLP

problem with IVTrpN numbers.

Fig. 1 Flow chart of proposed algorithm

24 [e'(“l*'“Z)(—e“Z +e1 (1 —a; +ay)) + e™@2%3) (e 4 ¢T3 (1 + a, — a3))]
az —ap) (a) —ay) (ay - a3)

2(1-4) e~ @243 (—e=2 + ¢%3(1 + a, — az))(1 — vy)
- (a3—a])(l+lru)[ (@, —a3)

e+ (—e2 (=1 — a; + a, + vy) + €1 (=1 — a vz + a0 + v;))

E@) =
@ =7

(a; —ay) (30)
2(1-4) 21 (=2 + B3 (1 +a, — ay))(1 — 03)
B (a3—a1)(1+65)[ (a, — a3)
e W) (—e2 (=1 — a; +ay + 05) + €1 (=1 — a,05 + a,05 + v3))
(al - az) ]
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This quickly gives equivalent crisp values corresponding to SVTrN numbers
a= <(al, a,, a3);y5, oo 1)5> by the Laplace transform which can be used in con-
verting coefficients/parameters (SVTrN numbers) of the concern problem into cor-
responding equivalent crisp values. On the other hand, Tamilarasi and Paulraj [23]
used Melin transform (with s=2) on SVTrN numbers which yield the following
equivalent crisp values as:

E@) =A{w} +(1— /1){ oz(a; +ay + a3) +2(a, +a3) —a, }
3 3(1+0)
va, +a, +ay) + 2a; +a3) — a,
+( —/1){ ST }

€1y
If we compare these results [(30) and (31)], it can be easily observed that both
the transform gives equivalent crisp values corresponding to N numbers which are
required to convert such problems (like MLLP problem with IVTrN numbers, LPP
with SVTrN numbers, etc.) into corresponding crisp problems. This comparison
shows that the proposed methodology based on the Laplace transform for MLLP
problem with IVTrN numbers is improved in terms of computational difficulties than
Melin Transform on single valued triangular neutrosophic numbers (SVTrNNs).
Further, it shows that the Laplace transform can also be applied on SVTrN numbers
for converting into their crisp values.

6 Numerical illustration and application of proposed solution
technique in real world problem

6.1 Numerical illustrations

In this section, we illustrate one numerical example in following stepwise manner
to show the functionality of algorithm for MLLP problems with IVTrpN numbers:

Example 1 A maximization type tri-level linear programming problem under N
number environment is considered as:

Max {Z,(X) = ¢71x; + Cpp%, + Cp3x3 + Craxy ) (Lst level)
XXy

Max {Z,(X) = C31x| + CopXy + Co3X3 + CoyXy ) (2nd level)
A3

Max {Zy(X) = C3,x, + C3p%, + C33%3 + C3pxy ) (3rd level)
X4

Subject to, a;;x; + djax, + Ay + ajax, <50
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IA

Ay X) + ApyXy — Ay3Xs + apx, < 100

a3 X; + apX, + azxs +ayx, < 200

and x;, x,,x3,x4 >0
where coefficients in the objective function and constraint are IVTrpN numbers for-
; L7 1 2 3 4.
mat respectively as: Z; = 2‘1 <(cl.j, i G Cij)’”a,’ Oz, u;ﬁ>xj
j:
and @, = ((a\,d®, a3, a*), p= , 0+ , 0~ Vi=1,2,3,4; i=1,2;
l] l‘j’ l]’ l]’ l/ 9 al‘j" aij, al‘j‘ 9 k b 9 b 9

Z, =((1, 1.5, 2.5, 4),0.25,0.75,0.25)x, + ((2,2.5,3,5),0.25,0.75,0.25)x,
+((2.5, 3.0, 3.5, 6);:0.20,0.80,0.20)x; + ((2.5, 3, 3.5, 6)0.20,0.80, 0.20)x,

22 =((0.5, 1.5, 2.5, 4.5);0.20, 0.80, 0.20)x, + ((1.5, 2.5, 3, 5.5);0.20, 0.80, 0.20),
+((2, 3, 3.5, 6.5);0.20, 0.80, 0.20)x; + ((2.5, 3.5, 4, 5.5);0.20, 0.80, 0.20)x,

