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Abstract
Fuzzy set theory currently has a wide range of applications to model real-world 
issues with ambiguous or incomplete information, which to some extent captures 
reality. On the other hand stochastic environment also deals with uncertainties with 
different approach (probability distribution). In order to deal with decision problems 
involving more than one objective, where the parameters and the objectives both are 
uncertain, the mixed fuzzy stochastic programming approach have been introduced. 
In this paper, a new solution named as fuzzy stochastic pareto optimal solution is 
defined. Here we have developed an iterative method for the decision making of a 
multi-objective optimization problem in the fuzzy stochastic environment. Further a 
numerical illustration of the developed methodology has been given and the superi-
ority of the proposed method has been established by comparing the obtained results 
with some well known existing methods.
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1  Introduction

Many real-world decision-making problems involve uncertain data because the 
information is not precisely known. Lack of knowledge about the data or inaccu-
rate information or the dependency upon the nature of the market is the sources of 
uncertainty. Two approaches to dealing with uncertainty that make it simple to inte-
grate with fuzzy and probabilistic preferences are theory of possibility and theory of 
probability.

In any decision making system the experts need to consider multiple objectives 
with different natures (maximization/minimization) at the same time with restricted 
resources. It is very difficult or may not be possible to obtain an optimal solution 
which optimizes each objective simultaneously. So there are various approaches 
available to obtain compromise solution or still the scope of new methodology is 
always there to obtain better solutions. Here a better approach considering the mixed 
fuzzy stochastic environment which deals the situation better than the existing has 
been given.

The study comprises the following novelty to this approach as given below:

•	 The mixed fuzzy stochastic environment handles the real situation effectively 
instead of treating a fuzzy or stochastic environment as separate entities.

•	 This approach is very effective and can be used in various domains where the 
experts find the decision making very crucial.

•	 The paper uses a non linear membership function (Gaussian) to define fuzzy 
mean and fuzzy variance of a fuzzy random variable.

•	 For the computational purpose crisp conversion of the problem has been defined 
by considering the α-cut of Gaussian membership function.

•	 A new solution methodology has been developed to deal with both (fuzzy and 
stochastic) types of uncertainties simultaneously.

•	 The solution obtained by proposed method is better than some well known exist-
ing methods.

•	 The proposed technique is the generalization of both the fuzzy and stochastic 
optimization techniques.

•	 The mixed fuzzy stochastic approach is better tool to handle any real life decision 
making problem with uncertainty and vagueness.

The paper is organized as follows: Sect. 2 comprises with the literature review 
related to the work. In Sect. 3, some basic definitions are given which has been used 
to develop the methodology. In Sect. 4, problem formulation and methodology for 
solution has been developed and in Sect.  5, stepwise computational algorithm is 
given. Numerical illustration has been presented in Sect. 6 and the obtained results 
are discussed in Sect. 7. Conclusion of the work done and the future scope has been 
summarised in Sects. 8 and 9 respectively.
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2 � Literature review

