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Abstract
In this endeavour, we study the statistical inference of multicomponent stress-
strength reliability when components of the system have two paired elements experi-
encing common random stress. The k strength variables (X1, Y1),… , (X

k
, Y

k
) follow 

a bivariate Topp-Leone distribution and the stress variable which follows a Topp-
Leone distribution. This system is unfailing when at least s(1 ≤ s ≤ k) out of k com-
ponents simultaneously activate. The maximum likelihood estimate along with its 
asymptotic confidence interval, the uniformly minimum variance unbiased estimate, 
and the exact Bayes estimate of stress-strength reliability are derived. Further, we 
determined the Bayes estimates of the stress-strength reliability via different meth-
ods such as the Tierney and Kadane approximation, Lindley’s approximation, and 
the Markov Chain Monte Carlo (MCMC) method, to compare their performances 
with the exact Bayes estimate. Also, the highest probability density credible interval 
is obtained using the MCMC method. Monte Carlo simulations are implemented to 
compare the different suggested methods. Ultimately, the analysis of one real data is 
investigated for illustrative purposes.

Keywords Multicomponent stress-strength reliability · Bivariate Topp-Leone 
distribution · Bayesian estimation

1 Introduction

The study of resistance of systems with random stress X and random strength Y in 
reliability literature is well-known as the stress-strength model, while the parameter 
R = P(X < Y) assesses the reliability of the system. This system fails if X > Y  . The 
problem of estimating the parameter R plays a significant role in reliability analysis. 
This has been discussed by a great number of authors. A comprehensive review of 

 * Hossein Pasha-Zanoosi 
 pashazanoosi@yahoo.com

1 Department of Basic Sciences, Faculty of Economics and Management, Khorramshahr 
University of Marine Science and Technology, Khorramshahr, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s12597-023-00713-5&domain=pdf
http://orcid.org/0000-0003-3331-1895


571

1 3

OPSEARCH (2024) 61:570–602 

different stress-strength models up to 2003 has been presented in [1]. Recently, the 
reliability of multicomponent stress-strength models has attracted the attention of 
researchers. This model consists of the k independent and identical strength compo-
nents and survives when at least s(1 ≤ s ≤ k) components persist against a common 
stress. The stress-strength reliability for such a system is known as the s-out-of-k: G 
system and it is given by Rs,k . The recent efforts in multicomponent stress-strength 
models are [2–12].

In most of the work related to the reliability of multicomponent stress-strength 
models, the system components have only one element, whereas in real-life each 
component may consist of more than one element. These types of situations may be 
seen in many real-life scenarios. For example, it can be used in the construction of 
suspended bridges, where the deck is sustained by a series of vertical cables which 
hang from the towers. Assume a suspension bridge is made of k pairs of vertical 
cables on either side of the deck. Here, each component consists of two depend-
ent elements. The bridge will only stand when at least s number of vertical cables 
through the deck exceed the applied stresses such as heavy traffic, wind forces, cor-
rosion, and so on.

In this paper, we assume that the strength variables (X1, Y1),… , (Xk, Yk) are inde-
pendent and identically distributed random variables that following the bivariate 
Topp-Leone (BTL) distribution and are statistically independent with random stress 
that follows the Topp-Leone (TL) distribution. Recently, the estimation of multi-
component stress-strength reliability when the stress and strength variables follow 
Kumaraswamy and bivariate Kumaraswamy distributions, respectively, was studied 
in [13].

The TL distribution was first introduced by [14]. This is one of the distributions 
having finite support used to model percentage data, rates, and data extracted from 
some chemical processes. The main application of the TL distribution is when the 
reliability is assessed as the ratio of the number of successful experiments to the 
total number of experiments [15].

A random variable X has the TL distribution with the shape parameter � if its 
probability density function (PDF) is specified by

The cumulative distribution function (CDF) and survival function corresponding to 
Eq. (1), are

and

respectively. From here on, the TL distribution will be signified with the PDF in Eq. 
(1), by TL(�) . Recently, the problem of Rs,k in the multicomponent stress-strength 
model when stress and strength variables are from TL distributions considered in 

(1)fX(x;𝜃) = 2𝜃(1 − x)
[
x(2 − x)

]𝜃−1
, 𝜃 > 0, 0 < x < 1.

(2)FX(x;�) =
[
x(2 − x)

]�
,

(3)F̄
X
(x;𝜃) = 1 −

[
x(2 − x)

]𝜃
,
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[16]. In this study, the MLE of Rs,k was computed. Also, the Bayes estimates of 
the system reliability were determined by using the MCMC method and Lindley’s 
approximation. However, a UMVUE and an exact Bayes estimate of Rs,k were not 
taken into consideration.

The main goal of this paper is to discuss the classical and Bayesian inferences of 
Rs,k when strength variables follow the BTL distribution and the stress variable fol-
lows the TL distribution. The remainder of the paper is as follows. In Sect. 2, system 
reliability is determined. In Sect. 3, the MLE with the asymptotic confidence inter-
val (ACI) and the UMVUE of Rs,k are investigated. In Sect. 4, the Bayes estimator 
of Rs,k is determined explicitly. Further, to compare other methods of the Bayesian 
estimates with the exact, the Tierney and Kadane method, Lindley’s approximation, 
and the MCMC method are used to obtain the Bayes estimates of Rs,k . Also, the 
highest probability density credible interval (HPDCI) is provided in this section. In 
Sect. 5, the proposed methods are compared via MCMC simulations. In Sect. 6, a 
real data is given to demonstrate the suggested approaches. In Sect. 7, we extend the 
studied methods to a general family of distributions. Finally, we conclude the paper 
in Sect. 8.

2  System reliability

In this section, we first describe the BTL distribution and then obtain Rs,k . Suppose 
V1,V2 , and V3 follow TL(�1) , TL(�2) , and TL(�3), respectively and all three random 
variables are mutually independent. Define the random variables X and Y as

where X and Y have a common random variable V3 , making it clear that they are 
dependent. So the bivariate vector (X, Y) is the BTL distribution with the parameters 
�1, �2, �3 and it is denoted by BTL(�1, �2, �3) . Using the above definition, the follow-
ing theorems can be easily proved.

Theorem 1 If (X, Y) ∼ BTL(�1, �2, �3) , then their joint CDF is given by

where u = min(x, y).

Proof 
Substituting Eq. (3) into the above equation, the proof is obtained. Note that the ran-
dom variable X and Y are independent iff �3 = 0 .   ◻

Theorem 2 If (X, Y) ∼ BTL(�1, �2, �3) , then 

X = max{V1,V2}, Y = max{V2,V3},

(4)F(X,Y)(x, y) =
[
x(2 − x)

]�1[y(2 − y)
]�2[u(2 − u)

]�3 ,

F(X,Y)(x, y) = P(X < x, Y < y) = P
(
max(V1,V3) < x, max(V2,V3) < y

)

= P(V1 < x)P(V2 < y)P(V3 < min(x, y))

= FV1
(x;𝛼1)FV2

(y;𝛼2)FV1
(u;𝛼3).
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(a) X ∼ TL(�1) and Y ∼ TL(�2 + �3).
(b) max(X, Y) ∼ TL(�) , where � = �1 + �2 + �3.

Proof (a)

Substituting Eq. (3) into the above equation, we get X ∼ TL
(
�1 + �3

)
 . Similarly, 

Y ∼ TL
(
�2 + �3

)
 is proved.

