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Abstract
In this paper, we consider a two commodity queueing inventory system with random 
common lifetimes for each commodity, positive service time, positive lead time, and 
individual ordering policy. Inventory is managed by the continuous review (s

i
, S

i
) 

policy for the commodity i, i = 1, 2 . On realization of the common lifetime or inven-
tory level less than or equal to s

i
, i = 1, 2 by service completions, a replenishment 

order is placed for S
i
, i = 1, 2 items to bring the inventory level back to S

i
, i = 1, 2 . 

There are two types of customers called priority and non-priority. Customers arrive 
according to two independent Poisson processes. A single server processes the 
inventory before delivery. Lifetimes and lead times of each commodity and service 
time for each customer category follow an independent exponential distribution 
with different rates. No customer will be allowed to join when the inventory levels 
become zero. System performance measures are derived. We also examine the effect 
of the lead time parameters and common lifetime parameters on the system perfor-
mance measures. The model was examined in the steady state by using the matrix 
geometric approach. Further, we analyzed an associated optimization problem and 
carried out numerical illustrations.
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1  Introduction

Accurate inventory management is key to running a successful product business. 
Inventory control is the most important control technique having direct relation-
ships with manufacture, purchase, marketing and financial policies. Inventory 
models play a very crucial role in operations research and management science. 
They are classified based on a number of factors such as the type of demands 
(deterministic or random), the shelf time (infinite, finite random, or finite deter-
ministic) of the inventory items, and the replenishing time (zero or finite deter-
ministic or random).

The term “perishable inventory” describes goods with a short shelf life or expi-
ration date. A form of inventory known as perishable inventory with a common 
lifetime (CLT) consists of goods that have a finite shelf life and will all expire at 
the same time. This can include things like dairy products, fresh produce, and 
specific kinds of medicines. Businesses that deal with perishable goods need to 
have mechanisms in place to make sure they can sell or use the items before they 
perish. A tremendous amount of work has been seen in the literature on stochastic 
inventory systems with perishable items. In all those works mentioned, research-
ers assumed that each item fail randomly and independently of others. Review 
papers focusing on perishable inventory management started with the work of 
Nahmias who studied the literature for ordering policies of perishable products 
with fixed lifetimes and with continuous exponential decay. But in perishable 
inventory systems, items with finite lifetimes can be divided into two categories. 
Each item has an independent lifetime and the items that survive a random com-
mon lifetime in inventory. In the second category, when the random common life-
time realizes, all items of that commodity perish.

There are several applications in retail industries where existing inventory 
items, if any, are all replaced after a random amount of time. For example, ana-
lyzing inventory systems involving food items such as vegetables, fresh fruits, 
meats, drugs, photographic materials, and even electronic items such as memory 
chips, fall under perishable inventory models and need replacement as a batch 
when the lifetime expires. Hence it necessitates the study of perishable inventory 
systems with the random common lifetime of items.

In this paper, we study a two-commodity perishable inventory system, in 
which both commodities have independent random common shelf time, two 
demand classes of customers, called priority and non-priority, occur according 
to two independent Poisson processes, positive service time, random lead time 
and individual ordering policy. Inventory is monitored under continuous review 
(s, S) type policy. There is a finite capacity buffer for the priority customers and 
an infinite pool for the non-priority customers and assumed a non-preemptive pri-
ority for the customers in service. The objective of this study is to analyze the 
effect of the common lifetime parameters, and lead-time parameters on the meas-
ures of performance, such as the expected inventory levels of both commodities, 
expected number of priority and non-priority customers, expected loss rate of pri-
ority and non-priority customers etc.
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The rest of the paper is organized as follows: Sect.  2 gives literature review. 
Model formation and analysis and steady state system size probability vectors are 
given in Sect. 3. Section 4 provides system performance measures such as expected 
number of customers, expected reorder rates, average waiting time of a priority cus-
tomer and cycle time analysis for two types of commodities. In Sect. 5, cost analysis 
is carried out and numerical illustrations are provided.

2 � Literature review

In this section we provide some of the important studies appeared in the two com-
modity inventory problems. Stochastic models that appeared in two commodity sto-
chastic inventory systems with non perishable items in the literature are as follows. 
Krishnamoorthy and Varghese [1, 2] have analyzed two commodity inventory prob-
lems with zero lead time and positive lead time in which the change in demand for 
an item at each demand epoch is according to a discrete Markov chain. Yadavalli 
et  al. [3] studied the system with substitutable items and also considered an arbi-
trary distributed lead time for replenishment of items. Sivakumar et al. [4] analyzed 
a two-commodity inventory system with individual and joint ordering policies and 
renewal demands and [5] studied a two commodity inventory system with retrial 
demand for the unsatisfied customers who arrive during the inventory dry period. 
Benny et al. [6] have analyzed a two-item queueing inventory system with a single 
server and individual ordering policy. Ozkar and Uzunoglu Kocer [7] have studied 
the system with two types of customers and individual ordering policies. Recently, 
Jeganathan et al. [8] studied a two commodity Markovian demands inventory system 
with queue-dependent services and an optional retrial facility.

In the above literature, inventories are not perishable. As mentioned earlier, most 
of the studies in perishable inventory literature, one can refer to the review paper 
and the monograph on perishable inventory systems by Nahmias [9, 10] respec-
tively. Later [11, 12] studied a two commodity perishable stochastic inventory sys-
tem under continuous review. In that paper, authors assumed that the lifetime of 
items of each commodity is exponentially distributed and items are supposed to 
be substitutable. Also joint re-ordering policy is adopted with a random lead time 
for the replenishment of orders with exponential distribution. Yadavalli et  al. [13] 
considered a two commodity continuous review perishable inventory system with 
three types of customers. The arrivals of all three types of customers are assumed 
to be a Markovian arrival process. The lifetime of each commodity is exponentially 
distributed and the lead time is assumed to have a phase-type distribution. Bakker 
et  al. [14] provide an extensive literature on the modeling of deteriorating inven-
tory since 2001. Jeganathan [15] analyzed a stochastic perishable inventory system 
with two different items and the demands originate from a finite population. Duong 
et al. [16] analyzed products that possess a multi-period lifetime, positive lead time, 
and required customer service level. Later, Suganya et al. [17] analyzed a perishable 
inventory system that has an (s, Q) ordering policy, along with a finite waiting hall.

In all the models mentioned above, they have assumed a random lifetime for 
each item. In this paragraph, we discuss models with a random common lifetime 
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for items. A discrete-time (s, S) inventory model in which the stored items have a 
random common lifetime with a discrete phase-type distribution was analyzed by 
Lian et al. [18]. The first reported work in continuous time inventory systems with 
a random common lifetimes for items was by Chakravarthy [19]. They have studied 
a single commodity inventory system Markovian demands, phase type distributions 
for perishability and replenishment. Later [20, 21] analyzed single server queueing 
inventory systems in which items in the inventory have a random common lifetime. 
But in the context of two commodity inventory systems, random common lifetime 
models have not been studied in the literature. In (2022), Dissa and Ushakumari 
studied a two-commodity queueing inventory system with perishable items having a 
random common lifetime for each of the commodities and zero lead time for replen-
ishment of items.

3 � Model description and analysis

We consider a two-commodity queueing inventory system in which the maxi-
mum inventory level for commodity-i is Si, i = 1, 2 . There are two types of cus-
tomers coming to the system called non-priority(type-1) and priority(type-2). 
The arrival process of these customers follows independent Poisson processes 
with rates �1 and �2 respectively. A non-priority customer demands items from 
commodity-1 alone and a priority customer demands items from commodity-2 
alone. Items are served only after processing by a single server. Service times 
for commodity-1 and 2 follow independent exponential random variables with 
parameters �1 and �2 respectively. There is a positive lead time for the replen-
ishment of commodities and for the ith commodity it is exponentially distrib-
uted with parameter �i, i = 1, 2 and are independent of each other. Also for 
each of the commodities, a random common lifetime is assumed. The lifetime 
for the ith commodity is exponentially distributed with parameter �i, i = 1, 2 
and the lifetime of commodity-1 and 2 are independent of each other. Inven-
tory is monitored by continuous review (si, Si), i = 1, 2 type policy. On realiza-
tion of the common lifetime or inventory level less than or equal to si, i = 1, 2 
by a service completion, and a replenishment order will be given for Si units 
i = 1, 2 . That is, a replenishment order for Si items is triggered under the follow-
ing circumstances:

i) When the common lifetime is reached, indicating that all items of a particular 
commodity have been depleted from the stock, or

ii) When the inventory level falls below or equal to a threshold value si due to 
service completion.