Many researchers have worked in the area of decision making problem in differ-
ent environments. To build up the proposed theory, number of literature survey 
has been done; some of the important works are mentioned in this section. In the 
theory of possibility, some or all the parameters of the problem are regarded as 
fuzzy variables Parra et al. [22], whereas in the theory of probability, some or all 
the parameters of the problem are seen as random variables [26]. The probability 
distributions in probability theory plays the same roles as the possibility distribu-
tions, the foundation of which was first introduced by Zadeh [29] and developed 
by Dubois and Prade [10]. To solve a linear programming problem with imprecise 
constraint coefficients, Lai and Hwang [14] suggested an auxiliary multi-objective 
linear programming model. A linear programme with unknown parameters that 
are either treated as random variables or as fuzzy variables is provided by Buckley 
[6]. Inuiguchi and Sakawa [12] proposed an equivalent condition between a sto-
chastic linear programming problem with a multivariate normal distribution and a 
probabilistic linear programming problem with a quadratic membership function. 
When we formulate the real-world decision-making problem as a multi-objective 
programming problem the nature of parameters may be taken as crisp, fuzzy, ran-
dom or fuzzy random (Bellman & Zadeh [3];   Guang & Zhong [11]; Wang & 
Watada 28). Nanda et al. [19] proposed a new solution method for solving fuzzy 
chance constrained programming problem where fuzzy random variables involve 
in chance constraints. Barik et al. [2] introduced a method for solving stochastic 
programming problem involving pareto distribution. Panda et al. [20] presented a 
method to solve nonlinear fuzzy chance constraint programming problem. Prad-
han et  al. [23] have also presented a methodology based on chance constraints 
programming method for solving a multi-choice probabilistic linear programming 
problem. Dash et al. [9] introduced optimal solution for a single period inventory 
model with fuzzy cost and demand as a fuzzy random variable. Mohanty et  al. 
[17] developed a methodology for solving chance constraint linear programming 
problem in which parameters of the constraint follows some different continuous 
distributions. Several authors have tried to deal with fuzziness and randomness in 
optimization problems. Recently, Nabavi et  al. [18] introduced a new method 
for solving the fuzzy stochastic multi-objective programming problems involve 
fuzzy random variable coefficient in constraint, in which they used the concept 
of chance constrained technique and fuzzy inequality relation to transform the 
original problem into the conventional deterministic problem. Arjmandzadeh 
et al. [1] proposed a neural network model for solving the multi-objective linear 
programming problem involve random variable parameters. Solid transportation 
problem (STP) is an important real life problem of stochastic programming, due 
to random demands, supplies and conveyance capacities decision makers want 
to design a transportation schedule that minimize both the time and cost of the 
transportation. Singh et  al. [27] construct a formulation of multi-objective STP 
involve some random parameters with gamma distribution and their methodol-
ogy for solving this problem is based on chance constraint programming method. 
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Sharma et al. [25] also developed a concept for solving multi-objective bi-level 
chance constraint optimization problem in fuzzy intuitionistic environment. Pan-
dey et  al. [21] characterized a probabilistic and fuzzy approach for uncertainty 
consideration in water distribution network. Bharati [4, 5] has modelled certain 
type of uncertainty using an interval valued intutionistic hesitant fuzzy method-
ology and hesitant intutionistic fuzzy algorithm for multi-objective optimization 
problem. In this paper, we have solved a multi-objective mixed fuzzy stochastic 
programming problem with chance constrained and having coefficients as fuzzy 
random variable (FRV), the characteristic of FRV are taken as fuzzy numbers 
with Gaussian membership function and compare the results obtained with [4, 5].

3 � Preliminaries

Definition 1  (Gaussian membership function) The Gaussian membership function 
of a set B of a non-empty universal set X is defined as,

For all x ∈ X(universal set), n represents the modal value of the fuzzy element 
and 𝜎 > 0 represents the standard deviation of the element. The Gaussian function 
will take a bell-shaped curve and the smaller � the narrower the bell, which is shown 
in Fig. 1 [15].

Definition 2  (�-cut of Gaussian membership function) �-cut of the fuzzy element 
with Gaussian membership function has been defined as,

For a particular value of � , the corresponding element of fuzzy set can be.

obtained as, e
−(x−n)

2�2

2

= �.

Apply logarithm throughout we have,

(1)�B(x) = e
−(x−n)

2�2

2

,

(2)B� =

{
x ∈ X ∶ �B(x) = e

−(x−n)

2�2

2

≥ �

}
∀� ∈ (0, 1]

                                          1 

Fig. 1   Gaussian membership function
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Definition 3  (Mixed fuzzy stochastic programming problem) A mathematical pro-
gramming problem that considers optimization under some random uncertainty and 
imprecision, for which the probabilistic uncertainty and fuzzy uncertainty are to be 
considered simultaneously. First kind of uncertainty is due to the randomness in some 
parameters and the second kind is due to vagueness in some decision parameters.

Definition 4  (Fuzzy chance constraint programming method) A chance constrained 
programming method is suggested by Charnes and Cooper in [8]. Further to deal 
with both kinds of uncertainties (discussed previously) simultaneously a fuzzy 
chance constrained programming method is developed. This is a method for solving 
stochastic programming problem involves some chance constraints that involve both 
kinds of uncertainties with constraints having violation up to a pre-specified prob-
ability levels. Mathematically fuzzy stochastic programming problem with fuzzy 
chance constrained can be formulated as,

In the above formulation the coefficients ãij in chance constrained are fuzzy random 
variables and �̃i is the pre-specified fuzzy probability level for chance constrained.