(b)

Now, we consider a system having k identical and independent strength components, 
creating a parallel system of dependent elements experiencing common stress. Here, 
the strength vectors (X1, Y1),… , (Xk, Yk) follow BTL(�1, �2, �3) and a common stress 
variable T follows TL(�) . Hence the reliability in a multicomponent stress-strength 
model is given by

Let Zi = max(Xi, Yi), i = 1,… , k , therefore, according to Theorem 2(b), Zi ∼ TL(�) 
and then Rs,k = P(T < Zi), i = 1,… , k . The system works if at least s out of 
k(1 ≤ s ≤ k) of the Zi strength variables simultaneously survive. Suppose k strength 
(Z1,… , Zk) components are independent and identically distributed random vari-
ables with CDF F(z) and the stress T is a random variable with the CDF F(t). Hence, 
the reliability of Rs,k introduced by [17], can be obtained as

Note that the potential data are as follows

but the actual observations can be constructed as

FX(x) = P(X < x) = P
[
max(V1,V3) < x

]

= P(V1 < x)P(V3 < x) = FV1
(x;𝛼1)FV3

(x;𝛼3).

(5)P[max(X, Y) < x] = P(X < x, Y < x) = F(X,X)(x, x) = FX(x;𝛼).

Rs,k = P
(
T < max(Xi, Yi)

)
, i = 1, 2,… , k.

(6)

Rs,k = P
[
at least s of (Z1,… , Zk) exceed T

]

=

k∑
i=s

(
k

i

)
∫

∞

0

[
1 − FZ(t)

]k−i[
F(t)

]k−i
dG(t)

=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j�

�(k + j − i) + �
.

⎡⎢⎢⎢⎣

x11 x12 ⋯ x1k
x21 x22 ⋯ x2k
⋅ ⋅ ⋱ ⋅

xn1 xn2 ⋯ xnk

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣

y11 y12 ⋯ y1k
y21 y22 ⋯ y2k
⋅ ⋅ ⋱ ⋅

yn1 yn2 ⋯ ynk

⎤⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎣

t1
t2
⋅

tn

⎤⎥⎥⎥⎦
,
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where zij = max(xij, yij) , i = 1,… , n , and j = 1,… , k .   ◻

3  Classical estimates of Rs,k

In this section, we investigate the MLE of Rs,k along with its ACI. Also, we obtain the 
UMVUE of Rs,k.

3.1  MLE of Rs,k

To find the MLE of Rs,k , we need to determine the MLEs of � and � . The likelihood 
function based on Eq. (7) is

and the log-likelihood function is

where c is constant. So, the MLEs of � and � can be computed as the solution of the 
following equations

(7)

⎡
⎢⎢⎢⎣

z11 z12 ⋯ z1k
z21 z22 ⋯ z2k
⋅ ⋅ ⋱ ⋅

zn1 zn2 ⋯ znk

⎤
⎥⎥⎥⎦
and

⎡
⎢⎢⎢⎣

t1
t2
⋅

tn

⎤
⎥⎥⎥⎦
,

(8)

L(�, �|z, t) =
n∏
i=1

( k∏
j=1

f (zij)
)
g(ti)

= 2n(k+1)�nk�n
( n∏

i=1

k∏
j=1

(1 − zij)
)( n∏

i=1

k∏
j=1

[
zij(2 − zij)

]�−1)

×
( n∏

i=1

(1 − ti)
)( n∏

i=1

[
ti(2 − ti)

]�−1)
,

(9)

l(�, �|z, t) = nk ln(�) + n ln(�) +

n∑
i=1

k∑
j=1

ln(1 − zij)

+ (� − 1)

n∑
i=1

k∑
j=1

ln
[
zij(2 − zij)

]

+

n∑
i=1

ln(1 − ti) + (� − 1)

n∑
i=1

ln
[
ti(2 − ti)

]
+ c,
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Thus,

where P =
∑n

i=1

∑k

j=1
ln
�
zij(2 − zij)

�
 and Q = −

∑n

i=1
ln
�
ti(2 − ti)

�
.

It should be noted that, since 0 < t < 1 , then 0 < t(2 − t) = 1 − (t − 1)2 < 1 and 
ln
[
t(2 − t)

]
< 0 , so we always have Q > 0 . In a similar process P > 0 . Therefore, 

�̂� and 𝛽  are indeed the MLEs of � and � , respectively. Also, it can be shown that 
If X1, ...,Xn ∼ TL(�), then −

∑n

i=1
ln
�
Xi

�
2 − Xi

��
∼ Gamma(n, �). For this, it is suf-

ficient to show that − ln
[
X(2 − X)

]
 has an exponential distribution with param-

eter � . To find the PDF for Y = g(X) = − ln
[
X(2 − X)

]
 , we first find g−1(x) . Since 

y = g(x) = ln [x(2 − x)] , then x = g−1(y) = 1 −
√
1 − ey. So, by using the change of 

variable technique, we have

Thus, it can be concluded that P ∼ Gamma(nk, �) and Q ∼ Gamma(n, �).
In the following, the MLE of Rs,k is computed from Eq. (6) by the invariant 

property of MLEs:

Now, the ACI of Rs,k can be obtained using the asymptotic distribution of � = (�, �) . 
The expected Fisher information matrix of � is defined as

where a11 =
nk

�2
, a22 =

n

�2
, and a12 = a21 = 0.

The MLE of Rs,k is asymptotically normal with the mean Rs,k and variance

�l

��
=

nk

�
+

n∑
i=1

k∑
j=1

ln
[
zij(2 − zij)

]
= 0,

�l

��
=

n

�
+

n∑
i=1

ln
[
ti(2 − ti)

]
= 0.

(10)�̂� =
nk

P
, 𝛽 =

n

Q

fY (y) =
����
d

dy

�
g−1(y)

�����fX
�
g−1(y)

�

=

������
−

e−y

2
√
1 − e−y

������
× 2�

√
1 − e−y(e−y)�−1

= �e−�y ∼ exponential(�).

(11)R̂MLE
s,k

=

n∑
i=1

k∑
j=1

(
k

i

)(
i

j

)
(−1)j𝛽

�̂�(k + j − i) + 𝛽
.

I(�) =

[
−

�2l

��2
−

�2l

����

−
�2l

����
−

�2l

��2

]
= E(A),
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where A−1
ij

 is the (i, j) th element of the inverse of A.
Also,

Hence, using the delta method, the asymptotic variance is given by

Therefore, the 100(1 − �)% ACI of Rs,k is obtained as follows:

where, Z�∕2 is the upper �∕2 th quantile of the standard normal distribution.
Here, the confidence interval obtained for Rs,k may be outside the domain (0, 1), 

so it is better to use the logit transformation f (Rs,k) = ln
[
Rs,k∕(1 − Rs,k)

]
 and then 

change it again to the original scale [18]. Therefore, the 100(1 − �)% ACI for f (Rs,k) 
is specified by

Finally, the 100(1 − �)% ACI for Rs,k is derived by

3.2  UMVUE of Rs,k

In this subsection, we derive the UMVUE of Rs,k by using an unbiased estimator 
of �(�, �) = (−1)j�

�(k+j−i)+�
 and a complete sufficient statistic of (�, �) . We observe from 

Eq. (10) that (P,Q) =
�
−
∑n

i=1

∑k

j=1
ln[zij(2 − zij)],−

∑n

i=1
ln
�
ti(2 − ti)

��
 is the 

complete sufficient statistic of (�, �) . In addition, as mentioned in Sect. 3.1, P and 

H =

2∑
i=1

2∑
j=1

�Rs,k

��i

�Rs,k

��j
A−1
ij
,

(12)
�Rs,k

��
=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j+1�(k + j − 1)

[�(k + j − i) + �]2
,

(13)
�Rs,k

��
=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j+1�(k + j − 1)

[�(k + j − i) + �]2
.