Once the common lifetime is realized or replenishment occurs, all items of 
that commodity are removed from the stock. In other words at the time of replen-
ishment of items in stock, all items are assumed as fresh. If the server is busy at 
the time of arrival of a priority customer, then that customer can join in a finite 
capacity buffer of size M, M > 0 . If the buffer is full, that customer is assumed 
to be lost. A non-priority customer can opt for service and join in a pool with 



813

1 3

OPSEARCH (2024) 61:809–834	

probability p or leave the system with probability (1 − p), 0 < p < 1 if the server 
is busy at the arrival epoch. Customers from the pool will be selected for service 
if no priority customer is waiting for service. The selection of customers for 
service is on a FCFS basis. Also assumed non-pre-emptive priority for service.

3.1 � Notations and explanations

Throughout the paper, we use the following notations.

•	 S∗
i
 denote a temporary state which indicates the replenishment due to the reali-

zation of CLT and S∗
i
= Si

•	 e = Column vector of 1’s with appropriate order.
•	 0 = Zero matrix of appropriate order.
•	 Ia = Identity matrix of order a.
•	

⨂
 denotes the Kronecker product of matrices.

•	 BT represents the transpose of the matrix B.

3.2 � Analysis

For the mathematical formulation of the model, we define the following: At time 
t,

N1(t) : the number of customers in the pool including the one in service
N2(t) : the number of customers in the buffer including the one in service
J1(t) : the residual inventory level of commodity -1
J2(t) : the residual inventory level of commodity -2 and
L(t) : the state of the server at time t, where

L(t) =

⎧⎪⎨⎪⎩

0 , iftheserveridleattimet

1 , iftheserverbusywithatype − 1customerattimet

2 , iftheserverbusywithatype − 2customerattimet

Let Z(t) = (N1(t),N2(t), J1(t), J2(t), L(t)) . Then {Z(t);t ≥ 0} forms a continuous 
time Markov chain over the state space E = E0

⋃
E1

⋃
E2

⋃
E3 , where

E0 = {(n1, n2, 0, 0, 0);n1 ≥ 0;0 ≤ n2 ≤ M;M ≥ 1},

E1 = {(0, 0, j1, j2, 0);j1 = 0, 1, 2,… , S1, S
∗
1
;j2 = 0, 1, 2,… , S2, S

∗
2
},

E2 = {(n1, n2, j1, j2, 1);j1 = 0, 1, 2,… , S1, S∗1;j2 = 0, 1, 2,… , S2, S∗2;n1 ≥ 0;0 ≤ n2 ≤ M;M ≥ 1},
E3 = {(n1, n2, j1, j2, 2);i1 = 0, 1, 2,… , S1, S

∗
1
;j2 = 0, 1, 2,… , S2, S

∗
2
;n1 ≥ 0;0 ≤ n2

≤ M;M ≥ 1} and S∗
i
, i = 1, 2 denote the inventory level due to replenishment of com-

modity-i after the realization of common lifetime. This is same as Si , i = 1, 2 . However 
to distinguish the begining of the next cycle due to realization of common lifetime, we 
use it as a purely temporary notation. Here we consider the number of customers in the 
pool as the level of the process. By the above assumptions and notations, {Z(t), t ≥ 0} 
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forms a level independent Quasi-Birth and Death (LIQBD) process over E. The infini-
tesimal generator matrix of the system is of the form

Let us denote a1 = (S1 + 2)(S2 + 2);a2 = (S1 + 2)(S2 + 2)(M + 1);a3 = 2a2;a4 = 2a2
+(M + 1);a5 = 2a2 + a1 +M;b = (S2 + 2);ā4 = 2a2 +M

With these notations, the sub matrices of Q are as follows:

The sub matrices are

where T stands for the transpose of a matrix.

D00 is a square matrix of dimension M ×M.B21 is a zero matrix of order (a2 × a2).

where T stands for the transpose of a matrix.

(1)Q =

⎡
⎢⎢⎢⎢⎣

B00 B01

B10 B1 B0

B2 B1 B0

B2 B1 B0

⋱ ⋱ ⋱

⎤
⎥⎥⎥⎥⎦

B00 =

[
D0 DC1

DC2 B̃0

]

a5×a5

B10 =
[
0 B2

]
a4×a5

B01 =

[
0

B0

]

a5×a4

B1 =

[
D11 B3

B4 B5

]

a4×a4

B2 =

[
0 �1

0 �2

]

a4×a4

.

B̃3 =
[
0

̃̂
R1

̃̂
R2 ...

̃̂
RM

̃̂
R̂1

̃̂
R̂2 ...

̃̂
R̂M 0

]
M×a3

B3 =
[
0 0 ... 0

̂̂
R1

̂̂
R2 ...

̂̂
RM 0

]
(M+1)×a3

B̃0 =

[
D00 B̃3

DC3 B
�

5

]

ā4×ā4

B4 =
[
Ĉ1 Ĉ2 ... ĈM

̂̂
C1

̂̂
C2 ...

̂̂
CM

]T
(M+1)×a3

,

D00 =

{
−𝛽1 − 𝛽2, n2 > 0

0, Otherwise

DC1 =
[
0 E 0 ... 0 F 0 ... 0

]
a1×(2a2+M)

DC2 =
[
0 C1 0 ... 0 C2 0 ... 0

]T
a1×(2a2+M)

DC3 =
[
0

̃̂
C2 ...

̃̂
CM 0

̃̂
Ĉ2 ...

̃̂
ĈM

]T
M×a3

,
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D11 is a square matrix of order (M + 1).

R̂k,
̂̂
Rk are of order (M + 1) × a1 and 

̃̂
R̂k is of order M × a1.Ĉk,

̂̂
Ck are of order 

(a1 × (M + 1)). The elements of matrices ̂̂
Rk,

̂Rk+1,
̃̂
R̂k,

̂Ck+1,
̂̂

Ck+1,
̃̂

Ck+1,
̃̂
̂Ck+1 repre-

sents the transitions from (n1, n2, j1, j2, l) ���→ (n1, n2, j1, j2, l) where n1, n2 represents 
the number of customers in the pool and in the buffer. j1, j2 represents the resid-
ual inventory level of commodity-1 and commodity-2. l represents the state of the 
server.

B5 =

�
B11 B12

B21 B22

�

a3×a3

�
�
11

=
�
F 0 ... 0 0

�
a1×(a2−a1)

B11 =

�
D2a ��

11

0 �11

�

a2×a2

�11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Da F 0 ... 0 0

0 Da F ... 0 0

⋮ ⋱ ⋱

0 0 0 ... Da F

0 0 0 ... 0 D1a

⎤
⎥⎥⎥⎥⎥⎥⎦(a2−a1)×(a2−a1)

B22 =

�
D2b ��

11

��
22

�22

�

a2×a2

�22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Db F 0 ... 0 0

G Db F ... 0 0

⋮ ⋱ ⋱

0 0 0 ... Db F

0 0 0 ... G D1b

⎤
⎥⎥⎥⎥⎥⎥⎦(a2−a1)×(a2−a1)

�
�
22

=
�
G 0 ... 0 0

�T
a1×(a2−a1)

B
�

5
=

�
B

�

11
B12

B21 B
�

22

�

a3×a3

D11(n1, n2, 0, 0, 0) → (n1, n2, 0, 0, 0) =

�
−(𝛽1 + 𝛽2), n1 > 0;n2 ≥ 0

0, Otherwise

B
�

11
=

�
D

�

2a
��

11

0 �11

�

a2×a2

B12 =

�
0 0

I(a2−1)
⨂

G 0

�

a2×a2

B
�

22
=

�
D

�

2b
��

11

��
22

�22

�

a2×a2
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The elements of matrix H represents the transitions from (n1, 0, i1, i2, l) → (n1 − 1, 0, j1, j2, l) 
where n1, (n1 − 1) represents the number of customers in the pool and ’0’ represents 
there is no customers in the buffer. i1, j1 represents the residual inventory level of 
commodity-1 and i2, j2 represents the residual inventory level of commodity-2. l rep-
resents the state of the server.