Definition 5  (Fuzzy random variable (FRV)) Kwakernaak [13] has introduced the 
concept of FRV after work of Zadeh on Fuzzy sets as a basis for a theory of pos-
sibility (1978). Many researchers Puri and Ralescu [24], Liu and Liu [16] etc.) 
have developed this notion, based on various measurability criteria. Some of the 
parameters in the density function of a continuous probability distribution might 
be unknown. These uncertainties were expressed as fuzzy numbers by Buckely and 
Eslami [7] to create a fuzzy probability density function for a continuous random 
variable. In this study, we focused at a chance constrained programming problem 
with continuous random variables, which often have normal distributions.

Definition 6  (Mean and variance of a continuous FRV) Let X be a continuous ran-
dom variable with probability density function f (x, � ), where � is a scale parameter 
for the density function. If we denote X̃ as continuous random variable with fuzzy 

(3)
−(x − n)

2�2

2

=log�,

x =n ± �
√
−2log�.

(4)

Minimize: z =

n∑
j=1

cjxj

s.t.

P

(
n∑
j=1

ãijxj ≤ bi

)
≥ �̃i

xj ≥ 0, i = 1, 2, 3, 4……m, 0 ≤ �i ≤ 1.
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parameter �̃  , then X̃ is called continuous FRV with density f (x, �̃  ). The probability 
of an event A = [a, b] of the continuous FRV X̃ is a fuzzy number whose �-cut is.

Mean and variance of a continuous FRV X̃ with the probability density function 
f (x, �̃  ) are fuzzy number whose �-cuts are defined as,

4 � Problem formulation and methodology

A crisp chance constraints programming problem with FRV coefficients in the 
constraints is defined as,

(5)P
�
a ≤ X̃ ≤ b

�
[𝛼] =

⎧
⎪⎨⎪⎩

b

�
a

f (x, 𝛾)dx�𝛾 ∈ 𝛾̃[𝛼]

⎫
⎪⎬⎪⎭
=
�
S∗(𝛼), S

∗(𝛼)
�
.

(6)Where S∗(�) = min

⎧
⎪⎨⎪⎩

b

∫
a

f (x, �)dx

⎫
⎪⎬⎪⎭
, S∗(�) = max

⎧
⎪⎨⎪⎩

b

∫
a

f (x, �)dx

⎫
⎪⎬⎪⎭
.

(7)mx(𝛾̃)[α] =

⎧
⎪⎨⎪⎩

∞

∫
−∞

xf (x, 𝛾)dx�𝛾 ∈ 𝛾̃[𝛼]

⎫
⎪⎬⎪⎭
,

(8)𝜎2

x
(𝛾̃)[α] =

⎧
⎪⎨⎪⎩

∞

∫
−∞

�
x − mx(𝛾)

�2
f (x, 𝛾)dx�𝛾 ∈ 𝛾̃[𝛼],mx(𝛾) ∈ mx(𝛾̃)[𝛼]

⎫
⎪⎬⎪⎭
.

(9)

Z = min

n∑
j=1

cJxj

subject to constraints (s.t.)

P

(
n∑
j=1

ãijxj ≤ bi

)
≥ �̃i

n∑
j=1

b̃kjxj ≤ h̃k

xj ≥ 0.

i = 1, 2,……m, k = m + 1,m + 2,… .,m + n, 0 ≤ �i ≤ 1, xj ∈ R.
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In this problem, we considered a presence of FRV only in coefficient of chance 
constraint. i.e. ãij is normally distributed FRV whose mean and variance are fuzzy 
number having Gaussian membership function and additionally the remaining 
constraints involve coefficients expressed as fuzzy number and the probability 
level �̃i is also taken as a fuzzy number.

Let vi =
∑

ãijxj is the linear combinations of n number of FRVs, then vi is also a 
FRV. Fuzzy mean and Fuzzy variance is denoted by mvi

 and �2
vi
 respectively. �-cut of 

these fuzzy numbers are defined as,

Theorem  If the parameters ãij of the chance constrained of a stochastic program-
ming problem are independent normally distributed FRV, then chance constraint is 
equivalent to,

For all � ∈ [0, 1] and F is the cumulative distribution function, here we have 
taken N(0, 1) distribution. The proof of the Theorem has been given by Nanda et al. 
[19].

Using above Theorem, the crisp conversion of the fuzzy chance constraint pro-
gramming problem (9) becomes,

mvi
[�] =

[
mvi∗

(�),mvi∗
(�)

]
.

�2
vi
[�] =

[
�2
vi∗
(�), �2

vi∗
(�)

]
.

