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Abstract
The classically balanced facility location problems aim to find the location of one 
or several new facilities such that some balanced function is optimized. This paper 
concerns the problem of improving the balanced objective at a prespecified vertex of 
a tree as much as possible within a given budget. We call such a problem the reverse 
selective balance center location problem on trees. All vertices are partitioned into 
two disjoint sets, in which one set consists of selective vertices. The balanced func-
tion is considered to be the difference in distance between the furthest demand point 
in the selective set and the nearest one in the remaining set. We first formulate the 
problem as linear programming. Then we propose a strategy to reduce the objective 
value in the case of variable edge lengths. An algorithm is developed to solve the 
reverse selective balance center location problem on trees in quadratic time.
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1 Introduction

Over the past decade, location theory has experienced significant and powerful 
growth within the field of operational research, driven by its intriguing outcomes and 
real-world applications [2, 8]. Various real-world contexts can be framed as loca-
tion problems, encompassing subjects ranging from human settlement and indus-
trial site selection to understanding consumer behavior. The fundamental objective 
of classical location problems is to determine the optimal location of one or multiple 
new facilities, considering various environmental factors such as time, cost, and dis-
tances between customers and servers. Notably, the p-center and p-median problems 
stand out as the most widely recognized models in location science. In the context 
of the p-median problem, [1] introduced a modified firefly algorithm for solving this 
problem under different distance norms like rectilinear, Chebyshev, and Euclidean. 
Nevertheless, certain real-life situations restrict the relocation of servers, and the 
challenge becomes adjusting specific parameters with minimal cost to enhance the 
structure of the perturbed location problem. This concept has given rise to two new 
models in location theory. The first model involves altering edge lengths or vertex 
weights within a network to optimize predetermined locations in a modified envi-
ronment while minimizing the overall modification cost. This problem is referred 
to as the inverse location problem and has been extensively explored [3, 7, 22]. The 
second model entails adjusting parameters to maximize the objective function at a 
fixed location within the constraints of a given budget. This is known as the reverse 
location problem. Early contributions by [5, 6] investigated enhancing the reverse 
1-median and 1-center objectives through edge length reductions. [15] presented 
an O(n log n) algorithm for the inverse and reverse 2-facility location problems with 
equality measures.

The reverse center problem improves the efficiency and effectiveness of exist-
ing facility networks while considering practical constraints. As cities and urban 
areas evolve, the distribution of demand and resources may change. The reverse 
center problem addresses the need to reconfigure facility locations to better align 
with current demand patterns and resource availability. Furthermore, adapt-
ing existing facility networks can lead to cost savings related to transportation, 
operational efficiency, and other factors. [16] introduced a O(n2) algorithm for 
the reverse 1-center problem on weighted trees based on a greedy method. Fur-
thermore,  [9]  explored a general variant of the reverse undesirable center loca-
tion problem on cycle graphs, presenting a combinatorial O(n log n) algorithm 
for continuous modifications. They improved the algorithm for the uniform cost 
problem, achieving linear time complexity. [10] extended their research to reverse 
obnoxious center problems on tree graphs, delivering an O(n2) algorithm. [21] 
tackled the reverse 1-maxian problem while maintaining the 1-median, devis-
ing an algorithm with O(n log n) complexity. [23] studied two variants of reverse 
1-center problems with a uniform linear cost function involving edge length 
reductions. An algorithm rooted in dynamic programming was introduced for the 
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first problem, while the same algorithm was adapted to address the second prob-
lem in O(n log(nK)) time, with K dependent on problem parameters. In 2021, [17] 
investigated the reverse total weighted distance problem on networks with vari-
able edge lengths, demonstrating its NP-hardness and presenting a linear algo-
rithm for trees. [24] considered the reverse 1-center problem on trees with vertex 
weights under a convex piecewise-linear cost function.