Define F = IS1+2
⨂

F1;G = IS1+2
⨂

G1 and E1 = (�1p)Ib
F, G, E all are square matrices of order a1 × a1 and Ia is an identity matrix of 

order a.

̂̂
Rk

�
n1, k, 0, 0, 0

�
→

�
n1, k

�, 0, i2, 2
�
=

⎧
⎪⎪⎨⎪⎪⎩

𝛽2, i2 = S2 − 1;k� = k − 1

k = 1, 2,… ,M;n1 > 0

𝛽2, i2 = S2;k
� = k

k = 0;n1 > 0

0, Otherwise

̂Rk+1
�
n1, k, 0, 0, 0

�
→

�
n1 − 1, k, i1, 0, 1

�
=

⎧
⎪⎨⎪⎩

𝛽1, i1 = S1 − 1;

k = 0, 1, 2,… ,M;n1 > 0

0, Otherwise

̃̂
R̂k

�
0, k, 0, 0, 0

�
→

�
0, k − 1, 0, i2, 2

�
=

⎧
⎪⎨⎪⎩

𝛽2, i2 = S2 − 1;

k = 1, 2,… ,M

0, Otherwise

̃̂
Rk

�
0, k, 0, 0, 0

�
→

�
0, k, i1, 0, 1

�
=

�
𝛽1, i1 = S1; k = 1, 2,… ,M

0, Otherwise

̂Ck+1(n1, k, 0, 0, 1) → (n1, k, 0, 0, 0) =

�
𝜇1, k = 0, 1, 2,… ,M;n1 ≥ 1

0, Otherwise

̂̂
Ck+1(n1, k, 0, 0, 2) → (n1, k, 0, 0, 0) =

�
𝜇2, k = 0, 1, 2,… ,M;n1 ≥ 1

0, Otherwise

̃̂
Ck+1(0, k, 0, 0, 1) → (0, k, 0, 0, 0) =

�
𝜇1, k = 1, 2,… ,M

0, Otherwise

̃̂
̂Ck+1(0, k, 0, 0, 2) → (0, k, 0, 0, 0) =

�
𝜇2, k = 1, 2… ,M;n1 ≥ 1

0, Otherwise

B0 =

�
0 0

0 I2(M+1)

⨂
E

�

a4×a4

�2 =

�
H1 0

H1 0

�

a3×a3

H1 =
�
H 0 0... 0

�T
a1×a2

�1 =
�
R̂1 R̂2 ... R̂M+1 0 0 ... 0

�
(M+1)×a3

H(n1, 0, i1, i2, l) → (n1 − 1, 0, j1, j2, 1)

=

⎧
⎪⎨⎪⎩

�1, n1 ≥ 1;1 ≤ i1 ≤ S1, S
∗
1
;0 ≤ i2 ≤ S2, S

∗
2

j1 = i1 − 1;j2 = i2;l = 1, 2.

0, Otherwise
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V0 = �1Ib;V1 = �1Ib;Zi, i = 0, 1,… , (S1 + 1) are of order b × b;Z
i
= Z

S1+1
− V1 − V0;

i = 1, 2,… , s1;Zi = ZS1+1 − V1;i = s1 + 1, s1 + 2,… , S1;Za = ZS1+1 − 2V0 + (�1p)Ib;

D
a
= D2a + C1 − G −M1;D1a = D

a
+ F;D0 = D

�

2a
+ C1;D

�

2a
= D2a;Zb = Z

a
+ M̂1−

M̂2;Db
= D2b − G + C1 −M1 +M2;D1b = D

b
+ F;D2b

� = D2b + C1 −M1 +M2 − C2;

C1 = �1Ia1
;C2 = �2Ia1

The elements of matrix ZS1+1 represents the transitions from 
(n1, n2, S

∗
1
, j2, l) ���→ (n1, n2, S

∗
1
, j2, l) where n1, n2 represents the number of customers in 

the pool and in the buffer. S∗
1
, j2 represents the residual inventory level of commod-

ity-1 and commodity-2. l represents the state of the server.

F1 =

�
0 0

0 (𝜆2)I(b−1)

�

b×b

G1 =

�
0 0

0 𝜇2I(b−1)

�

b×b

E =

�
0 0

0 IS1+1
⨂

E1

�

a1×a1

M1 =

�
𝜇1 0

0 0

�

a1×a1

M2 =

�
𝜇2 0

0 0

�

a1×a1

M̂1 =

�
𝜇1 0

0 0

�

b×b

M̂2 =

�
𝜇2 0

0 0

�

b×b

D2a =

�
Za �

�

2a

�
��

2a
�2a

�

a1×a1

�
�

2a
=
�
0 0 0 0... 0 V0 V0

�
b×(a1−b)

�
��

2a
=
�
V1 V1... V1

�T
b×(a1−b)

�2a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1 0 0 0... 0 V0 0

0 Z2 0 0... 0 V0 0

⋮

0 0 Zs1 0... 0 V0 0

0 0 0 Zs1+1... 0 0 0

⋮

0 0 0 0... 0 ZS1 0

0 0 0 0... 0 0 ZS1+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(a1−b)×(a1−b)

D2b =

�
Zb �

�

2a

�
��

2a
�2a

�

a1×a1

ZS1+1(n1, n2, S
∗
1
, i2, l) → (n1, n2, S

∗
1
, j2, l)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−�1 − �1p − �2, i2 = 0;i2 = j2
−�1 − �1p − 2�2 − �2 − �2, i2 = j2;i2 = 1, 2,… , s2
−�1 − �1p − �2 − �2 − �2, i2 = j2;j2 = s2 + 1, s2 + 2... S2
−�1 − �1p − �2, i2 = S∗

2
;j2 = i2

�2, j2 = 0;i2 = 1, 2,… S2
�2, j2 = S2;i2 = 0, 1, 2,… , s2
�2, i2 = 0;j2 = S∗

2

0, Otherwise
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3.3 � Steady state analysis

To obtain the stability condition, we examine the Markov chain 
{Y(t);t ≥ 0} = {(N2(t), J1(t), J2(t), L(t));t ≥ 0} on the finite state space 
{(n2, 0, 0, 0);0 ≤ n2 ≤ M;M ≥ 1}

⋃
{(0, j1, j2, 0);j1 = 0, 1, 2,… , S1, S

∗
1
;j2 = 0, 1, 2,… , S2,

S∗
2
}
⋃
{(n2, j1, j2, l);j1 = 0, 1, 2,… , S1, S

∗
1
;j2 = 0, 1, 2,… , S2, S

∗
2
;0 ≤ n2 ≤ M;M ≥ 1;l = 1, 2} . 

Let y = (y0, y1, y2,… , y2(M+1)) represent the steady state probability vector of this 
Markov chain, and y0 = (y0(1),… , y0(M + 1)), yi = (yi(1), yi(2),… , yi(a1)),for 
i = 1, 2,… , 2(M + 1) . Infinitesimal generator of {Y(t);t ≥ 0} is B = B0 + B1 + B2 
where

Then y satisfies

where e is a column vector of 1’s.
Substituting the values of y and B in equation (2), we get the following sets of 

equations.

Solving the above set of equations, (4) and (5), we get

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 R̂1 R̂2 R̂3... R̂M
̂̂
R1

̂̂
R2

̂̂
R3...