Ĥ =
𝛼2

nk

(
𝜕Rs,k

𝜕𝛼

)2

+
𝛽2

n

(
𝜕Rs,k

𝜕𝛽

)2|||||(�̂�,𝛽)
.

(14)R̂MLE
s,k

± Z𝛿∕2

√
Ĥ,

f (Rs,k) ± Z𝛼∕2

√
Ĥ

R̂s,k(1 − R̂s,k)
≡ (L,U).

(15)
(

eL

1 + eL
,

eU

1 + eU

)
.
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Q follow Gamma distributions with parameters (nk, �) and (n, �) , respectively. Let 
P∗ = − ln

[
Z11(2 − Z11)

]
 and Q∗ = − ln

[
T1(2 − T1)

]
 . It is obvious that P∗ and Q∗ are 

exponentially distributed with mean 1∕� and 1∕�, respectively. Hence,

is an unbiased estimator of �(�, �) , and so the UMVUE of �(�, �) can be derived by 
using the Lehmann-Scheffe Theorem. Therefore,

where 𝜔 = {(p∗, q∗) ∶ 0 < p∗ < p, 0 < q∗ < q, p∗ > (k + j − i)q∗} . This double inte-
gral can be discussed with regards to h ≤ 1 and h > 1 , where h =

(k+j−i)q

p
 . When 

h ≤ 1 , the integral in Eq. (16) reduces to

where 𝜈 =
q̃

q
 . When h > 1 , the integral in Eq. (16) reduces to

where � =
p∗

p
 . Thus, the �̂�UM(𝛼, 𝛽) is obtained from Eqs. (17) and (18). Finally, the 

UMVUE of Rs,k is determined by applying the linearity property of UMVUE as 
follows

𝜑(Q∗,P∗) =

{
1, P∗ > (k + j − i)Q∗

0, otherwise,

(16)
�̂�UM(𝛼, 𝛽) = E

[
𝜑(Q∗,P∗)|P = p,Q = q

]

=
∫
𝜔
∫

fQ∗|Q=q(q∗|q)fP∗|P=p(p∗|p)dq∗dp∗,

(17)

�̂�UM(𝛼, 𝛽) =
∫

q

0 ∫

p

p∗(k+j−i)

(n − 1)(nk − 1)

qp

(
1 −

q∗

q

)n−2(
1 −

p∗

p

)nk−2

dp∗dq∗

= (n − 1)
∫

1

0

(1 − 𝜈)

n−2

(1 − h𝜈)nk−1d𝜈

=

nk−1∑
l=0

(−1)l(h)l

(
nk − 1

1

)

(
n + l − 1

l

) ,

(18)

�̂�UM(𝛼, 𝛽) =
∫

p

0 ∫

p∗

(k+j−i)

0

(n − 1)(nk − 1)

qp

(
1 −

q∗

q

)n−2(
1 −

p∗

p

)nk−2

dq∗dp∗

= 1 − (nk − 1)
∫

1

0

(1 − 𝜈)

nk−2

(1 − h−1𝜈)n−1d𝜈

= 1 −

n−1∑
l=0

(−1)l(h)l

(
nk − 1

1

)

(
n + l − 1

l

) ,
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4  Bayes estimation of Rs,k

In this section, we provide the Bayesian inference of Rs,k under the squared error 
(SE) loss function. Assume that the parameters � and � are independent random 
variables and have Gamma prior distributions with parameters (a1, b1) and (a2, b2) , 
respectively, where ai, bi > 0, i = 1, 2 . Based on the observations, the joint posterior 
density function is

where P and Q are shown in Eq. (10). Then, the Bayes estimate of Rs,k is calculated 
by

Now using the computational process provided by [12], the Bayes estimate of Rs,k 
can be rewritten as

where u = nk + n + a1 + a2 and � = 1 −
(b2+Q)(k+j−i)

b1+P
 . Notice that

is the hypergeometric series, which is available in standard software such as 
R. Therefore, for this example, the Bayes estimate is derived in the closed form. 
However, for comparison purposes, we provide the Bayes estimate by using other 

(19)R̂UM
s,k

=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j�̂�UM(𝛼, 𝛽).

�(�, �|z, t) = L(z, t|�, �)�1(�)�2(�)
∫

∞

0
∫

∞

0
L(z, t|�, �)�1(�)�2(�)d�d�

=
(b1 + P)nk+a1 (b2 + Q)n+a2

Γ(nk + a1)Γ(n + a2)
�nk+a−1�n+a2−1 exp[−�(b1 + P)

− �(b2 + Q)],

R̂B
s,k

= E(Rs,k|z, t)

=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j

∫

∞

0 ∫

∞

0

(−1)j𝛽

𝛼(k + j − i) + 𝛽
𝜋(𝛼, 𝛽|z, t)d𝛼d𝛽.

(20)

R̂B
s,k

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

∑k

i=s

∑i

j=0

�
k

i

��
i

j

�
(−1)j(1 − 𝜈)n+a2

n+a2

u 2F1(u, n + a2 + 1;u + 1, 𝜈),

�𝜈� < 1

∑k

i=s

∑i

j=0

�
k

i

��
i

j

�
(−1)j(n+a2)

u(1−𝜈)nk+a1 2
F1

�
u, nk + a1 + 1;u + 1,

𝜈

𝜈−1

�
,

𝜈 < −1

2F1(a, b;c, x) =
1

Beta(a, c − a) ∫

1

0

𝜈a−1(1 − 𝜈)c−a−1(1 − x𝜈)−bd𝜈, |𝜈| < 1,
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techniques such as the Tierney and Kadane approximation, Lindley’s approxima-
tion, and the MCMC method.

4.1  Tierney and Kadane approximation

In this subsection, we obtain the Bayes estimator of Rs,k via the Tierney and Kadane 
approximation [19]. This technique is used for the posterior expectation of the func-
tion u(�) as follows:

where �(�) =
log�(�,data)

n
 , and �∗(�) = �(�) +

log u(�)

n
 . Suppose �̂� = (�̂�, 𝛽) and 

�̂�∗ = (�̂�∗, 𝛽∗) maximize the functions �(�) and �∗(�) , respectively. By employing the 
Tierney and Kadane approximation, Eq. (21) approximates the following expression:

where |H∗| and |H| are the inverse determinant of the negative hessian of �(�) and 
�∗(�) , respectively, computed at �̂� and �̂�∗ . In our case, we have

Then, we compute �̂� by solving following equations

thus, 𝜑11 =
nk+a1−1

n�̂�2
 , �12 = �21 = 0 , 𝜑22 =

n+a2−1

n𝛽2
 , and |H| = n2�̂�2𝛽2

(nk+a1−1)(n+a2−1)
 . Now, 

we obtain |H∗| following the same arguments with u(�) =
∑k

i=s

∑i

j=0

�
k

i

�
(−1)j�

�(k+j−i)+�
 

(21)E[u(�)] =
∫ en�

∗(�)d�

∫ e�(�)d�
,

ûTK(𝜃) =

√
|H∗|
|H| exp

[
n(𝜑∗(�̂�∗) − 𝜑(�̂�))

]
,

�(�) =
1

n

[
(nk + a1 − 1) ln(�) + (n + a2 − 1) ln(�) +

n∑
i=1

k∑
j=1

ln(1 − zij)

− b1� − b2� + (� − 1)

n∑
i=1

k∑
j=1

ln[zij(2 − zij)] +

n∑
i=1

ln(1 − ti)

+ (� − 1)

n∑
i=1

ln[ti(2 − ti)]

]
.