23 =((0.5, 1.5, 2.5, 4.5);0.25,0.75,0.25)x, + ((1.5, 2.5, 3, 5.5);0.25,0.75,0.25)x,
+(2, 3, 3.5, 4.5);0.20, 0.80, 0.20)x; + ((2.5, 3.5, 4, 6);0.20,0.80,0.20)x,

Subject to,

((1.5, 1.75, 2.0, 6.25);0.20, 0.80, 0.50)x, + ((1.5, 1.75, 2.0, 6.50);0.40, 0.50, 0.30)x,
+((1.0, 1.75, 2.0, 6.75);0.20, 0.80, 0.30)x; + ((1.5, 1.75, 2.0, 6.25);0.30,0.60, 0.20)x, < 50

(2.0, 2.5, 3.0, 11.5);0.30,0.80, 0.50)x, + {(1.5, 1.75, 2.0, 6.50);0.30,0.50, 0.40)x,
+((1.0, 1.75, 2.0, 6.75);0.30,0.80, 0.20)x; + (1.5, 1.75, 2.0, 6.25):0.20,0.50,0.20)x, < 100

((1.5, 1.75, 2.0, 6.25);0.40,0.70,0.20)x, + ((1.5, 1.75, 2.0, 6.50);0.40,0.50, 0.30)x,
+((1.0, 1.75, 2.0, 6.75);0.30,0.70,0.20)x5 + ((1.5, 1.75, 2.0, 6.25);0.40, 0.60,0.30)x, < 200

and x;, Xy, X3, x4 > 0

With the proposed approach in a stepwise manner as:

Step 1 we obtain the corresponding proportional p.d.f. of each N number coeffi-
cient in each objective function and constraint as discussed in Sect. 4.1. For this, we
use MATLAB software and the values of k;, k, and k; for each N number coefficient
of objectives and constraints are tabulated (Tables 2 and 3) as:

Step 2 setting the values of 4, 4, and A; for each of IVTrpN numbers present as
coefficient in objective and constraint as:A; = 0.20, 4, = 0.50,4; = 0.30 for each N
numbers coefficients in each objective and A, = 0.30, 4, = 0.40, 4; = 0.30 for each
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N numbers coefficients in each of constraint respectively. With these values, the
complete p.d.f. of each N number coefficient can be given as:

T, (X) = [0.4041,(x,) + 0.14290,,(x,) + 0.150, () ), + [0.4444 (x,) + 014080, (x,) + 0.13640, (x,) 1,

X1, X

+0.40p-(x3) + 0.12500.,(x3) + 0.12000. (x3) 3 + [0.57 1441 (x,) + 0.18870..(x,) + 0.18750-(x,) Iy

2, = [0.404,(x,) + 0.200,(x,) + 0.200-(x ), + [0.457 11 () + 0.195 16 (x;) + 0.17780.,(x)lx,

+[0.504,(x3) + 0.16130,(x3) + 0.15790.(x3) x5 + [0.504,(xy) + 0.16130,(x,) + 0.15790.(x, )t

F2,(X) = [03241,(x,) + 0.14816,(x;) + 0.14120, (x))x; + [0.35561,(x) + 0.14550,(x,) + 0.12970, (x,) 1,
.

+0.666741-(x3) + 0.22730.(x3) + 0.23080-(x3) I + [0.504_(x;) + 0.16130-(x,) + 0.15790-(x,) ],

Subject to,
X1+ [0.2857 - (3) + 010850, (x3) + 0.0949%k;0— ()

+[0A50/4u.E (x3) + 0.077705; (x3) + 0’0822053 (x3)]x3 + [0.40;4&74 (x4) + 0'10676,:74 (x4) + 0.109]1)‘274 (xg)Ix, <50

X+ [0.3810;4;,75@2) + 0.10855(715()(2) + 0.08760m(x2)]x2

1033331, (x3) + 0.07770—(x3) + 008960, (x3)}x; + [0.6047—(x) + 011430, (x) + 0.1091v— ()} < 100