�i[�] =
[
�i∗ (�), �i∗ (�)

]

(10)F

(
bi−mvi∗

(�)

�vi∗ (�)

)
≥ �i∗ (�),

(11)

Z = min

n∑
j=1

cJxj

s.t. F

(
bi − mvi∗

(�)

�vi∗ (�)

)
≥ �i∗ (�)

n∑
j=1

(bkj)
l
�
xj ≤ (hk)

l
�

n∑
j=1

(bkj)
u
�
xj ≤ (hk)

u
�

xj ≥ 0

i = 1, 2,…m, k = m + 1,m + 2,… ,m + n, 0 ≤ �i ≤ 1, xj ∈ R.
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5 � The fuzzy mixed‑stochastic programming algorithm

Step 1 Calculate �-cut of each fuzzy mean and fuzzy variance of parameters of the chance 
constraints and write it in the form of linear combination of each constraint.

Step 2 Convert these chance constraints into nonlinear crisp constraint by using 
relation (10) and for the crisp conversion of fuzzy constraints we have used �-cut 
method, as given by (2) and (3).

Step 3 Consider single objective with the constraints as obtained in step 2, to find 
the optimal solution and the optimal value of objective function.

Step 4 Compute values of remaining objective functions at optimal solution 
obtained in Step 3.

Step 5 Repeat step 3 and step 4 for each remaining objective functions and con-
structs a table for these positive ideal solutions.

Step 6 From these ideal solutions, obtain lower and upper bound for each objec-
tive function.

Step 7 Construct linear membership function for each objective by using the 
bounds obtained in step 6.

Step 8 Find pareto optimal solution for the multi objective stochastic program-
ming problem by using fuzzy programming technique.

Step 9 Repeat step 1 to step 8 for distinct values of �.
Step 10 Repeat step 1 to step 9 for different values of �.

6 � Numerical illustration (application of proposed algorithm)

For the comparative study and to validate the proposed method we have considered the 
same numerical of production planning problem as taken by Bharati [4, 5]. As the domain 
of the problem involves human observation, market risks, quality of the raw materials, 
therefore to handle such types of uncertainties we are here formulate the problem as fuzzy 
stochastic programming problem and further by the developed algorithm we have solved 
the problem and compare the obtained results in different environment.

Mathematical formulation of the problem in stochastic environment is given as,

(12)

Max z(1) = 50x + 100y + 17.5z

Max z(2) = 92x + 75y + 50z

Max z(2) = 92x + 75y + 50z

s.t.

P

[
�12x +�17y ≤ 1400

]
≥ �0.6

P
[
3̃x + 9̃y + 8̃z ≤ 1000

]
≥ �0.6

P

[
�10x +�13y +�15z ≤ 1750

]
≥ �0.6

P

[
6̃x +�16z ≤ 1325

]
≥ �0.6

P

[
�12x + 7̃y ≤ 900

]
≥ �0.6

�9.5x + �9.5y + 4̃z ≤ �1075

x, y, z ≥ 0.
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In the above problem, x, y and z are the units of three different products produced. 
The coefficients of the chance constraints are FRV whose mean and variance are 
taken as fuzzy number with Gaussian membership function, and the fuzzy constraint 
which involves coefficients as fuzzy numbers with Gaussian membership function. 
Fuzzy mean and fuzzy variance of the constraints are given in Table 1.

Step 1 �-cut of each fuzzy mean and fuzzy variance as given in Table 1 are calcu-
lated from (7) and (8), and for � = 0.5 we obtain,

m̃1[�] = xm̃
(
1̃2
)
[�] + ym̃

(
1̃7
)
[�] = (7.77x + 11y, 16.22x + 22.99y).

�m2[𝛼] =x�m
(
3̃
)
[𝛼] + y�m

(
9̃
)
[𝛼] + z�m

(
8̃
)
[𝛼]

=(1.94x + 5.82y + 5.18z, 4.05x + 12.17y + 10.81z)

m̃3[�] =xm̃
(
1̃0

)
[�] + ym̃

(
1̃3

)
[�] + zm̃

(
1̃5
)
[�]

=(6.47x + 8.41y + 9.71z, 13.52x + 17.58y + 20.28z).

�m4[𝛼] = x�m
(
6̃
)
[𝛼] + z�m

(
�16
)
[𝛼] = (3.88x + 10.36z, 8.11x + 21.63z).