��(�)

��
=

1

n

[
nk + a1 − 1

�
+

n∑
i=1

k∑
j=1

ln[zij(2 − zij)] − b1

]
= 0,

��(�)

��
=

1

n

[
n + a2 − 1

�
+

n∑
i=1

ln[ti(2 − ti)] − b2

]
= 0.
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in �̂�∗ . Finally, the Bayes estimate of Rs,k based on the Tierney and Kadane approxi-
mation is obtained as

4.2  Lindley’s approximation

Lindley [20] presented an approximate technique for the determination of the ratio 
of two integrals. Similar to the Tierney and Kadane approximation, this technique is 
also used to derive the posterior expectation from a function such as u(�) as follows:

where l(�) and �(�) are the logarithms of the likelihood function and the prior den-
sity of � , respectively. Thus, Eq. (23) can be written as follows:

where 𝜃 = (𝜃1,… , 𝜃n), i, j, k, l = 1,… , n, �̂� is the MLE of 
�, u = u(�), ui =

�u

��i
, uij =

�2u

��i��j
, Lijk

=
�3 l

��i
��j��k,�j =

��

��j

 , and �ij = (i, j) th element 
in the inverse of the matrix [−Lij] are all calculated at the MLEs of the parameters. 
In this case, Lindley’s approximation lead to

Here, � = (�, �) and u = u(�, �) = Rs,k . therefore,

(22)R̂B−TK
s,k

=

√
|H∗|
|H| exp

[
n(𝜑∗(�̂�∗) − 𝜑(�̂�))

]
.

(23)E[u(�)] =
∫ u(�)el(�)+�(�)d�

∫ el(�)+�(�)d�
,

E[u(𝜃)] =

[
u +

1

2

∑
i

∑
j

(uij + 2ui𝜑j)𝜏ij +
1

2

∑
i

∑
j

∑
k

∑
l

Lijk𝜏ij𝜏klul

]|||||�̂�
,

E[u(�)] = u + (u1c1 + u2c2 + c3) +
1

2
(A + B + C + D),

ci = �1�i1 + �2�i2, i = 1, 2, c3 =
1

2
(u11�11 + u21�21 + u12�12 + u22�22),

A = (L111�11 + L211�21 + L121�12 + L221�22)�11u1,

B = (L112�11 + L212�21 + L122�12 + L222�22)�21u1,

C = (L111�11 + L211�21 + L121�12 + L221�22)�12u2,

D = (L112�11 + L212�21 + L122�12 + L222�22)�22u2.
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and the other Lijk = 0 . Moreover u1 and u2 are presented in Eqs. (12) and (13), 
respectively. Also,

Therefore,

Hence, the Bayes estimator of Rs,k based on Lindley’s approximation is obtained as

4.3  MCMC method

In this subsection, we use the Gibbs sampling method to determine the Bayes esti-
mate and to establish the credible interval for Rs,k . The posterior conditional density 
of � and � can be derived as

respectively. We observe from Eqs. (25) and (26) that the conditional densi-
ties of � and � have Gamma distributions with parameters (nk + a1, b1 + P) and 

�1 =
a1 − 1

�
− b1, �2 =

a2 − 1

�
− b2, L11 = −

nk

�2
, L22 = −

n

�2
,

L12 = L21 = 0, �11 =
�2

nk
, �22 =

�2

n
, �12 = �21 = 0,

L111 =
2nk

�3
, L222 =

2n

�3
,

u11 =
�2Rs,k

��2
=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j2�(k + j − i)2[
�(k + j − i) + �

]3 ,

u22 =
�2Rs,k

��2
=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j+12�(k + j − i)[
�(k + j − i) + �

]3 .

c3 =
1

2
(u11�11 + u22�22), A = L111�11

2u1, D = L222�22
2u2, B = C = 0.

(24)R̂B−Lin
s,k

=
[
u + (u1c1 + u2c2 + c3) +

1

2
(A + D)

]|||||(�̂�,𝛽)
.

(25)�∗(�|�, z, t) = (b1 + P)nk+a1

Γ(nk + a1)
�nk+a−1 exp

[
−�(b1 + P)

]
,

(26)�∗(�|�, z, t) = (b2 + Q)n+a2

Γ(n + a2)
�n+a2−1 exp

[
−�(b2 + Q)

]
,
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(n + a2, b2 + Q), respectively. Therefore, we can to use the Gibbs sampling algo-
rithm steps as follows. 

Algorithm 1  .

Step 1: Set l = 1.
Step 2: Generate α(l) from Gamma(nk + a1, b1 + P ).
Step 3: Generate β(l) from Gamma(n+ a2, b2 +Q).
Step 4: Compute R

(l)
s,k =

∑k
i=s

∑i
j=0

k
i

i
j

) (−1)j β̂
α̂(k+j−i)+β̂

at (α(l), β(l)).
Step 5: Set l = l + 1.
Step 6: Repeat steps 2-5, N times and obtain R

(l)
s,k for l = 1, 2, . . . , N .

The Bayes estimate of Rs,k based on the MCMC method is calculated by

Also, the highest probability density 100(1 − �)% credible interval for Rs,k can be 
computed by method of [21], minimizing

where, the values of Rs,k are ranked in ascending order from 1 to N.

5  Simulation study

In this section, we performed MCMC simulations to compare the performances of the 
point and interval estimates of Rs,k by using the classical and Bayesian methods for 
different sample sizes and different choices of parameter values. The performances of 
the point estimators are compared in terms of their mean squared errors (MSEs). The 
performances of the interval estimators are compared by the average lengths (ALs) of 
intervals and coverage probabilities (CPs). We have generated random samples from 
strength and stress populations based on different sample sizes, n = 5(10)45 , and differ-
ent parameter values, (�, �) = (0.5, 1), (0.5, 1.5), (2.5, 2), (3, 2) . The true values of Rs,k 
with the given (�, �) for (s, k) = (1, 3) are 0.6, 0.5, 0.7895, 0.8182 and for (s, k) = (2, 4) 
are 0.4, 0.2857, 0.6579, 0.7013, respectively. To investigate the Bayes estimate, both 
non-informative and informative priors are considered and have been dubbed Prior 1 
and Prior 2, respectively. Prior 1 is (ai, bi) = (0.0001, 0.0001), i = 1, 2 and Prior 2 is 
(ai, bi) = (3, 1), i = 1, 2 . All of the calculations are obtained by using R 3.4.4 based 
on 50,000 replications. Further, the Bayes estimate along with its credible interval are 

R̂B−MC
s,k

=
1

N

N∑
l=1

R
(l)

s,k
.