The balanced facility location problem arises from the practical need to ensure 
fairness and equitable distribution in facility placement while considering cost-
effective solutions. In various applications such as public services, healthcare, 
and education, it’s crucial to ensure that facilities are located in a way that pro-
vides relatively equal access to all individuals or regions. Balancing the allocation 
of facilities helps avoid situations where certain groups or areas are dispropor-
tionately underserved. In philanthropic or humanitarian contexts, organizations 
strive to maximize the impact of their efforts by strategically placing facilities 
where they can benefit the largest number of people. In urban planning and infra-
structure development, balanced facility placement can contribute to more evenly 
distributed traffic flow and infrastructure usage, promoting sustainable growth. 
The balanced facility location problem has been studied by many authors. [12] 
focused on maximizing the distance disparity between the nearest and farthest 
demand points. [4] considered the problem of finding p locations for p facilities 
such that the weights attracted to each facility are as close as possible to one 
another. [14] considered discrete facility locations with balanced customer alloca-
tions to plants. Nguyen et al. [20] explored balanced vertices in general trees and 
introduced a linear time algorithm to identify them. [25] introduced balancing the 
Efficiency and Effectiveness of the k-Facility Relocation Problem. [11] studied 
the balanced 2-median and 2-maxian problems on a tree.

The reverse balanced facility location problem is motivated by the desire to 
reconfigure existing facility networks in a way that not only optimizes operational 
efficiency and cost but also ensures a fair and equitable distribution of services. 
Over time, demand patterns can shift due to population changes, urban develop-
ment, or economic fluctuations. In imbalanced networks, certain facilities may be 
overutilized while others remain underutilized. The reverse balanced facility loca-
tion problem addresses the need to adjust existing facility networks to accommo-
date these changing demands. Although the problem has many practical applica-
tions, there are only a few results relevant to this topic. Omidi et al. [19] introduced 
algorithms with O(n log n) time complexity for inverse and reverse balanced facility 
location problems on trees, accounting for variable edge lengths. Omidi and Fathali 
[18] addressed an inverse single facility location problem on a tree with minimal 
edge length adjustments. They offered algorithms with O(n log n) and O(n2) com-
plexities for cases of unbounded and bounded edge lengths, respectively. Previous 
studies have motivated us to further investigate the reverse balanced facility location 
problems.

In this paper, we delve deeper into the topic of reverse selective balance center 
location problems on trees. The organization of the paper is as follows. In section 2, 
we introduce the model for the reverse selective balance center location problems on 
trees. Section 3 focuses on presenting key properties related to the problem. Building 
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upon these properties, section 4 proposes an algorithm designed to solve the reverse 
selective balance center location problems on trees. To illustrate the efficacy of the 
algorithm, we provide a numerical example that demonstrates its application and 
results. In Sect. 5, we summarize the findings and contributions of the paper.

2  Preliminaries

Given an undirected tree T = (V ,E) where V is the vertex set and E is the edge set. 
Each edge e ∈ E has a length le > 0 . A point s ∈ T  is either a vertex or lies on the 
interior of an edge. The distance between a point s and a vertex v is defined as the 
length of the path connecting s and v, denoted by d(s, v).

In the context of a classical 1-center problem on an unweighted tree, the objective 
is to locate a point s within the tree T in such a way that the objective 
F(s) = max

v∈V
d(s, v) is minimized. In the scope of this paper, we consider the exten-

sion of the 1-center problem that incorporates the balancing function.
Let V1 be the set of desirable vertices selected from set V and V2 = V�V1 be the 

set of obnoxious vertices. The selective balance distance function at a point  s is 
defined as follows.

It is remarkable that if either V2 = � or V1 = � , then the function B(s) operates as a 
1-center or an obnoxious 1-center function.

For a prespecified point v∗ in T, we can assume that it is a vertex. Otherwise, the 
edge e = (u, v) that contains vertex v∗ is split into two sub-edges e1 and e2 such that 
e1 ∩ e2 = {v∗} with le1 = d(v∗, u) and le2 = d(v∗, v) . The setting of the reverse selec-
tive balance center location problem on trees is given as follows. The length of an 
edge can be increased (or decreased) by an amount of  pe (or qe ). These amounts 
are bounded by 0 ≤ pe ≤ p̄e and 0 ≤ qe ≤ qe ≤ le to ensure that the modified edge 
lengths are always positive. Each unit of modification will have a cost of c(e) in both 
increasing and decreasing edge lengths. The goal is to modify the edge lengths such 
that the modified objective function at a vertex v∗ ∈ T  is minimized and the total 
cost of modification is limited within a given budget B.