̂̂
RM−1 0

Ĉ1 D2a + E + H F 0... 0 0 0 0... 0 0

Ĉ2 0 Da + E F... 0 G 0 0... 0 0

ĈM 0 0 0... F 0 0 G... 0 0

ĈM+1 0 0 0... D1a + E 0 F 0... G 0

̂̂
C1 H 0 0... 0 D2b + E F 0... 0 0

̂̂
C2 0 0 0... 0 G Db + E F... 0 0

̂̂
CM 0 0 0... 0 0 0 0... Db + E F
̂̂
CM+1 0 0 0... 0 0 0 0... G D1b + E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)yB = 0, ye = 1.

(3)
y0D11 + y1Ĉ1 + y2Ĉ2 + y3Ĉ3 + ...

+ yM+1ĈM+1 + yM+2
̂̂
C1 + yM+3

̂̂
C2 + ... + y2(M + 1) ̂̂CM + 1 = 0.

(4)

y0R̂1 + y1(D2a + H + E) + yM+2H = 0.

y0R̂i + yi−1F + yi(Da + E) = 0;i = 2, 3,… , (M − 1).

y0R̂M+1 + yMF + yM+1(D1a + E) = 0.

(5)

y0
̂̂
R1 + y2G + yM+2(D2b + E) + yM+3G = 0.

y0
̂̂
Ri + yi+1G + y(M+i)F + y(M+i+1)(Db + E)

+ y(M+i+2)G = 0;i = 2, 3,… , (M − 1).

y2(M+1)−1F + y2(M+1)(D1b + E) = 0.
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where,

for i = 3, 4,… ,M;

(6)yi = y0Ki + y1Li;i = 2, 3,… , 2(M + 1)

K2 = −R̂2(Da + E)−1.

Ki = − R̂i(Da + E)−1 −

M−(i−1)∑
k=1

(−1)M−k+1R̂M−k(Da + E)−1[F(Da + E)−1]k.

KM+1 = − R̂M+1(D1a + E)−1 − (−1)M+1R̂M(Da + E)−1F(D1a + E)−1

− (−1)MR̂M−1(Da + E)−1
[
F(Da + E)−1

]k
F(D1a + E)−1

KM+2 =

M∑
k=1

(−1)k+4 ̂̂RkR
−1
M+1−k

ΠM
r=M+2−k

GR−1
r

+

M+1∑
k=2

(−1)k+3KkΠ
M
r=M+2−k

GR−1
r
.

KM+j =

M+(j−2)∑
k=j−1

(−1)k+j+2 ̂̂RkR
−1
M+1−k

Π
M−(j−2)

r=M+2−k
GR−1

r

+

M+(j−1)∑
k=j

(−1)k+j+1KkΠ
M−(j−2)

r=M+2−k
GR−1

r

− KM+(j−1)FR
−1
M−(j−2)

;forj = 3, 4,… ,M.

K2M+1 =(−1)
2(M+1)−1 ̂̂RMR

−1
1

− KM+1GR
−1
1

− K2MFR
−1
1
.

K2M+2 =(−1)
2(M+1)K2(M+1)−1 × −F(D1b + E)−1.

L2 = − F(Da + E)−1.

Li =[F(Da + E)−1]i−1;i = 3, 4,… ,M.

LM+1 =[F(Da + E)−1]M−1F(D1a + E)−1.

LM+2 =

M+1∑
k=2

(−1)k+3LkΠ
M
r=M+2−k

GR−1
r
.

LM+j =

M+(j−1)∑
k=j

(−1)j+k+1LkΠ
M−(j−2)

r=M+2−k
GR−1

r
− LM+j−1FR

−1
M−(j−2)

;j = 3, 4,… ,M.

L2M+1 = − LM+1GR
−1
1

− L2MFR
−1
1
.and

L2M+2 =L2M+1 × −F(D1b + E)−1.

whereR1 = (Db + E) − F(D1b + E)−1G.

Ri =(Db + E) − FR−1
i−1

G;i = 2, 3,… , (M − 1).

RM =(D2b + E) − F(R−1
M−1

)G.
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We get all values of yi, i = 2, 3,… , 2(M + 1) in terms of y1 and y0.
From equation (3), we get y0 = −y1(A1A

−1
0
), where

A0 = D11 +
∑M+1

i=2
KiĈi +

∑2(M+1)

i=M+2
Ki

̂̂
Ci and

A1 = Ĉ1 +
∑M+1

i=2
LiĈi +

∑2(M+2)

i=M+2
Li
̂̂
Ci and y1 can be determined from the normal-

izing condition ye = 1, and we have
y1[−A1A

−1
0

+ I +
∑2M+2

i=2
(−A1A

−1
0
)Ki + Li)]e = 1

3.4 � Condition of stability

In this section we provide an implicit stability condition of the system which is 
given in the following lemma.

3.4.1 � Lemma

The queueing inventory system described above is stable if and only if

Proof: The LIQBD description of the model shows that the queueing inventory sys-
tem is stable (see [22]) if and only if yB0e < yB2e . From the value of y computed 
from the previous section, we can see that this condition reduces to (7).

3.5 � Steady state probability vector

In this section we compute the steady state probability vectors of the system. 
Assume that the stability condition in Sect. 3.4.1 is satisfied, we give an outline of 
the calculation of the steady state probability vector of the sytem. Let z denotes the 
steady state probability vector of the generator Q. Then z satisfies the condition

Partition z = (z0, z1, z2,…). Then the subvectors in z are, z
n1
= {z

n1
(n2, 0, 0, 0); 

0 ≤ n2 ≤ M; except for the case both n1 = 0 and n2 = 0}
⋃
{z

n1
(0, j1, j2, 0);0 ≤ j1

≤ S1, S
∗
1
;0 ≤ j2 ≤ S2, S

∗
2
}
⋃
{zn1 (n2, j1, j2, l);0 ≤ n2 ≤ M;0 ≤ j1 ≤ S1, S

∗
1
;0 ≤ j2 ≤ S2,

S
∗
2
;M ≥ 1;l = 1, 2} for n1 ≥ 0. We see that, the steady state probability vector 

z = (z0, z1, z2,…) satisfies the matrix geometric solution zn1 = z1R
n1−1;n1 ≥ 2 . One 

can refer [22] for details. Here R is the minimal non-negative solution to the matrix 
quadratic equation: R2B2 + RB1 + B0 = 0 and the vectors z0 and z1 are given by the 
boundary equations:

z0B00 + z1B10 = 0z0B01 + z1B1 + z2B2 = 0. The normalizing condition (8) gives
z0[I − B01(B1 + RB2)

−1(I − R)−1e] = 1

(7)

(
2(M+1)∑
i=1

yi

)
.Ee < [

M+1∑
i=1

yi(Ĉi +
̂̂
Ci) + y0

M+1∑
i=1

R̂i + (y1 + yM+2).H]e

(8)z.Q = 0;z.e = 1.
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4 � System performance measures

In this section, we derive performance measures of the system under the steady 
state.