(
R
((1−�)N+i)

s,k
− R

(i)

s,k

)
, 1 ≤ i ≤ �N,
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calculated using 1000 sampling. For comparison purposes, we have considered three 
approximate methods of Bayes estimates, namely Lindley’s approximation, the Tier-
ney and Kadane approximation, and the MCMC method. In Tables 1 and 2, the point 
estimates and the MSEs of Rs,k are reported based on classical and Bayesian estimates. 
According to Tables 1 and 2, the MSEs for the estimates decrease as the sample size 
increases for all cases, as expected. The Bayes estimates of Rs,k under Prior 2 have a 
smaller MSE than the other estimates, especially for small sample size n = 5 . Also, the 
MSEs of the ML estimates are smaller than the UMVUE estimates. Moreover, these 
MSEs are near each other as the sample size increases. According to Tables 3 and 4, 
the interval estimates of Rs,k are reported based on the classical and Bayesian estimates 
and their ALs and CPs. As expected, the ALs of the intervals decrease as the sample 
size increases. The ALs of the HPDCIs are smaller than ACIs, but the CPs of ACIs are 
generally nearer to the nominal level of 95% compared to HPDCIs. In Tables 5 and 6, 
the different Bayes estimates of Rs,k and their corresponding MSEs are listed. From 
these tables, we observed that the MSEs in the MCMC method are generally larger 
than those computed from other Bayes methods for small sample sizes of n = 5 . How-
ever, as the sample size increases, all Bayes estimates and their corresponding MSEs 
are very close to each other.

Table 1  The point estimates of R1,3 and their corresponding MSEs (presented in parenthesis)

Classical Bayesian

(�, �) R1,3 n R̂
MLE

s,k
R̂
UM

s,k
Prior 1 Prior 2

(0.5, 1) 0.6 5 0.5929 (0.0215) 0.6012 (0.0254) 0.5865 (0.0188) 0.6104 (0.0140)
15 0.5970 (0.0075) 0.6003 (0.0079) 0.5944 (0.0073) 0.6020 (0.0065)
25 0.5986 (0.0045) 0.5995 (0.0047) 0.5955 (0.0043) 0.6018 (0.0041)
35 0.5991 (0.0032) 0.6001 (0.0034) 0.5984 (0.0031) 0.6013 (0.0030)
45 0.5986 (0.0026) 0.6002 (0.0026) 0.5979 (0.0024) 0.6007 (0.0024)

(0.5, 1.5) 0.5 5 0.5000 (0.0229) 0.4991 (0.0276) 0.4994 (0.0195) 0.5428 (0.0161)
15 0.5005 (0.0081) 0.5000 (0.0086) 0.5001 (0.0075) 0.5168 (0.0069)
25 0.4998 (0.0050) 0.4999 (0.0051) 0.5005 (0.0048) 0.5095 (0.0046)
35 0.5005 (0.0035) 0.5002 (0.0036) 0.5002 (0.0034) 0.5071 (0.0033)
45 0.5002 (0.0028) 0.4995 (0.0028) 0.5001 (0.0027) 0.5047 (0.0026)

(2.5, 2) 0.7895 5 0.7703 (0.0130) 0.7887 (0.0132) 0.7544 (0.0128) 0.7575 (0.0065)
15 0.7833 (0.0039) 0.7899 (0.0040) 0.7771 (0.0040) 0.7746 (0.0031)
25 0.7857 (0.0023) 0.7899 (0.0022) 0.7823 (0.0023) 0.7797 (0.0015)
35 0.7867 (0.0016) 0.7896 (0.0016) 0.7835 (0.0016) 0.7826 (0.0016)
45 0.7876 (0.0013) 0.7896 (0.0013) 0.7850 (0.0013) 0.7838 (0.0012)

(3, 2) 0.8182 5 0.7988 (0.0110) 0.8182 (0.0108) 0.7833 (0.0112) 0.7759 (0.0062)
15 0.8117 (0.0032) 0.8186 (0.0032) 0.8054 (0.0034) 0.7991 (0.0028)
25 0.8146 (0.0019) 0.8180 (0.0019) 0.8109 (0.0019) 0.8062 (0.0017)
35 0.8155 (0.0013) 0.8183 (0.0013) 0.8132 (0.0013) 0.8101 (0.0012)
45 0.8162 (0.0010) 0.8175 (0.0010) 0.8139 (0.0010) 0.8109 (0.0010)
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From the Bayesian point of view, the main focus of this article is on estimating 
system reliability based on the SE loss function. The mentioned loss function is sym-
metric, which means that the same penalty is imposed for overestimation and underes-
timation. However, if we want to consider a higher penalty for overestimation or under-
estimation, we must use an asymmetric loss function. Here, we briefly examine the 
performance of Bayes estimation under SE loss with an asymmetric loss. The most 
well-known asymmetric loss function is the linear-exponential (LINEX) loss, which is 
defined as follows

where � ≠ 0 and �̂� is an estimate of � . The magnitude and sign of � represents the 
degree and direction of asymmetry, respectively. When � is close to zero, LINEX 
and SE losses are approximately equal. For 𝜈 < 0 , underestimation is more impor-
tant than overestimation, and vice versa. Calculation of Bayes estimation based on 
LINEX loss function is performed in a process similar to that described in Sect. 4.3, 
that due to the article’s length, it will not be shown here. In Table 7, the Bayes esti-
mates of Rs,k and their corresponding MSEs are reported based on LINEX loss func-
tion for v = −2 and v = 1 as well as for both (s, k) = (1, 3) and (2, 4). Based on the 
results of Table 7 and its comparison with Tables 5 and 6, we conclude that when 

L(�̂�, 𝜎) = ev(�̂�−𝜎) − v(�̂� − 𝜎) − 1,

Table 2  The point estimates of R2,4 and their corresponding MSEs (presented in parenthesis)

Classical Bayesian

(�, �) R2,4 n R̂
MLE

s,k
R̂
UM

s,k
Prior 1 Prior 2

(0.5, 1) 0.4 5 0.4082 (0.0296) 0.4013 (0.0379) 0.4135 (0.0247) 0.4332 (0.0209)
15 0.4021 (0.0108) 0.4003 (0.0118) 0.4044 (0.0103) 0.4121 (0.0096)
25 0.4018 (0.0066) 0.3994 (0.0069) 0.4014 (0.0062) 0.4085 (0.0061)
35 0.4014 (0.0048) 0.4002 (0.0051) 0.4030 (0.0045) 0.4062 (0.0045)
45 0.4003 (0.0038) 0.4003 (0.0039) 0.4014 (0.0036) 0.4046 (0.0035)

(0.5, 1.5) 0.2857 5 0.3051 (0.0260) 0.2849 (0.0321) 0.3185 (0.0226) 0.3551 (0.0224)
15 0.2931 (0.0092) 0.2857 (0.0098) 0.2986 (0.0086) 0.3147 (0.0085)
25 0.2897 (0.0056) 0.2856 (0.0058) 0.2942 (0.0054) 0.3031 (0.0055)
35 0.2893 (0.0040) 0.2859 (0.0041) 0.2917 (0.0039) 0.2987 (0.0038)
45 0.2882 (0.0031) 0.2852 (0.0032) 0.2904 (0.0030) 0.2950 (0.0030)