We may assume that there always exists a vertex u ∈ V2 such that u ∈ P(v∗, v) for 
some vertex v ∈ V1 . Otherwise, all vertices except v∗ belong to set V1 . If V1 = V⧵{v∗} , 
then the selective balance distance function at v∗ is B(v∗) = maxv∈V1

d(v∗, v) . The 
latter one is indeed the objective function of the reverse 1-center location problem. 
By this assumption, the modified objective value is always positive, i.e.,

Let  V̂1 ⊆ V1 be the set of vertices satisfying that if v ∈ V̂1 , then v ∉ P(v∗, u) 
for any u ∈ V1 . Let V̂2 ⊆ V2 be the set vertices such that if v� ∈ V̂2 , then there is 
no u� ∈ V2 satisfying u� ∈ P(v∗, v�) . As maxv∈V1

d(v∗, v) = maxv∈V̂1
d(v∗, v) and 

B(s) ∶= max
v∈V1

d(s, v) −min
v∈V2

d(s, v).

B(v∗) = max
v∈V1

d(v∗, v) −min
v∈V2

d(v∗, v) > 0.



487

1 3

OPSEARCH (2024) 61:483–497 

minv∈V2
d(v∗, v) = minv∈V̂2

d(v∗, v) , the selective balance distance function can be 

simplified as follows.

We consider Example 1 to show the computation of the objective function at a 
vertex.

Example 1 Given a tree with vertices and edge lengths depicted as in Fig.  1. We 
select V1 = {v3, v5, v6} and deduce V2 = {v1, v2, v4} . The objective function is 
B(v∗) = maxv∈V1

d(v∗, v) −minv∈V2
d(v∗, v) = d(v∗, v5) − d(v∗, v2) = 4 . Fur-

thermore, we can determine two sets V̂1 = {v3, v5, v6} , V̂2 = {v1, v2} and cal-
culate d(v∗, v5) = maxv∈V̂1

d(v∗, v) , d(v∗, v2) = minv∈V̂2
d(v∗, v) . Therefore, 

B(v∗) = maxv∈V̂1
d(v∗, v) −minv∈V̂2

d(v∗, v) = 4.

We denote by l̃e for all e ∈ E and d̃(u, v) the edge lengths and the distance from u 
to v after modification, respectively. Then l̃e = le + pe − qe and the modified objective 
function is

Moreover, the total cost is limited to the budget of B. Applying the mentioned nota-
tion, the reverse selective balance center location problem on trees can be modeled 
as a linear program (LP) as follows.

B(v∗) ∶= max
v∈V̂1

d(v∗, v) −min
v∈V̂2

d(v∗, v).

B̃(v∗) = max
v∈V̂1

d̃(v∗, v) −min
v∈V̂2

d̃(v∗, v).

Fig. 1  A tree in Example 1
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3  Solution method

Let A1 = {v ∈ V̂1 ∶ d(v∗, v) = maxv�∈V̂1
d(v∗, v�)} be the set of furthest vertices 

in V1 and A2 = {v ∈ V̂2 ∶ d(v∗, v) = minv�∈V̂2
d(v∗, v�)} be the set of nearest vertices 

in V2 . We get the following property on the modification of edge lengths.

Proposition 1 Let v1 and v2 be two vertices in A1 and A2 , respectively. Then pe = 0 
for e ∈ P(v∗, v1) and qe = 0 for e ∈ P(v∗, v2).

Proof The balanced distance function at vertex v∗ is given by

Since v1 ∈ A1 and v2 ∈ A2 , we obtain that maxv∈V̂1
d(v∗, v) = d(v∗, v1) and 

minv∈V̂2
d(v∗, v) = d(v∗, v2) . Thus, B(v∗) ∶= d(v∗, v1) − d(v∗, v2) . Hence, if we 

increase the length of any edge e ∈ P
(
v∗, v1

)
 or reduce the length of any edge 

e ∈ P
(
v∗, v2

)
 , then the balanced value distance increases.   ◻

According to Proposition 1, we set pe = 0 for all e ∈ ∪v1∈A1
P(v∗, v1) and qe = 0 

for e ∈ ∪v2∈A2
P(v∗, v2).