1) Expected number of type-I (non priority) customers in the system

2) Expected number of type-II ( priority) customers in the system

3) Expected inventory level of commodity-1

4) Expected inventory level of commodity-2

5) Probability that the server is busy processing a demand of commodity-1 alone

6) Probability that the server is busy processing a demand of commodity-2 alone

7 (a) Server idle probability

E1 =

∞∑
n1=0

M∑
n2=0

S∗
2∑

j2=0

S∗
1∑

j1=0

2∑
l=0

n1zn1 (n2, j1, j2, l)

+

∞∑
n1=0

M∑
n2=0

n1zn1 (n2, 0, 0, 0)

E2 =

∞∑
n1=0

M∑
n2=0

S∗
2∑

j2=0

S∗
1∑

j1=0

2∑
l=0

n2zn1 (n2, j1, j2, l)

+

∞∑
n1=0

M∑
n2=0

n2zn1 (n2, 0, 0, 0)

EI1 =

∞∑
n1=0

M∑
n2=0

S∗
2∑

j2=0

S∗
1∑

j1=0

2∑
l=0

j1zn1 (n2, j1, j2, l)

EI2 =

∞∑
n1=0

M∑
n2=0

S∗
2∑

j2=0

S∗
1∑

j1=0

2∑
l=0

j2zn1 (n2, j1, j2, l)

PB1 =

∞∑
n1=1

S∗
1∑

j1=1

S∗
2∑

j2=0

zn1 (0, j1, j2, 1)

PB2 =

∞∑
n1=0

M∑
n2=1

S∗
1∑

j1=0

S∗
2∑

j2=1

zn1 (n2, j1, j2, 2)

PSI =

∞∑
n1=0

M∑
n2=0

zn1(n2, 0, 0, 0) +

S∗
1∑

j1=0

S∗
2∑

j2=0

z0(0, j1, j2, 0)
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7 (b) Probability that the server is busy

8 (a) Expected loss rate of non priority customers in the system

8 (b) Expected loss rate of priority customers in the system

9 (a) Expected number of old items removed on replenishment due to realization of 
common lifetime of commodity-1,

9 (b ) Expected number of old items removed on replenishment due to realization of 
lead time of commodity-1,

10 (a) Expected number of old items removed on replenishment due to realization of 
common lifetime of commodity-2,

10 (b ) Expected number of old items removed on replenishment due to realization 
of leadtime of commodity-2,

PSB =

∞∑
n1=0

M∑
n2=0

S∗
1∑

j1=0

S∗
2∑

j2=0

zn1 (n2, j1, j2, 1)

+

∞∑
n1=0

M∑
n2=1

S∗
1∑

j1=0

S∗
2∑

j2=0

zn1 (n2, j1, j2, 2)

EL1 = �1(1 − p)

∞∑
n1=1

S∗
1∑

j1=0

S∗
2∑

j2=0

2∑
l=1

M∑
n2=1

zn1 (n2, j1, j2, l)

EL2 = �2

∞∑
n1=0

S∗
1∑

j1=0

S∗
2∑

j2=1

zn1 (M, j1, j2, 2) + �2

∞∑
n1=0

S∗
1∑

j1=0

M∑
n2=0

zn1(n2, j1, 0, 1)

+ �2

∞∑
n1=0

M∑
n2=0

zn1 (n2, 0, 0, 0)

EOC1 =

∞∑
n1=0

M∑
n2=0

S1∑
j1=1

S∗
2∑

j2=0

2∑
l=0

j1zn1(n2, j1, j2, l)

EOL1 =

∞∑
n1=0

M∑
n2=0

s1∑
j1=1

S∗
2∑

j2=0

2∑
l=0

j1zn1 (n2, j1, j2, l)

EOC2 =

∞∑
n1=0

M∑
n2=0

S∗
1∑

j1=0

S2∑
j2=1

2∑
l=0

j2zn1(n2, j1, j2, l)

EOL2 =

∞∑
n1=0

M∑
n2=0

S∗
1∑

j1=0

s2∑
j2=1

2∑
l=0

j2zn1 (n2, j1, j2, l)
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11(a) Expected reorder rate of commodity-1

11(b) Expected reorder rate of commodity-2

4.1 � Analysis of cycle time for commodity‑1

A cycle time for commodity-1 is defined as the time starting from maximum inven-
tory level S1 at an epoch, untill the next epoch of replenishment. That is, duration 
between two consecutive S1 to S1 or S∗

1
 transitions. For the computation of the 

expected duration of a cycle, we assume that the pool capacity is K > 0 (Sufficiently 
large). Now consider the Markov Chain Z1(t) = {(N4(t),N2(t), I1(t), I2(t), L(t));t ≥ 0} 
over the finite state space {(n4, n2, j1, j2, l);0 ≤ n4 ≤ K;0 ≤ n2 ≤ M;M ≥ 1;0 ≤ j1

≤ S1, S
∗
1
;0 ≤ j2 ≤ S2, S

∗
2
;l = 1, 2}

⋃
{(n4, n2, 0, 0, 0);0 ≤ n4 ≤ K;0 ≤ n2 ≤ M}

⋃
{(0, 0,

j1, j2, 0);0 ≤ j1 ≤ S1, S
∗
1
;0 ≤ j2 ≤ S2, S

∗
2
}
⋃

Δ�1. Here N4(t) is the number of custom-
ers in the finite pool and Δ�1 is an absorbing state due to realization of lead time of 
commodity-1. Let a6 = Ka4 + a5. The infinitesimal generator of {Z1(t) ;t ≥ 0} is of 

the form Z1 =
[
𝜏1 𝜏0

1

0 0

]
 where

Here Ac is a zero column vector with dimension M × 1,Ae is a zero column vector 
with dimension (S2 + 2)(S1 − s1 + 1) × 1.Ah is a column vector with elements �1 and 
its dimension is (M + 1) × 1.

ER1 = �1

∞∑
n1=0

M∑
n2=0

S∗
2∑

j2=0

zn1 (n2, s1, j2, 1)

+
�2
1

�1 + �1 + �1

∞∑
n1=0

S1∑
j1=s1+1

S∗
2∑

j2=0

M∑
n2=0

2∑
l=0

zn1 (n2, j1, j2, l)

ER2 = �2

∞∑
n1=0

M∑
n2=0

S∗
1∑

j1=0

zn1 (n2, j1, s2, 2) +
�2
2

�2 + �2 + �2

∞∑
n1=0

S∗
1∑

j1=0

S2∑
j2=s2+1

M∑
n2=0

2∑
l=0

zn1 (n2, j1, j2, l)

𝜏1 =

⎡⎢⎢⎢⎢⎣

A00 A01

A10 A1 A0

A2 A1 A0

⋱ ⋱

A2 A
�
1

⎤⎥⎥⎥⎥⎦
a6×a6

; 𝜏0
1
=

⎡⎢⎢⎢⎣

A
a

A
b

⋮

A
b

⎤⎥⎥⎥⎦
a6×1

A
a
=

⎡
⎢⎢⎢⎢⎢⎣

A
f

A
c

A
f

⋮

A
f

⎤
⎥⎥⎥⎥⎥⎦
a5×1

A
b
=

⎡⎢⎢⎢⎢⎢⎣

A
h

A
f

A
f

⋮

A
f

⎤⎥⎥⎥⎥⎥⎦
a4×1
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(a) The distribution of the cycle time of commodity-1 is of phase type with  
representation (𝛼, 𝜏1) where 
� = (�S1 , 0, 0,… , 0);�S1 = {(Cz0(n2, S1, j2, 0),Cz1(n2, S1, j2, l),… ,CzK(n2, S1, j2, l));

0 ≤ j2 ≤ S2, S
∗
2
;0 ≤ n2 ≤ M;l = 1, 2} and C = [

∑K
n1=0

∑M
n2=0

∑S∗
2

j2=0

∑2

l=1 zn1(n2, S1, j2, l)]
−1 (b) 

The mean cycle length of commodity-1 is𝜂1 = −𝛼𝜏1
−1e, where e is a column vector 

of 1′

s with appropriate order.
In a similar way we can write the cycle time for commodity-2.