(2.5, 2) 0.6579 5 0.6382 (0.0249) 0.6567 (0.0283) 0.6238 (0.0221) 0.6203 (0.0119)
15 0.6513 (0.0083) 0.6586 (0.0087) 0.6448 (0.0081) 0.6401 (0.0064)
25 0.6538 (0.0049) 0.6584 (0.0050) 0.6503 (0.0048) 0.6461 (0.0041)
35 0.6549 (0.0035) 0.6581 (0.0036) 0.6512 (0.0034) 0.6497 (0.0031)
45 0.6559 (0.0028) 0.6580 (0.0028) 0.6529 (0.0027) 0.6510 (0.0025)

(3, 2) 0.7014 5 0.6790 (0.0222) 0.7015 (0.0244) 0.6637 (0.0203) 0.6461 (0.0120)
15 0.6935 (0.0071) 0.7019 (0.0073) 0.6862 (0.0072) 0.6758 (0.0060)
25 0.6971 (0.0043) 0.7010 (0.0043) 0.6926 (0.0043) 0.6852 (0.0037)
35 0.6980 (0.0030) 0.7014 (0.0030) 0.6954 (0.0030) 0.6906 (0.0028)
45 0.6989 (0.0024) 0.7002 (0.0023) 0.6961 (0.0023) 0.6915 (0.0022)
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� = 1 the performance of the Bayes estimator under LINEX loss is better than SE 
loss and when � = −2 the opposite is true.

We also used graphs to compare the performances of the competing estimators 
when Rs,k changes from 0.05 to 0.95. For this aim, we considered the different val-
ues of the parameters along with the different sets of hyperparameters and then cal-
culated the MSEs of Rs,k , followed by the computation of the CPs and ALs of the 
interval estimates of Rs,k . Figure 1 shows the MSEs of R̂MLE

s,k
, R̂UM

s,k
 , and R̂B

s,k
 for dif-

ferent sample sizes, n = 5(10)35 and (s, k) = (1, 3) . According to Fig. 1, when Rs,k is 
about 0.5, we observed that

where R̂B−P1
s,k

 and R̂B−P2
s,k

 are Bayes estimates under non-informative and informative 
priors, respectively. When Rs,k approaches the extreme values, we observed that

Also, the MSEs are large when Rs,k is about 0.5 and they are small for the extreme 
values of Rs,k . Some of the results extracted from this figure are quite clear. It was 
found that the estimates obtained based on greater sample sizes have lower MSEs. 

MSE(R̂B−P2
s,k

) < MSE(R̂B−P1
s,k

) < MSE(R̂MLE
s,k

) < MSE(R̂UM
s,k

),

MSE(R̂B−P2
s,k

) < MSE(R̂UM
s,k

) < MSE(R̂MLE
s,k

) < MSE(R̂B−P1
s,k

),

Table 3  The ALs of R1,3 and their corresponding CPs (presented in parenthesis)

HPDCI

(�, �) R1,3 n ACI Prior 1 Prior 2

(0.5, 1) 0.6 5 0.5005 (0.9354) 0.4999 (0.9076) 0.4043 (0.8840)
15 0.3225 (0.9461) 0.3145 (0.9238) 0.2876 (0.9123)
25 0.2559 (0.9487) 0.2479 (0.9250) 0.2340 (0.9147)
35 0.2186 (0.9480) 0.2120 (0.9311) 0.2023 (0.9191)
45 0.1941 (0.9461) 0.1874 (0.9269) 0.1811 (0.9262)

(0.5, 1.5) 0.5 5 0.5131 (0.9349) 0.5130 (0.9084) 0.4215 (0.8762)
15 0.3334 (0.9446) 0.3253 (0.9176) 0.2995 (0.90820
25 0.2653 (0.9459) 0.2573 (0.9180) 0.2438 (0.9187)
35 0.2270 (0.9475) 0.2198 (0.9255) 0.2112 (0.9257)
45 0.2016 (0.9482) 0.1948 (0.9305) 0.1888 (0.9188)

(2.5, 2) 0.7895 5 0.3969 (0.9345) 0.3986 (0.9188) 0.3237 (0.9656)
15 0.2364 (0.9454) 0.2292 (0.9245) 0.2121 (0.9426)
25 0.1839 (09474) 0.1771 (0.9272) 0.1687 (0.9338)
35 0.1556 (0.9477) 0.1495 (0.9243) 0.1448 (0.9386)
45 0.1372 (0.9477) 0.1317 (0.9278) 0.1285 (0.9355)

(3, 2) 0.8182 5 0.3688 (0.9353) 0.3574 (0.9185) 0.3067 (0.9681)
15 0.2150 (0.9455) 0.2068 (0.9317) 0.1951 (0.9451)
25 0.1659 (0.9481) 0.1597 (0.9240) 0.1541 (0.9385)
35 0.1402 (0.9498) 0.1346 (0.9275) 0.1313 (0.9373)
45 0.1235 (0.9477) 0.1186 (0.9313) 0.1161 (0.9365)
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Also, as the sample sizes increase, the MSEs of are near each other for all types of 
estimates. Figure 2 shows the ALs of interval estimates for different sample sizes, 
n = 5(10)35 . According to Fig. 2, we observed that the ALs of the HPDCIs under 
non-informative priors are almost identical with ACIs. Also, based on ALs, the per-
formances of the HPDCIs with informative priors are the best. Furthermore, the ALs 
of the intervals decrease as the sample size increases, as expected. Figure 3 presents 
the CPs of interval estimates for different sample sizes, n = 5(10)35 . According to 
Fig. 3, we observed that the HPDCIs with informative priors are preferable to the 
ACIs in terms of CPs for case n = 5 , but as sample sizes increase, the ML estimates 
are nearer to the predetermined nominal level.

6  Data analysis

In this section, we conduct the analysis of real data for illustrative purposes. The 
issue of excessive drought is very important in agriculture because it causes a lot 
of damage to crops, so it needs to be managed. The following scenario is useful 
to understand in case of an excessive drought. In a five-year period, if at least two 

Table 4  The ALs of R2,4 and their corresponding CPs (presented in parenthesis)

HPDCI

(�, �) R2,4 n ACI Prior 1 Prior 2

(0.5, 1) 0.4 5 0.5763 (0.9403) 0.5623 (0.9052) 0.4782 (0.8806)
15 0.3833 (0.9478) 0.3731 (0.9196) 0.3454 (0.9113)
25 0.3073 (0.9497) 0.2973 (0.9223) 0.2822 (0.9128)
35 0.2638 (0.9487) 0.2552 (0.9288) 0.2452 (0.9182)
45 0.2346 (0.9473) 0.2265 (0.9247) 0.2198 (0.9246)

(0.5, 1.5) 0.2857 5 0.5487 (0.9376) 0.5212 (0.9097) 0.4591 (0.8810)
15 0.3553 (0.9450) 0.3384 (0.9152) 0.3199 (0.9087)
25 0.2821 (0.9461) 0.2703 (0.9176) 0.2598 (0.9183)
35 0.2415 (0.9476) 0.2310 (0.9243) 0.2246 (0.9244)
45 0.2142 (0.9478) 0.2053 (0.9298) 0.2010 (0.9179)

(2.5, 2) 0.6579 5 0.5235 (0.9413) 0.5276 (0.9099) 0.4522 (0.9588)
15 0.3358 (0.9475) 0.3304 (0.9201) 0.3069 (0.9390)
25 0.2661 (0.9492) 0.2590 (0.9259) 0.2469 (0.9306)
35 0.2271 (0.9482) 0.2200 (0.9223) 0.2130 (0.9362)
45 0.2012 (0.9483) 0.1945 (0.9272) 0.1896 (0.9342)