Corollary 1 If e ∈ P(v∗, v1) ∩ P(v∗, v2) for v1 ∈ A1 and v2 ∈ A2 , then the length of 
edge e is fixed.

Example 2 Consider the tree given in Fig.  1. We can determine two sets A1 = {v5} , 
A2 = {v2} and the balanced distance value at v∗ is B(v∗) = 4 . Suppose that we increase 
the length of edge (v2, v5) by 1 unit. We calculate B(v∗) = 7 − 2 = 5 . Therefore, B(v∗) 
also increases by 1 unit. This contradicts the assumption that we want to modify the 
edge length to reduce the objective value at the vertex v∗ . Hence, for edges e ∈ P(v∗, v5) 
we set pe = 0 . Similarly, we set qe = 0 with edges e ∈ P(v∗, v2) . Furthermore, the edge 
(v∗, v2) ∈ P(v∗, v5) ∩ P(v∗, v2) satisfies pe = 0 and qe = 0 , so its length is fixed.

Corollary 2 If there exists a vertex v2 ∈ A2 such that v2 ∈ P(v∗, v1) for v1 ∈ A1 , then 
minv∈V̂2

d̃(v∗, v) = d(v∗, v2).

min B̃(v∗)

s.t. d̃(v∗, v) ∶=
∑

e∈P(v∗,v)

(le + pe − qe), v ∈ V̂1 ∪ V̂2,

∑
e∈E

c(e)(pe + qe) ⩽ B,

0 ⩽ pe ⩽ pe, ∀e ∈ E,

0 ⩽ qe ⩽ qe, ∀e ∈ E.

B(v∗) ∶= max
v∈V̂1

d(v∗, v) −min
v∈V̂2

d(v∗, v).



489

1 3

OPSEARCH (2024) 61:483–497 

We recall the concept of minimum cut applied to solve the problem. An s-t cut C 
in a graph G = (V ,E) refers to a set of edges such that removing them from the graph 
will result in the absence of a path connecting two vertices s and t. Suppose that R, S 
are two disjoint subsets of V satisfying s ∈ R and t ∈ S , then the set C is represented 
as C = {(u, v) ∈ E ∣ u ∈ R, v ∈ S} . A minimum s-t cut is an s-t cut with the smallest 
weighted sum among all other s-t cuts. The following example illustrates an s-t cut.

Example 3 Consider a simple graph with four vertices and edge weights as given 
in Fig.  2. All s-t cuts are C1 = {(s, v1), (s, v2)} , C2 = {(s, v1), (v1, v2), (v2, t)} , 
C3 = {(s, v2), (v1, v2), (v1, t)} , C4 = {(v1, t), (v2, t)} . The minimum s-t cut of the graph 
in Fig. 2 is C3 with a minimum weight of 6.

We now show the procedure of edge length modification by generating two graphs. 
One graph is used to increase the value of minv∈V̂2

d(v∗, v) , while the other one is to 
reduce the maxv∈V̂1

d(v∗, v) value. Based on the original graph T = (V ,E) and the sets 
A1,A2 , we determine the auxiliary graphs G1,G2 to use for the calculation results later. 
Let G1 = (V �

1
,E�

1
) be a graph with

and

with E1
1
= {e ∶ e ∈ ∪v∈V̂1

P(v∗, v)} and E2
1
= {(v, z) ∶ v ∈ V̂1}.

The weights of edges in E′
1
 are defined as follows. If e ∈ E1

1
 , then

If e ∈ E2
1
 , then

Consider the minimum cut problem of graph G1 with a source v∗ , a sink z. [13] pre-
sented a polynomial algorithm for finding a minimum cut of a network in near-linear 

V �
1
= {v ∈ ∪v∈V̂1

P(v∗, v)} ∪ {z}

E�
1
= E1

1
∪ E2

1

w1(e) =

{
c(e), if qe > 0,

∞, if qe = 0.

w1(e) =

{
∞, if e = (v, z) for v ∈ A1,

0, if e = (v, z) for v ∉ A1.