Table 1   Fuzzy Mean and Fuzzy 
variance of coefficients of the 
constraints of problem (12)

Fuzzy mean
(defined as Gaussian membership 
function with modal value and 
spread)

Fuzzy variance
(defined as Gaussian 
membership function with 
modal value and spread)

m̃(1̃2) (12, 3.6) �̃2(1̃2) (6, 1.8)

m̃(1̃7) (17, 5.1) �̃2(1̃7) (8.5, 2.55)

m̃(3̃) (3, 0.9) �̃2(3̃) (1.5, 0.45)

m̃(9̃) (9, 2.7) �̃2(9̃) (4.5, 1.35)

m̃(8̃) (8, 2.4) �̃2(8̃) (4, 1.2)

m̃(1̃0) (10, 3) �̃2(1̃0) (5, 1.5)

m̃(1̃3) (13, 3.9) �̃2(1̃3) (6.5, 1.95)

m̃(1̃5) (15, 4.5) �̃2(1̃5) (7.5, 2.25)

m̃(6̃) (6, 1.8) �̃2(6̃) (3, 0.9)

m̃(1̃6) (16, 4.8) �̃2(1̃6) (8, 2.4)

m̃(1̃2) (12, 3.6) �̃2(1̃2) (6, 1.8)

m̃(7̃) (7, 2.1) �̃2(7̃) (3.5, 1.05)
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Since the probability level of the chance constraints and the coefficients of a 
constraint are taken as Gaussian fuzzy number with modal value and spread is 
given as,

For � = 0.5 , The �-cut of these fuzzy numbers are, 0̃.6[�] = [0.38, 0.81] , 
9̃.5[�] = [6.15, 12.84] , 4̃[�] = [2.59, 5.40] , 1̃075[�] = [696.14, 1453].

Step 2 crisp conversion of each chance constraints of the problem (12), using 
(10) are equivalent to,

First chance constraint,

Similarly, the second constraint,

�m5[𝛼] = y�m
(
�12
)
[𝛼] + z�m

(
7̃
)
[𝛼] = (7.77y + 4.53z, 16.22y + 9.46z).

�̃2
1
[�] = x2�̃2

(
1̃2

)
[�] + y2�̃2

(
1̃7
)
[�] =

(
3.88x2 + 5.5y2, 8.11x2 + 11.49y2

)
.

�𝜎2
2
[𝛼] =x2�𝜎2

(
3̃
)
[𝛼] + y2�𝜎2

(
9̃
)
[𝛼] + z2�𝜎2

(
8̃
)
[𝛼]

=
(
0.97x2 + 2.91y2 + 2.59z2, 2.02x2 + 6.08y2 + 5.4z2

)
.

�̃2
3
[�] =x2�̃2

(
1̃0

)
[�] + y2�̃2

(
1̃3
)
[�] + z2�̃2

(
1̃5

)
[�]

=
(
3.23x2 + 4.2y2 + 4.85z2, 6.76x2 + 8.79y2 + 10.14z2

)
.

�𝜎2
4
[𝛼] = x2�𝜎2

(
6̃
)
[𝛼] + z2�𝜎2

(
�16
)
[𝛼] =

(
1.94x2 + 5.18z2, 4.05x2 + 10.81z2

)
.

�𝜎2
5
[𝛼] = y2�𝜎2

(
�12
)
[𝛼] + z2�𝜎2

(
7̃
)
[𝛼] =

(
3.88y2 + 2.26z2, 8.11y2 + 4.73z2

)
.

0̃.6 = (0.6, 0.18), 9̃.5 = (9.5, 2.85), 4̃ = (4, 1.2), 1̃075 = (1075, 322.5).

F

�
1400 − 16.22x − 22.99y√

8.11x2 + 11.49y2

�
≥ 0.81

�
1400 − 16.22x − 22.99y√

8.11x2 + 11.49y2

�
≥ F−1(0.81) = 0.87

⇒ 6.13x2 + 8.69y2 − (1400 − 16.22x − 22.99y)2 ≤ 0.
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The third constraint,

The fourth constraint,

The fifth constraint,

The sixth constraint,

And the seventh constraint

By using the above crisp nonlinear constraints equivalent to chance constrains, the 
problem (12) becomes a nonlinear multi-objective programming problem as,

F

�
1000 − 4.05x − 12.17y − 10.81z√

2.02x2 + 6.08y2 + 5.4z2

�
≥ 0.81

�
1000 − 4.05x − 12.17y − 10.81z√

2.02x2 + 6.08y2 + 5.4z2

�
≥ F−1(0.81) = 0.87

⇒ 1.52x2 + 4.6y2 + 4.08z2 − (1000 − 4.05x − 12.17y − 10.81z)2 ≤ 0.