A01 = B01;A10 =

�
0 0

0 �2

�

a4×a5

A
d
=

�
A
∗
d

A
∗∗
d

�
A
f
=

�
A
d

A
e

�

a1×1

A2 =

�
0 0

0 �2

�

a4×a4

A00 =

�
D

∗
0

D
C1

D
C2 Ã0

�

a5×a5

Ã0 =

�
D00 B̃3

D
C3 B

∗
�

5

�
B
∗
�

5
=

�
B
∗
�

11
B12

B21 B
∗
�

22

�

a3×a3

B
∗
�

11
=

⎡
⎢⎢⎢⎢⎢⎢⎣

D
∗
�

2a
F 0 ... 0 0

0 D
∗
�

a
F ... 0 0

⋮

0 0 0 ... D∗
�

a
F

0 0 0 ... 0 D
∗
�

1a

⎤
⎥⎥⎥⎥⎥⎥⎦
a2×a2

A
∗
d
=

⎡
⎢⎢⎢⎣

2𝛽1

⋮

2𝛽1

⎤
⎥⎥⎥⎦(S2+2)×1

B
∗
�

22
=

⎡
⎢⎢⎢⎢⎢⎢⎣

D
∗
�

2b
F 0 ... 0 0

G D
∗
�

b
F ... 0 0

⋮

0 0 0 ... D∗
�

b
F

0 0 0 ... G D
∗
�

1b

⎤
⎥⎥⎥⎥⎥⎥⎦
a2×a2

A
∗∗
d

=

⎡
⎢⎢⎢⎣

𝛽1

⋮

𝛽1

⎤
⎥⎥⎥⎦(S2+2)s1×1

A1 =

�
D11 B3

0 B
∗
5

�
B
∗
5
=

�
B
∗
11

B12

B21 B
∗
22

�
B
∗
11

=

⎡⎢⎢⎢⎢⎢⎢⎣

D
∗
2a

F 0 ... 0 0

0 D
∗
a
F ... 0 0

⋮

0 0 0 ... D∗
a

F

0 0 0 ... 0 D
∗
1a

⎤⎥⎥⎥⎥⎥⎥⎦
a2×a2

B
∗
22

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D
∗
2b

F 0 ... 0 0

G D
∗
b
F ... 0 0

⋮

0 0 0 ... D∗
b

F

0 0 0 ... G D
∗
1b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
a2×a2

D
∗
2a

=

�
Z
a

0

�
��

2a

̃̃
D2a

�

a1×a1

D
∗
2b

=

�
Z
b

0

�
��

2a

̃̃
D2a

�

a1×a1

̃̃
D2a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1 0 0 0 0... 0 0 0

0 Z2 0 0 0... 0 0 0

⋮

0 0 0 Z
s1

0... 0 0 0

0 0 0 0 Z
s1+1

... 0 0 0

⋮

0 0 0 0 0... 0 Z
S1

0

0 0 0 0 0... 0 0 Z
S1+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a1−b)×(a1−b)

A
�

1
= A1 + A0;A0 = B0;D

∗
a
= D

∗
2a
+ 𝜇1Ia1

− G −M1;

D
∗
1a

= D
∗
a
+ FD

∗
�

2a
= D

∗
2a
;D

∗
b
= D

∗
2b
− G + 𝜇1Ia1

−M1 −M2;

D
∗
1b

= D
∗
b
+ FD

∗
�

2b
= D

∗
2b
+ C1 −M1 +M2 − C2;D

∗
0
= D

∗
�

2a
+ C1
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4.2 � Average waiting time of a priority (type‑2) customer

Here, we calculate the average waiting time of a priority customer. We consider the 
Markov process Z2(t) = {(N

�

2
(t), I2(t));t ≥ 0} , where N �

2
(t) is the rank of the tagged 

customer in the buffer at time t. The rank N �

2
(t) of the tagged customer is j (finite) if he 

is the jth customer in the queue at time t. His rank decreases to one as the customers 
ahead of him leave the system after completing service. The statespace of the process is 
{(n, i2);1 ≤ n ≤ j ;j ≤ M ;0 ≤ i2 ≤ S2, S

∗
2
}
⋃
{Δ} , where {Δ} is the absorbing state 

which shows that the marked customer is selected for service. The infinitesimal genera-

tor of{Z2(t);t ≥ 0} is of the form Z2 =
[
�2 �0

2

0 0

]
 where

W2 = W +W1;W3 is a column vector of order (S2 + 1) × 1 whose elements are �2 . 
The elements of matrix W represents the transitions from (r, i2) ���→ (r, j2) , where r is 
the rank of the tagged customer in the buffer, i2, j2 represents the residual inventory 
level of commodity-2.

Now, the waiting time of a type-2 customer, who enters the queue as the pth cus-
tomer is the time until absorption of the Markov chain{Z2(t);t ≥ 0} . This random 
duration follows a phase type distribution. Thus the average waiting time of the pth 
customer is a column vector �p = −�−1

2
e.

Hence the average waiting time of a general (type-2) customer in the system is
EW2

=
∑∞

n1=0

∑M

p=1
yn1 (p)�p, where

�2 =

⎡
⎢⎢⎢⎢⎣

W W1

W W1

⋱ ⋱

W W1

W2

⎤
⎥⎥⎥⎥⎦
jb×jb

;�0
2
=

⎡
⎢⎢⎢⎣

0

0

⋮

W3

⎤
⎥⎥⎥⎦
jb×1

;

W1 =

�
0 0

0 �2IS2+1

�

b×b

W(r,i2)→(r,j2)
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−2�2 i2 = 0;j2 = 0

−�2 − �2 − �2 i2 = 1, 2...s2;j2 = i2
−�2 − �2 i2 = s2 + 1....S2;j2 = i2
−�2 i2 = S∗

2
;i2 = j2

�2 i2 = 1, 2...S2;j2 = 0

�2 0 ≤ i2 ≤ s2;j2 = S2
�2 i2 = 0;j2 = S∗

2

yn1 (p) = {(p, 0), (p, 1),

… , (p, S2), (p, S
∗
2
), ((p − 1), 0), ((p − 1), 1),… , ((p − 1), S2),

((p − 1), S∗
2
),… , (1, 0), (1, 1),… , (1, S2), (1, S

∗
2
)}
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4.3 � Expected time to reach zero inventory level of commodity‑1 in a cycle

Here we compute the expected time to reach zero inventory of commodity-1 in a 
cycle. Starting from the maximum inventory level S1 , the inventory level of com-
modity-1 becomes zero, either by service completion when the inventory is left with 
a single unit or by common lifetime realization. We consider the Markov chain 
Z3(t) = {(N4(t),N2(t), I1(t), I2(t), l);t ≥ 0}. Its state space is {(n4, n2, i1, i2, l);0 ≤ n4 ≤ K;

0 ≤ n2 ≤ M;0 ≤ i1 ≤ S1, S
∗
1
;0 ≤ j2 ≤ S2, S

∗
2
;l = 1, 2}

⋃
{(n4, n2, 0, 0, 0);0 ≤ n4 ≤ K;

0 ≤ n2 ≤ M}
⋃
{(0, 0, j1, j2, 0);0 ≤ j1 ≤ S1, S

∗
1
;0 ≤ j2 ≤ S2, S

∗
2
}
⋃

Δ�1

⋃
Δ

CLT−1, 
where Δ�1 is an absorbing state consequent to the replenishment order placed for 
commodity-1 due to service completion and ΔCLT−1 is an absorbing state consequent 
to the replenishment order placed due to realization of common lifetime of com-

modity-1. The infinitesimal generator of {Z3(t);t ≥ 0} is of the form 

Z3 =

[
�3 �o

�1

�o
CLT−1

0 0 0

]
 where

�3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

W00 W01

W10 W3 W4

W2 W3 W4

⋱ ⋱ ⋱

W2 W3 W4

W2 W
�

3

⎤
⎥⎥⎥⎥⎥⎥⎦a6×a6

�0
CLT−1

=

⎡⎢⎢⎢⎢⎢⎢⎣

W5

0

W5

W5

⋮

W5

⎤⎥⎥⎥⎥⎥⎥⎦a6×1

W5 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

�1Ib
�1Ib
⋮

�1Ib
0

⎤⎥⎥⎥⎥⎥⎥⎦a4×1

�0
�1

=

⎡⎢⎢⎢⎢⎢⎣

W
�

9

0

W9

⋮

W9

⎤⎥⎥⎥⎥⎥⎦a6×1

;
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,where T stands for the transpose of a matrix.