(3, 2) 0.7014 5 0.4980 (0.9427) 0.4982 (0.9082) 0.4370 (0.9609)
15 0.3134 (0.9475) 0.3067 (0.9274) 0.2888 (0.9415)
25 0.2465 (0.9486) 0.2398 (0.9216) 0.2308 (0.9361)
35 0.2100 (0.9508) 0.2032 (0.9260) 0.1978 (0.9352)
45 0.1858 (0.9488) 0.1796 (0.9299) 0.1756 (0.9352)
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times, the maximum water capacity of a reservoir in August and September is 
more than the volume of water achieved on December of the previous year, it can 
be claimed that there will not be any excessive drought afterwards. Therefore, the 
multicomponent stress-strength reliability is the probability of non-occurrence 
drought. The data are taken for the months of August, September, and December 
from 1980 to 2015. This data was studied in [12], previously. Assuming, k = 5 
and s = 2 , x11, x12,… , x15 and y11, y12,… , y15 are the capacities of August and Sep-
tember from 1981 to 1985. x21, x22,… , x25 and y21, y22,… , y25 are the capacities of 
August and September from 1987 to 1991 and continues until x61, x62,… , x65 and 
y61, y62,… , y65 are the capacities of August and September from 2011 to 2015. 
Also, t1 is the capacity of December 1980, t2 is the capacity of December 1986 
and continues until t6 is the capacity of December 2010. Hence, the reliability of 
multicomponent can be represented as 2-out-of-5: G system. Since the support of 
the TL distribution is defined for 0 < x < 1 , we divide all the values by the total 
capacity of the Shasta reservoir, which is 4,552,000 acre-foot. The transformed 
data are as follows:
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Fig. 1  The MSEs of estimates of R1,3 for sample sizes n = 5 (a), n = 15 (b), n = 25 (c) and n = 35 (d)
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Also, let Zik = max(Xik, Yik), i = 1,… , 6, k = 1,… , 5 . Then, the actual observed data 
are obtained as

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5597 0.8112 0.8296 0.7262 0.4238

0.4637 0.3634 0.4637 0.3719 0.2912

0.7540 0.5381 0.7449 0.7226 0.5612

0.7552 0.6686 0.5249 0.6060 0.7159

0.7188 0.7420 0.4688 0.3451 0.4253

0.7951 0.6439 0.4616 0.2948 0.3929

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Y =

⎡⎢⎢⎢⎢⎢⎢⎣

0.5449 0.7659 0.7946 0.7118 0.4345

0.4631 0.3484 0.4605 0.3597 0.2943

0.6814 0.4617 0.6890 0.6786 0.5071

0.7310 0.6558 0.4832 0.5620 0.6941

0.6667 0.7041 0.4128 0.3041 0.3897

0.7340 0.5693 0.4187 0.2542 0.3520

⎤⎥⎥⎥⎥⎥⎥⎦

, T =

⎡⎢⎢⎢⎢⎢⎢⎣
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Fig. 2  The ALs of interval estimates of R1,3 for sample sizes n = 5 (a), n = 15 (b), n = 25 (c) and n = 35 
(d)
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Z =

⎡
⎢⎢⎢⎢⎢⎢⎣
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Fig. 3  The CPs of interval estimates of R1,3 for sample sizes n = 5 (a), n = 15 (b), n = 25 (c) and n = 35 
(d)

Table 8  The MLE of unknown parameter and goodness of fit statistics

Data Parameter K-S P-value A P-value W P-value

X 3.9352 0.1287 0.6559 0.7003 0.5573 0.0950 0.6129
Y 3.3988 0.1541 0.4314 1.0555 0.3288 0.1520 0.3854
Z 3.9496 0.1300 0.6439 0.7056 0.5521 0.0961 0.6075
T 6.2797 0.2968 0.5688 0.5199 0.7194 0.0877 0.6655
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We first check whether or not the BTL distribution can be used to analyze these 
data. Unfortunately, there is no satisfactory goodness of fit test for the bivariate dis-
tributions like in univariate distributions. In this case, we can perform goodness of 

Table 9  Point estimates of R2,5

Bayesian estimates

Classical esti-
mates

Non-informative prior Informative prior

R̂
MLE

s,k
R̂
UM

s,k
R̂
B

s,k
R̂
B−TK
s,k

R̂
B−Lin
s,k

R̂
B−MC

s,k
R̂
B

s,k
R̂
B−TK
s,k

R̂
B−Lin
s,k

R̂
B−MC

s,k

0.5429 0.5703 0.5554 0.5535 0.5560 0.5552 0.5539 0.5534 0.5697 0.5541

Table 10  Interval estimates of R2,5

HPDCI

ACI Non-informative prior Informative prior

AL 0.4446 0.4715 0.3619
95% Intervals (0.3204,0.7650) (0.3204,0.7919) (0.3709,0.7328)
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Fig. 4  P-P plot for X, Y, Z,  and T data
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fit tests for X, Y,  and Z = max(X, Y) , separately. Also, we use goodness of fit test to 
validate whether the TL distribution can be used to make an acceptable inference 
for the T data. The MLE of unknown parameters, the Kolmogorov-Smirnov (K-S), 
Andeson-Darling (A), and Cramer-von Mises (W) statistics along with the P-values 
for each data are reported in Table 8. Based on these results, we conclude that the 
TL distribution provides a good fit for the X, Y, Z, and T data. The validity of the 
TL distribution is also supported by P-P plot shown in Fig. 4. Here, we obtain the 
estimates of R2,5 by using classical and Bayesian methods discussed in this article. 
First, from the above data, the ML estimates of � and � are computed as �̂� = 3.9496 
and 𝛽 = 6.2797 , respectively. Then, the MLE of R2,5 along with its ACI are obtained 
from Eqs. (11) and (14), respectively. Also, the UMVUE of R2,5 is determined from 
Eq. (19). To analyze the data from the Bayesian view, we have taken different param-
eters of the priors. The parameters (ai, bi) = (0.0001, 0.0001), i = 1, 2 are selected 
for the non-informative prior case and the parameters a1 = 4, a2 = 6, b1 = b2 = 1 
are selected for the informative prior by using the MLEs of unknown parameters. 
Tables  9 and 10 give point and interval estimates of R2,5 . It is observed that the 
point estimates of R2,5 which are obtained by the Bayesian and classical methods are 
about the same, but the HPDCI of R2,5 based on the informative prior is remarkably 
smaller than the HPDCI based on the non-informative prior and the ACI. There-
fore, if prior information is available, it should be used. Also, the estimates of R2,5 
obtained from the approximate and exact Bayes methods are near each other except 
that which is obtained from Lindley’s approximation under the informative prior.

7  Extension of methods to a general family of distributions

In the previous sections, we studied different methods of estimating the reliability 
of Rs,k where the strength variables followed a BTL distribution and were subjected 
to a common random stress that had a TL distribution. Now, we extend our methods 
for a flexible family of distributions, namely proportional reversed hazard rate fam-
ily (PRHRF) whose CDF and PDF are, respectively, defined as follows:

where � is the shape paramete. Also, F0(.) and f0(.) are a baseline CDF and PDF, 
respectively. The model given in Eqs. (27) and (28) is also known with names such 
as exponentiated distributions and Lehmann alternatives. This family includes sev-
eral well-known lifetime distributions such as generalized Rayleigh (Burr Type X), 
generalized exponential, generalized Lindley, exponentiated half logistic, general-
ized logistic, and so on. Some of the recently introduced flexible distributions from 
PRHRF are: exponentiated unit Lindley [22], exponentiated Teissier [23], exponen-
tiated XGamma [24], and exponentiated Burr-Hatke [25]. Due to the importance of 
PRHRF distributions in the reliability literature, many studies have been done on 

(27)FX(x;𝛼) = [F0(x)]
𝛼 , x > 0, 𝛼 > 0,

(28)fX(x;�) = �f0(x)[F0(x)]
�−1,
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their properties and applications. Some of the recent efforts pertaining to this family 
of distributions are [26–30].