Fig. 2  A min s-t cut C 
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time. Denote S1 the cut set of minimum v∗-z cut problem in the graph G1 . If S1 ≠ ∅ , 
then the total cost for reducing the value of maxv∈V1

d(v∗, v) by � is

where the cut set S1 contains some edges in e ∈ E1
1
 satisfying e ∈ ∪v∈A1

P(v∗, v) or 
edges e = (v, t) ∈ E2

1
 with v ∈ V̂1⧵A1 . Note that reducing the length of an edge e by 

an amount � leads to the reduction of the length of path P(v∗, v) by � for v ∈ A1.
Let G2 = (V �

2
,E�

2
) be a graph where

and

with E1
2
= {e ∶ e ∈ ∪v∈V̂2

P(v∗, v)} and E2
2
=
{
(v, t) ∶ v ∈ V̂2

}
.

Each edge e ∈ E�
2
 is assigned by the weight. If e ∈ E1

2
 , then

If e ∈ E2
2
 , then

We denote the set of minimum cutting edges by S2 , and it contains some edges in 
E1
2
 with e ∈ ∪v∈A2

P(v∗, v) or edges e = (v, t) ∈ E2
2
 with v ∈ V̂2�A2 . For any e ∈ E1

2
 

with pe > 0 , we set pe = � for all e ∈ S2 ∩ E1
2
 in order to increase the value of 

minv∈V̂2
d(v∗, v) by a small amount of � . If S2 ≠ ∅ , the total cost after modification is

and the objective value is also reduced by � . We set

(1)
⎛
⎜⎜⎝

�
e∈S1∩E

1
1

c(e)

⎞
⎟⎟⎠
�,

V �
2
= {v ∶ v ∈ ∪v∈V̂2

P(v∗, v)} ∪ {t}

E�
2
= E1

2
∪ E2

2

w2(e) =

{
c(e), if pe > 0,

∞, if pe = 0.

w2(e) =

{
∞, if e = (v, t) for v ∈ A2,

0, if e = (v, t) for v ∉ A2.

(2)
⎛⎜⎜⎝

�
e∈S2∩E

1
2

c(e)

⎞⎟⎟⎠
�,

Δ1 =
∑

e∈S1∩E
1
1

c(e),

Δ2 =
∑

e∈S2∩E
1
2

c(e),

and Δ = min{Δ1,Δ2}.
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The efficiency of the cuts S1,S2 and the minimization base on the costs given in (1) 
and (2).

Proposition 2 To reduce the selective balance distance function value at  v∗ , we 
decrease the lengths of all edges e ∈ S1 ∩ E1

1
 by � if Δ1 < Δ2 or increase the lengths 

of all edges e ∈ S2 ∩ E1
2
 by � if Δ2 ⩽ Δ1 . The cost of modification is Δ�.

Proof Suppose we want to reduce the distance function by an amount of � . Accord-
ing to the above arguments, to reduce the balanced distance function value by an 
amount of � , we either decrease the lengths of the edges e ∈ S1 ∩ E1

1
 by � or increase 

the lengths of the edges e ∈ S2 ∩ E1
2
 by � . The objective value B(v∗) is reduced by 

� . The total cost of modification is Δ1� or Δ2� . If Δ1 < Δ2 , then Δ1𝛿 < Δ2𝛿 . Note 
that reducing the edge length e ∈ S1 ∩ E1

1
 is less costly than increasing edge lengths 

of e ∈ S2 ∩ E1
2
 . Thus, if Δ1 < Δ2 , then we reduce the lengths of edges e ∈ S1 ∩ E1

1
 . 

Otherwise, we increase the edge lengths of e ∈ S2 ∩ E1
2
 .   ◻

During the edge length modification, the objective value is reduced. Moreover, 
the structure of the graph G1 or G2 also changes. We need to take into account the 
point where this change occurs. Let m = d(v∗, v) , for v ∈ A2 and M = d(v∗, v) , for 
v ∈ A1 . We set

and

For edges e ∈ S1 ∩ E1
1
 , we reduce all edge lengths by � = min{qe, �} . If qe = � , then 

we can set A1 = A1 ∪ {v} where e ∈ P(v∗, v) . For edges e ∈ S2 ∩ E1
2
 , we increase all 

edge lengths by � = min{pe, �} . Then the weight of edge e may be changed or we set 
A2 = A2 ∪ {v} with e ∈ P(v∗, v).