W9 =
[
0 W6 W7 ... W7 W8 0 ... 0

]T
1×a3

;W
�

3
= W3 +W4

W
�

9
=
[
0 W6 W7 ... W7 0 ... 0

]T
1×a3

;W01 = B01;W10 =
[
0 W2

]

W00 = B̂00;W6 =
[
𝜇1 ... 𝜇1

]T
1×a1

;

W7 =
[
𝜇1 0 ... 0

]T
1×a1

;

W8 =
[
0 𝜇1 ... 𝜇1

]T
1×a1

W2 =

[
0 �1

0 0

]

a4×a4

B
�

4
=
[
0 0 ... 0

̂̂
C1

̂̂
C2 ...

̂̂
C
M

]T
(M+1)×a3

;

W4 = B0;W3 =

[
D11 B3

B
�

4
B̂5

]

B̂5 =

[
B̂11 B12

B21 B̂22

]
;D̂1a = D̂

a
+ F;D̂

a
= D̂2a + Î − G −M1

B̂11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D̂2a F 0 ... 0 0

0 D̂
a
F ... 0 0

⋮

0 0 0 ... D̂
a

F

0 0 0 ... 0 D̂1a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
a2×a2

B̂22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D̂2b F 0 ... 0 0

G D̂
b
F ... 0 0

⋮

0 0 0 ... D̂
b

F

0 0 0 ... 0 D̂1b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
a2×a2

B̂00 =

�
D̂0 D

C1

D̂
C2

̃̂
B0

�

a5×a5

;

̃̂
B0 =

�
D00 B̃3

D̂
C3 B̂

�

5

�

ā4×ā4

B̂
�

5
=

�
B̂

�

11
B12

B21 B̂
�

22

�

a4×a4

;

D̂
C2 =

�
0 0 0 ... 0 C2 0 ... 0

�T
a1×(2a2+M)

D̂
C3 =

�
0 0 ... 0 0

̃̂
Ĉ2 ...

̃̂
Ĉ

M

�T
M×a3
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Let the initial distribution of the chain is � = (�S1 , 0, 0,… , 0), where 
�S1 = {(Cz0(n2, 0, j2, 0),Cz1(n2, 0, j2, l),…CzK(n2, 0, j2, l));0 ≤ j2 ≤ S2, S

∗
2
;0 ≤ n2 ≤ M;l = 1, 2} 

and C = [
∑K

n1=0

∑M

n2=0

∑S∗
2

j2=0

∑2

l=1
zn1(n2, 0, j2, l)]

−1 . The distribution of time till 
absorption to state zero starting from a replenishment epoch is of phase type with 
representation (� , �3).

(a) Probability that the inventory level becomes zero before realization of com-
mon lifetime

= −��−1
3
�0
�1

(b) Probability that the common lifetime realizes before inventory level becomes 
zero

= −� �−1
3

�0
CLT−1

(c) Expected time to reach zero inventory level of commodity-1 in a cycle
=−��−1

3
e

In a similar way we can find the expected time to reach zero inventory level of 
commodity-2 in a cycle

5 � Numerical illustrations

5.1 � Sensitivity analysis on performance measures

In this section, some numerical examples are presented to show the impact of some 
parameters on the performance measures of the system (i.e. sensitivity analysis).

B̂
�

11
=

⎡
⎢⎢⎢⎢⎢⎣

D̂
�

2a
F 0 ... 0 0

0 D̂
a
F ... 0 0

⋮

0 0 0 ... D̂
a

F

0 0 0 ... 0 D̂1a

⎤
⎥⎥⎥⎥⎥⎦
a2×a2

B̂
�

22
=

⎡⎢⎢⎢⎢⎢⎣

D̂
�

2b
F 0 ... 0 0

0 D̂
b
F ... 0 0

⋮

0 0 0 ... D̂
b

F

0 0 0 ... G D̂1b

⎤⎥⎥⎥⎥⎥⎦
a2×a2

D̂2a =

�
Z
a

��
2a

0 �2a

�

(a1−b)×(a1−b)

;D̂2b =

�
Z
b

��
2a

0 �2a

�

a1×a1

D̂
b
= D̂2b − G + C1 −M1 −M2;D̂1b = D̂

b
+ F;D̂

a

= D̂2a + C1 − G −M1;D̂1a = D̂
a
+ F;

D̂0 = D̂
�

2a
+ C1D̂

�

2a
= D̂2a;D̂b

= D̂2b − G + C1 −M1

+M2;D̂1b = D̂
b
+ F;D̂2b

� = D̂2b + C1 −M1 +M2 − C2
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5.1.1 � Effect of ˇ
1
 and ˇ

2
 on various performance measures

We fix the values of the parameters as �2 = 6;�1 = 3.2;�2 = 2.1;�1 = 7;�2 = 5;p = 1∕3;

�1 = 1.5;�2 = 3.5;M = 3;(s1, S1) = (6, 8) ;(s2, S2) = (5, 8) and examine the effect of �1 
on various performance measures. From Table 1, we can see that when lead time param-
eter of commodity-1 increases, the expected number of non-priority customers and 
their average loss rate decreases. Similarly fixing the values of the parameters as �1 = 4;

�1 = 3.2;�2 = 2.1;�1 = 7;�2 = 5;p = 1∕3;�1 = 1.5;�2 = 3.5;M = 3;(s1, S1) = (6, 8);(s2, S2) = (5, 8) , 
from Table 2 we can see that when lead time parameters of commodity-2 increases, 
the expected number of priority customers, and their average loss rate decreases.

5.1.2 � Effect of 

1
 and 


2
 on various performance measures

Fixing the values of the parameters as p = 1∕3;(s1, S1) = (6, 8);(s2, S2) = (5, 8);M = 3;

�1 = 3;�2 = 2;�1 = 3.2;�2 = 2.1;�1 = 1.5;�2 = 2;�2 = 5.2, we can see from 
Table 3that the CLT parameter �1 increases, the expected reorder rate of commod-
ity-1 increases, as expected. Similarly fixing the values of the parameters as p = 1∕3;

(s1, S1) = (6, 8);(s2, S2) = (5, 8);M = 3;�1 = 3;�2 = 2;�1 = 3.2;�2 = 2.1;�1 = 1.5;�1 = 2;�2 = 5.2  , 
we can see from Table 4 that the re-order rate of commodity-2 increases.

5.1.3 � Effect of �
1
 and �

2
 on various performance measures

Fix the values of the parameters as p = 1∕3;(s1, S1) = (6, 8);(s2, S2) = (5, 8);M = 3;

�1 = 5;�2 = 7;�1 = 3.2;�2 = 2.1;�1 = 8;�2 = 7;�2 = 3 , we can see from Table  5 
that as �1 increases, the expected number of non priority customers and their 
loss rate increases. Similary to see the effect of the arrival rate of prior-
ity customers, we fix the values of the parameters as p = 1∕3;(s1, S1) = (6, 8);

(s2, S2) = (5, 8);M = 3;�1 = 5;�2 = 12;�1 = 3.3;�2 = 2.5;�1 = 3 ; �1 = 7;�2 = 8   . 
Then from Table 6, we can see that the expected number of non-priority custom-
ers decreases and the expected loss rate increases as �2 increases, and also, the 
expected loss rate of priority customers increases.