Now, we describe the bivariate proportional reversed hazard rate fam-
ily (BPRHRF). Suppose V1,V2 , and V3 follow PRHRF(�1),PRHRF(�2) , and 
PRHRF(�3) , respectively and all three random variables are mutually independent. 
Define the random variables X and Y as

where X and Y have a common random variable V3 . So the bivariate vector (X, Y) is 
a bivariate distribution of BPRHRF with parameters �1, �2 , and �3 and it is denoted 
by BPRHRF(�1, �2, �3) . Using the above definition, the following theorems can be 
easily proved by applying the same argument used in Sect. 2.

Theorem 3 If (X, Y) ∼ BPRHRF(�1, �2, �3) , then their joint CDF is given by

where u = min(x, y).

Theorem  4 If (X, Y) ∼ BPRHRF(�1, �2, �3) , then X ∼ PRHRF(�1 + �3) and 
Y ∼ PRHRF(�2 + �3) . Also, max(X, Y) ∼ PRHRF(�) , where � = �1 + �2 + �3.

Now, we assume that the strength vectors (X1, Y1),… , (Xk, Yk) follow 
BPRHRF(�1, �2, �3) and a common stress variable T follows PRHRF(�) . Hence the 
reliability in a multicomponent stress-strength model is given by

According to Theorem  4 and assuming Zi = max(Xi, Yi), i = 1,… , k, we have 
Zi ∼ PRHRF(�) and then Rs,k = P(T < Zi), i = 1,… , k . Suppose k strengths 
(Z1,… , Zk) be a random sample from PRHRF(�) and the stress T is a random sam-
ple from PRHRF(�) . Therefore, the reliability of Rs,k is obtained as Eq. (6).

7.1  MLE of Rs,k

To find the MLE of Rs,k , we need to determine the MLEs of � and � . The log-
likelihood function is

X = max
{
V1,V3

}
, Y = max

{
V2,V3

}
,

F(X,Y)(x, y) = [F0(x)]
�1 [F0(y)]

�2 [F0(u)]
�3 ,

Rs,k = P(T < max(Xi, Yi)), i = 1,… , k.

l(�, �|z, t) = nk ln(�) + n ln(�)

+

n∑
i=1

k∑
j=1

ln[f0(zij)] + (� − 1)

n∑
i=1

k∑
j=1

ln[F0(zij)]

+

n∑
i=1

ln[f0(ti)] + (� − 1)

n∑
i=1

ln[F0(ti)] + c,
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where c is constant. So, the MLEs of � and � can be easily obtained as follows

where P = −
∑n

i=1

∑k

j=1
ln[F0(zij)] and Q = −

∑n

i=1
ln[F0(ti)] . Since ln[F0(z)] 

and ln[F0(t)] are negative, so we always have P > 0 and Q > 0 . Therefore, �̂� and 
𝛽  are indeed the MLEs of � and � , respectively. Also, similar to what was men-
tioned in Sect.  3.1, it can be shown that if X1,… ,Xn ∼ PRHRF(�) , then 
−
∑n

i=1
ln[Xi(2 − Xi)] ∼ Gamma(n, �) . In the following, the MLE of Rs,k is computed 

from Eq. (6) by the invariant property of MLEs:

7.2  UMVUE of Rs,k

Using same argument used in Sect. 3, the UMVUE of Rs,k is obtained as

where

p = −
∑n

i=1

∑k

j=1
ln[F0(zij)] and q = −

∑n

i=1
ln[F0(ti)].

7.3  Bayes estimation of Rs,k

Assume that the parameters � and � are independent random variables 
and have Gamma prior distributions with positive parameters (a1, b1) and 
(a2, b2) , respectivel. The exact and approximate Bayesian estimates of Rs,k 
are obtained in a process quite similar to that mentioned in Sect.  4. It is enough 

�̂� =
nk

P
, 𝛽 =

n

Q
,

R̂MLE
s,k

=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j𝛽

�̂�(k + j − i) + 𝛽
.

R̂UM
s,k

=

k∑
i=s

i∑
j=0

(
k

i

)(
i

j

)
(−1)j�̂�UM(𝛼, 𝛽),

�̂�UM(𝛼, 𝛽) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑nk−1

l=0
(−1)l

�
(k+j−i)q

p

�l

⎛⎜⎜⎝
nk − 1

l

⎞⎟⎟⎠
⎛⎜⎜⎝
n + l − 1

l

⎞⎟⎟⎠

,
(k+j−i)q

p
≤ 1

1 −
∑n−1

l=0
(−1)l

�
(k+j−i)q

p

�l

⎛⎜⎜⎝
nk − 1

l

⎞⎟⎟⎠
⎛⎜⎜⎝
n + l − 1

l

⎞⎟⎟⎠

,
(k+j−i)q

p
> 1
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to replace P = −
∑n

i=1

∑k

j=1
ln[zij(2 − zij)] with P = −

∑n

i=1

∑k

j=1
ln[F0(zij)] and 

Q = −
∑n

i=1
ln[ti(2 − ti)] with Q = −

∑n

i=1
ln[F0(ti)].

8  Conclusions

In this endeavour, we have considered the inference of multicomponent stress-
strength reliability under the bivariate Topp-Leone (BTL) distribution. Here, the 
strength variables follow a BTL distribution and are exposed to a common random 
stress that follows a Topp-Leone (TL) distribution. We have provided the MLE 
along with its ACI of Rs,k . Also, the UMVUE and the exact Bayes estimates of 
Rs,k are computed. Moreover, we determined the Bayes estimate of Rs,k via three 
methods: the Tierney and Kadane approximation, Lindley’s approximation, and the 
MCMC method. Additionally, we established HPDCIs of Rs,k.

The simulation results showed that the point and interval estimates of obtained 
from larger sample sizes have lower MSEs and lower ALs, respectively. According 
to the MSE and AL values, Bayesian estimators under the informative priors have 
the best performances among the estimators. Also, the MSEs and ALs of the all 
estimators are small when Rs,k tends to the extreme value and they are large when 
Rs,k tends to 0.5. Comparing the classical estimators showed that the MSEs of the 
UMVUE estimates are smaller than the ML estimates when Rs,k is near extreme val-
ues, and when Rs,k tends to 0.5, the ML estimators work better. According to the CP 
values, the HPDCIs with informative priors are better than ACIs for small sample 
sizes, but as the sample size increases, the ML estimates are nearer to the predeter-
mined nominal level.

Comparing the different Bayesian estimation methods showed that all of the 
Bayes estimates and their corresponding MSEs are near each other for sample sizes 
of n ≥ 15 . As a general conclusion, because Bayesian estimators under the informa-
tive priors often performed better than other estimators, they should be used if infor-
mation on hyerparameters is available.
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