4  Algorithm and numerical example

We propose Algorithm 1 to solve the problem.

𝛼 = min
{
M − d(v∗, v) ∶ v ∈ V̂1�A1

}

𝛽 = min
{
d(v∗, v) − m ∶ v ∈ V̂2�A2

}
.
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Theorem 1 Algorithm 1 solves the reverse balance center location problem on trees 
in O(n2) time.

Proof In each iteration, we can set pe or qe to 0. Hence, there are at most linearly 
many iterations. In each iteration, we find the min-cut set S1 and S2 in linear time. 

Fig. 3  A tree network in Example 4
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Fig. 4  Graph G
1
 constructed in Example 4

Fig. 5  Graph G
2
 constructed in Example 4
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Moreover, we find � and � in linear time by a breadth-first search algorithm in linear 
time. Therefore, the algorithm runs in O(n2) time.   ◻

To illustrate Algorithm 1, we consider the following example.

Example 4 An instance of the tree network is given as in Fig. 3, where the vertex v∗ 
is prespecified as the location of the facility, and each edge e = (vi, vj) has a weight 
of a triple 

(
le, z̄e, c(e)

)
 with z̄e = p̄e = q̄e . For example, edge e� =

(
v∗, v1

)
 has length 

le� = 4 , the upper bound of modification for both increasing and decreasing edge 
length z̄e� = 2 and the cost of modifying one unit c(e�) = 3 . The total budget is given 
by B = 50.

Let V1 =
{
v1, v2, v6, v8, v9, v10, v11, v12, v13, v14

}
 and V2 =

{
v3, v4, v5, v7

}
 . Then 

V̂1 = {v8, v9, v10, v11, v12, v13, v14} and V̂2 = {v3, v4, v5} . Moreover,

Hence B(v∗) = 16 − 8 = 8 . We solve the problem in the following iterations.
In the first iteration, we can find A1 =

{
v10

}
 , A2 =

{
v3
}
 and construct two graphs 

G1,G2 as in Fig. 4 and 5.
The minimum v∗-z cut of G1 is

and Δ1 =
∑

e∈S1∩E
c(e) = 2 . In G2 , the minimum v∗-t cut is

and Δ2 =
∑

e∈S2∩E
c(e) = 2 . Hence, we can determine Δ = min{Δ1,Δ2} = 2 . 

Since Δ2 ≤ Δ1 , we increase the length of edge (v1, v3) = S2 ∩ E by an amount of 

𝛿 = min{p̄e, 𝛽,
B

Δ
} = 1 . We update B = 48 , B(v∗) = 7 , and edge (v1, v3) has a weight 

of (5, 2, 2). Similarly, iterations 2, 3, 4, 5 and 6 can be executed in the same way as 
iteration 1. The algorithm stops after iteration 6 since the budget B = 0 . The modi-
fied objective value at vertex v∗ is minimized. Thus, the edge lengths after modifica-
tion can be repeated as in Fig. 6.

Table 1 shows a summary of the results of the calculations over the six iterations 
in Example 4.

5  Conclusions

In this paper, we have considered the reverse 1-center location problem on a tree 
under the selective balance cost function. Our problem generalizes the results 
from the reverse 1-center location problem on trees with variable edge lengths. 

max
v∈V̂1

d(v∗, v) = 16, min
v∈V̂2

d(v∗, v) = 8.

S1 = {(v8, z), (v1, v4), (v11, z), (v12, z), (v13, z), (v14, z)},

S2 = {(v1, v3), (v4, t), (v5, t)},
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We proposed a quadratic time algorithm to solve the problem based on a mini-
mum cut approach on a series–parallel graph. Moreover, it is noted that the devel-
oped algorithm can be applied to solve the problem to which our problem gener-
alizes in the same running time.

The principles of balance and the reverse approach have been independently 
incorporated into a wide array of prominent optimization models, including 
assignment problems, network flows, and location analysis. These integrated 
models have played a pivotal role in driving forward both theoretical understand-
ing and practical application. As a result, the arena of future research focused 
on reverse balance optimization problems appears exceedingly promising. For 
instance, this encompasses the reverse balance single/multiple median problems 
on trees or general networks, as well as reverse balance assignment problems, 
among others.
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