%) +[0.2857p () +0.10850  (x,) +0.09490 _ (3],

+[0'3333”5F (x3) + 0.08250’[771 (x3) + 0.08960&; (x3)]x3 + [0.30/45‘: (xy) + 0.]0676&74 (xg) + 0.101)5; (x4)]x4 <200

and x;, X5, X3, x4 > 0

Step 4 in this step. We obtain the equivalent value of each p.d.f. using Laplace

Transform as given in (14). For this, we use MATHEMATICA® software and
equivalent crisp problem as:

Max {Z,(X) = 0.0627x, + 0.0213x, + 0.0102x; + 0.0137x,} (1st level)

XX

Max {ZZ(X) = 0.0041x, + 0.0052x, + 0.0103x; + 0.0103x4} (2nd level)
X3

Max {Zy(X) = 0.0556x, + 0.0297x, + 0.0321x3 + 0.0102x,} (3rd level)
X4

Subject to, 0.0156x; + 0.0169x, + 0.0155x; + 0.0208x, < 50

0.0013x,; + 0.0064x, + 0.0204x; + 0.0164x, < 100

@ Springer



OPSEARCH (2024) 61:867-896 889

Table 2 Values of k, k, and k; for each N number coefficient of objective functions

i Z = cx Xy X3 CiaXy

ki kK ks k, k, ks k, ky ks ky k, ks
i=1 2 02857 0.5 2.2222 0.2816 0.4545 2 0.25 04 2.8571 0.3773 0.625
i=2 2 04 0.6666 2.2857 0.3902 0.5925 2.5 0.3225 0.5263 2.5000 0.3225 0.5263
i=3 1.6 0.2962 0.4705 1.7777 0.2909 0.4324 3.3333 0.4545 0.7692 2.5 0.3225 0.5263

Table 3 Values of k|, k, and k5 for each N number coefficient of constraint coefficients

Constraint a;; x, Xy Xy ApXy

ik ky ky ky ky ks k, ky ks k, ky ks
2 0.2352 0.2857 0.9523 0.2711 0.3162 1.6666 0.1941 0.2739 1.3333 0.2667 0.3636
0.6666 0.1176 0.1428 1.2698 0.2711 0.2919 1.1111 0.1941 0.2985 2 0.2857 0.3636
1 0.25 0.3636 0.9523 0.2711 0.3162 1.1111 0.2061 0.2985 1 0.2667 0.3333

0.0165x, + 0.0147x, + 0.0181x; + 0.0163x, < 200

and x;, Xy, X3, x4 >0

Step 5 calculating the ideal values (maximum and minimum values) for each
objective function at each level along with ideal values of decision variables (up
to T-1 levels) (as shown in Table 4).

Step 6 construct membership functions for each objective functions at each
level and decision variables (i.e. x|, x, x3) of first two levels as defined in
Egs. (17) and (18) respectively as shown below:

0.0627x, + 0.0213x, + 0.0102x; + 0.0137x, — 0

F2,%) = 200.9615 — 0
— 0.0041x, + 0.0052x, + 0.0103x; + 0.0103x, — 0
F,&%) = 33.22581 -0
—  0.0556x, +0.0297x, + 0.0321x; +0.0102x, — 0
F\(Z3%) = 178.2051 — 0 ’
2T 305128 =07 R

~ 3225806 — 0

Step 7 with these values, solution model (21) for MLLP problem with IVTrpN
numbers can be given as:

mind=d; +d; +dj +d_+d
X X3
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Subject to, 0.0627x; + 0.0213x, + 0.0102x; + 0.0137x, + 200.9615d, > 200.9615
0.0041x; + 0.0052x, + 0.0103x; + 0.0103x, + 33.22581d; > 33.22581

0.0556x, + 0.0297x, + 0.0321x; + 0.0102x, + 178.2051d; > 178.2015

x + 3205.128d;] > 3205.128
X3+ 33.22581(1;l > 33.22581

0.0156x, + 0.0169x, + 0.0155x; + 0.0208x, < 50
0.0013x, + 0.0064x, + 0.0204x; + 0.0164x, < 100

0.0165x, + 0.0147x, + 0.0181x; + 0.0163x,

IA

200

and xl,xz,x3,x4,dl_,dz_,d;,d;],d;} > 0.