F

�
1750 − 13.52x − 17.58y − 20.28z√

6.76x2 + 8.79y2 + 10.14z2

�
≥ 0.81

�
1750 − 13.52x − 17.58y − 20.28z√

6.76x2 + 8.79y2 + 10.14z2

�
≥ F−1(0.81) = 0.87

⇒ 5.11x2 + 6.65y2 + 7.67z2 − (1750 − 13.52x − 17.58y − 20.28z)2 ≤ 0.

F

�
1325 − 8.11x − 21.63z√

4.05x2 + 10.81z2

�
≥ 0.81

�
1325 − 8.11x − 21.63z√

4.05x2 + 10.81z2

�
≥ F−1(0.81) = 0.87

⇒ 3.06x2 + 8.18z2 − (1325 − 8.11x − 21.63z)2 ≤ 0.

F

�
900 − 16.22y − 9.46z√

8.11y2 + 4.73z2

�
≥ 0.81

�
900 − 16.22y − 9.46z√

8.11y2 + 4.73z2

�
≥ F−1(0.81) = 0.87

⇒ 6.13y2 + 3.58z2 − (900 − 16.22y − 9.46z)2 ≤ 0.

6.15x + 6.15y + 2.59z ≤ 696.14

12.84x + 12.84y + 5.40z ≤ 1453
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Step 3, 4 and 5 Solving each objective of (13) as single objective nonlinear program-
ming problem using MATLAB (online free version) software, the solutions obtained 
for each of the objective and the computed values of other remaining objectives func-
tions with each solution sets are placed in Table 2.

Step 6 lower and upper bounds of each objective are obtained from Table 2 as,

Step 7 construct linear membership function for each objective functions as,

Step 8 To find the pareto optimal solution of (13), using the linear membership 
functions for each objective as defined in (14) and applying the fuzzy programming 
technique, we formulate the problem as,

(13)

Max z(1) = 50x + 100y + 17.5z

Max z(2) = 92x + 75y + 50z

Max z(3) = 25x + 100y + 75z

s.t.

6.13x2 + 8.69y2 − (1400 − 16.22x − 22.99y)2 ≤ 0

1.52x2 + 4.6y2 + 4.08z2 − (1000 − 4.05x − 12.17y − 10.81z)2 ≤ 0

5.11x2 + 6.65y2 + 7.67z2 − (1750 − 13.52x − 17.58y − 20.28z)2 ≤ 0

3.06x2 + 8.18z2 − (1325 − 8.11x − 21.63z)2 ≤ 0

6.13y2 + 3.58z2 − (900 − 16.22y − 9.46z)2 ≤ 0

6.15x + 6.15y + 2.59z ≤ 696.14

12.84x + 12.84y + 5.40z ≤ 1453

x, y, z ≥ 0

max z(1) = 9581.8, min z(1) = 6728.02

max z(2) = 10706, min z(2) = 9789

max z(3) = 14704, min z(3) = 8986.5

(14)�
z
(1) =

⎧⎪⎨⎪⎩

0 if z(1) ≤ min z(1)

z
(1)−min z

(1)

max z(1)−min z
(1)

if minz(1) ≤ z(1) ≤ max z(1)

1 if z(1) ≥ max z(1)
.

Table 2   Solution of NLPP (13), 
taking one objective at a time 
and the values of other two 
objectives for each solution set

x = 0 x = 59.69 x = 0

y = 83.46 y = 26.02 y = 69.85

z = 70.59 z = 65.23 z = 102.91

maxz(1) = 9581.8 z(1) = 6728.02 z(1) = 8785.92

z(2) = 9789 maxz(2) = 10706 z(2) = 10384.25

z(3) = 13640.25 z(3) = 8986.5 maxz(3) = 14704



133

1 3

OPSEARCH (2024) 61:121–136	

By using MATLAB (online free version) software, the above NLPP (15) can be 
solved and the solutions obtained are as follows,

Step 9 In this step the problem (step 1 to step 8) for distinct values of � , has been 
solved and the results obtained are placed in Table 3.