5.1.4 � Effect of �
1
 and �

2
 on various performance measures

Here we study the effect of the service time parameters on the system performance meas-
ures. Fixing the parameter values as p = 1∕3;(s1, S1) = (6, 8);(s2, S2) = (5, 8);M = 3;

�1 = 5;�2 = 12;�1 = 1.5;�2 = 2.5 ;�1 = 7 ; �2 = 8;�2 = 3.5 and observ-
ing the effect of �1 on the performance measures, from Table  7 we can 
see that the expected number of non-priority customers and their aver-
age loss rate decreases. Similarly, if we fix p = 1∕3;(s1, S1) = (6, 8);

(s2, S2) = (5, 8);M = 3;�1 = 5;�2 = 12;�1 = 3.2;�2 = 3.5 ;�1 = 1.5 ; �1 = 7;�2 = 8 
then from Table 8 we can see that as �2 increases the expected number of non-prior-
ity customers and their average loss rate increases as expected.
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Fig. 1   Total expected cost per unit time for various values of s1 and s2

Table 1   Effect of �1 �1 5 5.3 5.7 6.1 6.5 6.9

E1 1.1607 1.1553 1.1488 1.1429 1.1376 1.1328
EL1 0.1024 0.1002 0.0975 0.0950 0.0926 0.0905

Table 2   Effect of �2 �2 3 3.3 3.6 3.9 4.2 4. 5

E2 1.6917 1.6908 1.6901 1.6894 1.6887 1.6880
EL2 1.3262 1.3259 1.3255 1.3251 1.3247 1.3242

Table 3   Effect of �1 �1 1 1.5 2 2.5 3 3.5

ER1 0.1941 0.2314 0.2780 0.3320 0.3918 0.4565

Table 4   Effect of �2 �2 1 1.5 2 2.5 3 3.5

ER2 0.1188 0.1349 0.1556 0.1802 0.2083 0.2392
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5.2 � Cost analysis

In this section we analyze a cost function related with the model under study to 
obtain the optimal values of the control parameters. Here our objective is to find 
the optimal values of the control parameters si, i = 1, 2. For that we construct a total 
expected cost function with the following costs in to consideration.

�1—Cost of holding a type-1 customer per unit per unit of time in the pool.
�2—Cost of holding a type-2 customer per unit per unit of time in the buffer.
�i—Cost of holding inventory per unit of time for commodity-i, i = 1, 2.

Table 5   Effect of �1 �1 1.5 1.8 2.1 2.4 2.7 3

E1 1.1630 1.1960 1.2292 1.2624 1.2958 1.3293
EL1 0.1016 0.1438 0.1925 0.2472 0.3078 0.3739

Table 6   Effect of �2 �2 2 2.3 2.6 2.9 3.2 3.5

E1 1.3728 1.3641 1.3555 1.3470 1.338 1.3307
E2 1.3 1.3 1.3 1.3 1.3 1.3
EL1 0.3822 0.3900 0.3981 0.4062 0.4145 0.4229
EL2 0.2425 0.2910 0.3396 0.3881 0.4366 0.4851

Table 7   Effect of �1 �1 1.5 1.8 2.1 2.4 2.7 3

E1 1.1783 1.1741 1.1702 1.1666 1.1633 1.1602
EL1 0.1128 0.1103 0.1080 0.1058 0.1039 0.1020

Table 8   Effect of �2 �2 1.5 1.8 2.1 2.4 2.7 3

E1 1.3100 1.3118 1.3140 1.3162 1.3182 1.3193
E2 1.2 1.2 1.2 1.2 1.2 1.2
EL1 0.3552 0.3553 0.3555 0.3557 0.3558 0.3560
EL2 0.6144 0.6144 0.6144 0.6144 0.6144 0.6144

Table 9   Effect of (s
i
, S

i
), i = 1, 2 

on total expected cost
(s1, S1) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8)

(s2, S2) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8)
T(s1, s2) 49.20 46.85 46.43 46.66 47.64 49.32 51.70
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�i—Cost due to type-i customer loss per unit of time, i = 1, 2.

�i—Cost due to removal of commodity −i, i = 1, 2.

�i—Purchase price per unit for commodity-i, i = 1, 2.

The total expected cost per unit time is given by
T(s1, s2) = �1.E1 + �2.E2 + �1.EI1 + �2.EI2 + �1.EL1 + �2.EL2 + �1.(EOC1 + EO

L1)

+�2.(EOC2 + EO
L2) + �1.ER1 + �2.ER2.

This function is not easy to analyze analytically, we look the convex-
ity of the cost function numerically. For the given fixed values of the parameters 
�1 = 5;�2 = 12;�1 = 3.2;�2 = 2.1;�1 = 7;�2 = 8;p = 1∕3;�1 = 1.5;�2 = 5.2;M = 3, 
fixed costs �1 = 2;�2 = 3;�1 = 1.5;�2 = 2.5;�1 = 1.5;�2 = 2;�1 = 3;�2 = 4;�1 = 1;�2 = 1.2 
and different values of si, i = 1, 2. we obtained the total expected cost, and are 
given in the Table 9. The numerical values shows that T(s1, s2) is minimum when 
(s1, S1) = (3, 8) and (s2, S2) = (3, 8). We can observe this from Fig. 1.

5.3 � Sensitivity analysis of the cost function

In this section we analyze the effect of the CLT parameters and the lead 
time parameters on the cost function. To examine this, we fix the costs as 
�1 = $2;�2 = $3;�1 = $1.5;�2 = $2.5;�1 = $1.5;�2 = $2;�1 = $3;�2 = $4;�1 = $1;�2 = $1.2

Table 10   Effect of �1 on total cost

�1 7 7.3 7.6 8 8.3 8.6 9

T(s1, s2) 49.0933 49.3933 49.6962 50.1043 50.4132 50.7245 51.1427

Table 11   Effect of �2 on total cost

�2 8 8.3 8.6 9 9.3 9.6 10

T(s1, s2) 50.1043 50.3849 50.6686 51.0512 51.3413 51.6339 52.0278

Table 12   Effect of �1 on total cost

�1 5 5.5 6 6.5 7 7.5 8

T(s1, s2) 46.8797 46.8876 46.8963 46.9057 46.9161 46.9274 46.9399

Table 13   Effect of �2 on total cost

�2 4 4.5 5 5.5 6 6.5 7

T(s1, s2) 44.5975 44.5708 44.5747 44.5793 44.5846 44.5911 44.5990
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5.3.1 � Effect of CLT parameters and Lead time parameters on the cost function

Here, we study the effect of common lifetime parameters �i, i = 1, 2 on total expected 
cost function. We fix the parameters of the model as p = 1∕3;(s1, S1) = (6, 8);

(s2, S2) = (5, 8);M = 3;�1 = 5;�2 = 12;�1 = 3.2;�2 = 2.1;�1 = 1.5;�2 = 8;�2 = 5.2

and examined the effect of �1 , we can see from Table 10 that as �1 increases, the 
total expected cost per unit time increases. Similarly we fix p = 1∕3;(s1, S1) = (6, 8);

(s2, S2) = (5, 8);M = 3;�1 = 5;�2 = 12;�1 = 3.2;�2 = 2.1;�1 = 1.5;�1 = 8;�2 = 5.2, 
from Table  11, we can see that as �2 increases, the total expected cost per unit 
time increases. Similarly, fixing the parameters as p = 1∕3;(s1, S1) = (6, 8);

(s2, S2) = (5, 8);M = 3;�2 = 12;�1 = 3.2;�2 = 2.1;�1 = 1.5;�1 = 7;�2 = 8;�2 = 5.2 
and observing the effect of �1 , from Table 12 we can see that, �1 increases the total expected 
cost per unit time increases. Similary fixing the parameters as p = 1∕3;(s1, S1) = (6, 8);

(s2, S2) = (5, 8);M = 3;�1 = 3;�1 = 3.2;�2 = 2.1;�1 = 1.5;�1 = 2;�2 = 4;�2 = 5.2 
and observing the effect of �2 , from Table 13 we can see that, �2 increases the total 
expected cost per unit time increases.

6 � Conclusion

In this paper, we have studied a two commodity queueing inventory system at a 
service facility with a random common lifetime, random lead time for each of the 
commodities, positive service time, and two classes of customers. Also, there is 
a finite capacity buffer for the priority customers and an infinite pool for the non-
priority customers. Matrix geometric method is used for finding steady-state sys-
tem size probability vectors. We have studied various system characteristics such 
as expected number of customers, expected loss rate of customers, expected wait-
ing time of priority customers, expected inventory levels, expected reorder rates 
for commodities, expected time to reach zero inventory in a cycle and also ana-
lyzed the mean cycle time for both commodities. A cost function is constructed 
and analyzed numerically to find the optimum values of the control parameters 
si , i = 1, 2. Also, we have presented numerical illustrations to show the effect of 
common lifetime parameters and lead time parameters on the cost function. The 
present work can be extended by using general distributions for lead time and 
common lifetime.
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