Solving this programming problem model with LINGO®© tool, we obtain the sat-
isfactory solution to the original problem: A = 0.6214752, x; = 3172.115, x, =0,
x; =33.22581, x, =0 with the objective function values as: Zl = 199.2305,
Z, = 13.34790, and Z, = 177.4362.

6.2 Application of proposed solution technique in real world problem

Multi-level programming approaches under neutrosophic environment have can be
used in solving real world problem e.g. Luo et al. [26] applied different approach with
N number in solving a pricing decision-making case of satellite image data products.
Proposed solution algorithm can be applied in solving complex real problems arising
in day-to-day life. Here, formulation of production problem as MLLP problem with N
numbers and its solution with proposed technique is described as:

Let us consider a real problem of ‘XYZ’ production firm producing mainly three
types of products P, Q and R. This firm has three hierarchical levels of functioning
namely manufacturing unit (1st level), distributor (2nd level) and retailer (3rd unit).
At each level, the firm has different objective functions (say Z,(X), Z,(X), Z;(X)) as:
at manufacturing unit, maximization of market share of product of firm; at distribu-
tor level, maximization of sales revenue of product and at 3rd level, maximization
of profit on net product cost. There are different decision variables involved in deci-
sion making such as x;- profit on product P, x,- profit on product Q and x;- profit on
product R. Besides these, coefficients in each objective function and each constraint
are in the form of interval valued trapezoidal N numbers. This real production prob-
lem can be formulated in mathematical format as:

Z,(X) = {(1.0, 1.75, 2.0, 6.75);0.20,0.80, 0.30)x, + (1.5, 1.75, 2.0, 6.50);0.30, 0.50, 0.40)x,
Max (st level)
X1

+((1.0, 1.75, 2.0, 6.75);0.30,0.70, 0.20)x5
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Z,(X) = {(1.5, 1.75, 2.0, 6.25);0.40,0.70,0.20)x, + (1.5, 1.75, 2.0, 6.25);0.20, 0.80, 0.50)x,
(2nd level)

ax
2| (1.5, 1.75, 2.0, 6.50);0.40,0.50, 0.30)x;

Zy(X) = ((1.5,1.75,2.0,6.25);0.40,0.60, 0.30)x, + ((1.0,1.75,2.0,6.75);0.30,0.70, 0.20)x,
Max (3rd level)

B3 +((1.5,1.75,2.0,6.25);0.20, 0.80, 0.50)x5

Subject to, ((0.5,1.5,2.5,4.5);0.20,0.80, 0.20)x; + +((1.5,2.5,3,5.5);0.20, 0.80, 0.20)x,
+((1.0,1.75,2.0, 6.75);0.20, 0.80, 0.30)x; + ((1.5,1.75, 2.0, 6.25);0.30, 0.60, 0.20)x, < 850

((2,3,3.5,6.5);0.20,0.80,0.20)x; + ((2.0,2.5,3.0, 11.5);0.30, 0.80, 0.50)x,
+((1.0, 1.75,2.0,6.75);0.30, 0.80, 0.20)x; + (1.5, 1.75, 2.0, 6.25);0.20, 0.50, 0.20)x, < 900

((1.5, 1.75, 2.0, 6.50);0.30, 0.50, 0.40)x, + ((1.0, 1.75, 2.0, 6.75);0.30, 0.80, 0.20)x,
+((1.5, 1.75, 2.0, 6.25);0.40,0.70,0.20)x; + ((1.5, 1.75, 2.0, 6.25);0.40, 0.60,0.30)x, < 1100

and x, x,,x3,x4 >0

Using the step 1 of proposed solution technique, the values of &, k, and k; for
each N number coefficient of objectives and constraints are obtained (Tables 5
and 6) as:

Thereafter, with the values 4, =020, 4,=050, 4;=0.30 and
A, =0.30, 4, =040, 43 =0.30 for N numbers coefficient in objective function
and constraint respectively, the complete p.d.f. of each coefficient as mentioned in
step 2 of algorithm can be obtained and accordingly their equivalent value can be
obtained using Laplace Transform as given in (14) and mentioned in step 4. With
these equivalent values of each N numbers, we convert the problem into equiva-
lent crisp problem as:

Max {Z,(X) = 0.0155x, + 0.0064x, + 0.0204x3}  (Lst level)
X

Max {Z,(X) = 0.0165x, + 0.0156x, + 0.0147x;} (2nd level)
X2

Max {Zy(X) = 0.0163x, + 0.0181x, + 0.0156x;3} (3rd level)
X3

Subject to, 0.0627x, + 0.0213x, + 0.0155x; < 850
0.0102x, + 0.0041x, + 0.0204x; < 900

0.0052x; 4+ 0.0103x, + 0.0556x; < 1100
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Table5 Values of k|, k, and k; for each N number coefficient of objective functions
i Z- =X CnXy cats
ky k, ks ky k, ks ky k, k3

i=1 1.6666 0.1941 0.2739 1.2698 0.2711 0.2919 0.1111 0.1941 0.2985
i=2 1 0.25 0.3636 2 0.2352  0.2857 0.9523 0.2711 0.3162
i=3 1 0.2667 0.3333 0.3162 1.1111 0.2061 2 0.2352  0.2857
Table 6 Values of k;, k, and k for each N number coefficient of constraint
Constraint a@;, x, anx, A% Xy
i ky ky ks ky k, ks ky ky k, k, ks

2 0.2857 0.5 2.2222 0.2816 0.4545 1.6666 0.1941 0.2739 1.3333 0.2667 0.3636

2 025 04 2 0.4 0.6666 1.1111 0.1941 0.2985 2 0.2857 0.3636

2.2857 0.3902 0.5925 2.5

0.3225 0.5263 1.6

0.2962 0.4705 1

0.2667 0.3333

and  xy,X,,%x3,%4 >0

Solving this crisp problem irrespective of level structure, we obtain the ideal val-
ues of decision variables and objective function and formulate the linear member-
ship function for each objective function and variables (up to T-1 level i.e. x;, x,).
Finally, we have the solution model for MLLP problem with IVTrp N numbers as:

min/1=d1_+d2_+d3_+d; +d;
1 3
Subject to, 0.0155x; + 0.0064x, + 0.0204x; + 524.1711d; > 524.1711

0.0165x; + 0.0156x, + 0.0147x; + 670.4845d;

0.0163x; + 0.0181x, + 0.0156x; + 757.0840d;

X+ 8870.892d;} > 8870.892

X, +29483.81d > 29483.81

0.0627x, + 0.0213x, + 0.0155x; < 850

0.0102x, + 0.0041x, + 0.0204x; < 900

0.0052x, + 0.0103x, + 0.0556x; < 1100

> 670.4845

> 757.0840
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and xl,xz,x3,dl ,dz,d3 ,dxl,dx2 >0

Solving this programming problem model with simplex method or LINGO©
tool, we obtain the satisfactory solution to the original problem: A = 1.082608
x; = 0.001104, x, = 29483.81, x; = 14322.24 with the objective function values

as: Z,, = 480.8702, Z, = 670.4844, and Z, = 757.0840.

7 Concluding remarks and future research directions

This paper presents an improved and unique solution technique for MLLP prob-
lem with interval-valued trapezoidal neutrosophic numbers (IVTrpN numbers).
The unique feature of the proposed technique is the use of proportional p.d.f.
to each N number and use of Laplace transform to convert problem into crisp
problem. Besides this, proposed technique is comparatively simpler with reduced
number of computational steps as there is no use of ranking function, score func-
tion, accuracy function etc. values of N numbers in the de-neutrosophication pro-
cess of N numbers. However, proposed technique has limitation of computation
difficulties of Laplace transform of associated p.d.f. but this limitation can be
dealt with the use of computing software like MATHEMATICA, MATLAB and
LINGO. The proposed technique can be extended for the solution of more com-
plex problems like MOP problems, BLP problems, MLMOP problems etc. by the
future researchers.
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