Step 10 Solution of the chance constrained problem for different values of � with 
distinct �′s are placed in Table 4.

7 � Results and discussion

As the objective function of the original problem is of maximization type, and we 
can easily see that for � = 0.5 , we have solution which gives the better values for 
each objective, therefore we compare the result obtained for different values of � 
with � = 0.5.

We have also seen that for 0.8 ≤ � ≤ 1 , there is no feasible solution obtained with 
any � − cut.

(15)

Maximize λ

s.t.

50x + 100y + 17.5z − 2853.78� ≥ 6728.02

92x + 75y + 50z − 917� ≥ 9789

25x + 100y + 75z − 5717.5� ≥ 8986.5

6.13x2 + 8.69y2 − (1400 − 16.22x − 22.99y)2 ≤ 0

1.52x2 + 4.6y2 + 4.08z2 − (1000 − 4.05x − 12.17y − 10.81z)2 ≤ 0

5.11x2 + 6.65y2 + 7.67z2 − (1750 − 13.52x − 17.58y − 20.28z)2 ≤ 0

3.06x2 + 8.18z2 − (1325 − 8.11x − 21.63z)2 ≤ 0

6.13y2 + 3.58z2 − (900 − 16.22y − 9.46z)2 ≤ 0

6.15x + 6.15y + 2.59z ≤ 696.14

12.84x + 12.84y + 5.40z ≤ 1453

x, y, z ≥ 0

x = 2.33, y = 73.71, z = 71.07, � = 0.5

z(1) = 8731.22, z(2) = 9296.11, z(3) = 12759.5

Table 3   Solution of (12) for 
distinct values of � z(1) z(2) z(3)

� = 0.6 � = 0.1 6602.2 9294.74 8676
� = 0.3 8696.2 8680.69 11,147
� = 0.5 8731.22 9296.11 12,759.5
� = 0.7 9156.27 8825.93 11,601.25
� = 1 8470.17 10,002.09 11,931.5
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8 � Conclusion

Here, we have developed a methodology for solving mixed fuzzy chance constrained 
Multi-Objective Programming Problem (MOPP), which involves FRV coefficient in 
chance constrained and parameter of the random variable is taken as fuzzy number 
with Gaussian membership function. Fuzzy chance constraint has been converted to 
crisp constraints by using method given by Nanda et al. [19], where they have taken 
triangular membership function. Here, the Gaussian membership function has been 
considered to generalize the existing method. For numerical illustration we have taken 
the same problem as Bharati [4, 5] and do the comparison with the solution obtained 
at � = 0.5 and for different values of � by proposed method as given in the Table 5.

The results placed in Table  5 depict that the solution obtained by proposed 
method is better than that of Bharati [4, 5]. Thus the method clearly shows its supe-
riority over existing as also depicted from Fig. 2.

9 � Future scopes

In future, one can consider this approach for solving mixed fuzzy stochastic program-
ming problem involves FRV with different fuzzy parameters of the random variable 
with different probability distributions and can also apply this study in transportation 
problem, crop production problem, portfolio optimization problem and in many more 
areas where such type of vagueness and uncertainties are involved. Here we have taken 
crisp objectives, the methodology can be generalised for objectives with uncertainties.

Table 5   Compare the solution 
of proposed method with 
Bharati [4, 5]

Bharati [4] Bharati [5]  Proposed method

�1 = 0.4 �2 = 0.6 �3 = 0.7

z(1) 7246.41 7906.48 7449.67 8731.22 7116.95

z(2) 10,348.50 10,087.87 9734.5 9296.11 9931.77

z(3) 8530.42 9269.28 9462.25 12,759.5 9187.2

Table 4   Solution for different 
values of � and �-cut z(1) z(2) z(3)

� = 0.4 � = 0.1 7299 9049.08 10,124.75
� = 0.3 7307.22 9482.77 9197.25
� = 0.5 7449.67 9734.5 9462.25
� = 0.7 7535.47 8882.29 9013
� = 1 7874.5 9929.08 9749.75

� = 0.7 � = 0.1 7093.1 8999.56 9209.25
� = 0.3 6946.7 9902.5 9844.75
� = 0.5 7116.95 9931.77 9187.2
� = 0.7 7939.2 9248.95 9573.5
� = 1 8282.82 9123.85 12,185.25
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