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Abstract
This paper considers the common due date assignment for single machine weighted 
earliness/tardiness scheduling problem with different earliness and tardiness weights 
for jobs where the objective is to minimize the cost of the sum of weighted earliness/
tardiness and assignment common due date. The single machine common due date 
assignment problem where all jobs have the same earliness/tardiness weight has a 
polynomial-time algorithm to solve it optimally. Furthermore, some properties for 
the problem where the common due date is an input have been revealed by research-
ers in the literature. This paper proposes a heuristic algorithm for the problem using 
the revealed properties of similar problems’ optimal solutions such as the V-shaped 
property and zero-start time of the machine. The experimental study of this paper 
shows that the proposed heuristic finds better solutions for the problems in a reason-
able time than a commercial solver has when the problem size is increased.

Keywords Common due date assignment · Single machine · Earliness · Tardiness · 
Scheduling

JEL Classification C61 · C44

1 Introduction

Due dates are generally considered as inputs in scheduling problems. If all jobs’ due 
dates are the same, then this is named a scheduling problem with the common due 
date. Even a common due date can be an input, the decision-maker would desire to 
optimize the common due date to satisfy the performance criterion minimizing the 
cost combination of earliness/tardiness and setting a common due date. Such an 
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optimization for the accurate common due date for the scheduling problem is named 
the common due date assignment problem. The effort for responding to customer 
orders on time by utilizing manufacturing facilities, time, and minimizing costs is 
the main goal of each manufacturing company. Negotiation between customers and 
the company might be about determining the due dates of jobs and there might be a 
common due date that all customers agree on. If both the customer’s satisfaction and 
cost minimization of the company lies under setting the due dates of all jobs to a 
common due date, then the best way to assign that common due date is to optimize it 
according to each customer’s objective and the company’s own objective. The com-
mon due date in a scheduling problem makes some jobs early and others tardy. 
When a job is completed before the promised due date, such a job is called an early 
job. For instance, an early job is not desired because it has to be stored in a ware-
house, resulting in costs for inventory and insurance. When a job is completed after 
the promised due date, such a job is called a tardy job. A tardy job is not desired 
because the manufacturer loses some of its earnings due to the contract penalties as 
well as some goodwill and reputation [1]. Since there is a common due date for all 
jobs of the customers, some of these jobs will be completed before/after the assigned 
common due date and they will be early/tardy. Earliness/tardiness has some costs for 
the company. Since these jobs might belong to different customers and their impor-
tance might be different as well. Earliness/tardiness unit cost for each job might be 
different than others. Thus earliness/tardiness weights/costs can be different within a 
scheduling problem with common due date consideration. The common due date 
assignment has been investigated by researchers for more than 30 years. Panwanker 
et al. [2] consider a single machine weighted earliness/tardiness scheduling problem 
where the common due date is a decision variable and each early/tardy job’s weight 
is the same. In a classical scheduling triple notation, the problem with n jobs can be 
expressed as 1

��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d where j is the job index 
( j ∈ {1,2, 3, ., n} ), d is the common due date, � is the penalty cost of assigning com-
mon due date, �(�) is earliness (tardiness) penalty cost for all jobs, and Ej

(
Tj
)
 is ear-

liness/tardiness of job j . Ej is a positive decision variable for the problem and 
Ej = max

(
0, d − Cj

)
 where Cj is the completion time of job j . Similarly, Tj is also a 

positive decision variable and Tj = max
(
0,Cj − d

)
 . They propose a polynomial time 

algorithm to solve their investigated problem and prove that their algorithm solve 
the problem optimally. The problem with given common due date 
1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj has also polynomial time algorithm [2] to solve it optimally 
if d is an unrestrictive common due date. In a scheduling problem with a given com-
mon due date, there are two options: (1) unrestrictive common due date where d is 
big enough to make all jobs completed before or at the common due date and (2) 
restrictive common due date where dres is not big enough to make all jobs early or 
on-time. The same problem with restrictive common due date 
1
��
�
dj = dres

��
�
∑

�Ej +
∑

�Tj is a NP-Hard [3] problem and an optimal solution algo-
rithm has not been revealed by the researchers so far. Furthermore, 
1
��
�
dj = dres

��
�
∑

ajEj +
∑

�jTj where aj(�j ) is the distinct earliness/tardiness cost/
weight for job j is also NP-Hard and the optimal sequence of this problem has the 
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V-shaped property [4–8] showing that early jobs are sequenced in decreasing order 
of their ratios of processing times/earliness weights and tardy jobs are sequenced in 
increasing order of their ratios of processing times/tardiness weights. Kanet [4] 
shows that there is a polynomial time algorithm to solve 1��

�
dj = d

�
�
�
∑

Ej +
∑

Tj opti-
mally. As understood from this short literature, if jobs in the problem have different 
earliness/tardiness weights, the problem becomes a NP-Hard problem.

Even most single-machine earliness/tardiness scheduling problems are still NP-
Hard, the researchers have investigated polynomial-time optimal or approximation 
algorithms for earliness/tardiness scheduling problems with due date determination 
decisions. Cheng and Gupta [9] presented a survey paper for scheduling problems 
with due date determination decisions. They investigated the problem from the per-
spectives “static” and “dynamic”. This classification was made by Elion [10]. Nowa-
days some sort of dynamic is also referred as online. Gordon et  al. [11] drew an 
extensive framework for common due date assignment problems in their survey 
paper. They investigated common due assignment problems in single and parallel 
machine environments. They summarized the results of the algorithms and the com-
plexity of the common due date assignment and scheduling problems. Seidmann 
et al. [12] investigated 1��

�
dj
��
�
∑

�Ej +
∑

�Tj +
∑

�Aj where Aj = max(0, dj − A) , dj is 
assigned due date for job j and A is the lead time that customers consider to be rea-
sonable and expected. In their problem, the objective function is to minimize the 
earliness/tardiness costs of jobs and the total time that the assigned due dates for all 
jobs exceeds A . They proved that there is a polynomial time algorithm to solve their 
problem optimally. For 1��

�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d , the optimal solution has a 
property that shows the assigned common due date is equal to one of the completion 
times of jobs. This was showed by Panwalkar et al. [2]. Cheng [13] offered an alter-
native proof for this property of the optimal solution by using Kuhn-Tucker’s opti-
mality conditions. Sung et  al. [14] considered the problem of 
1
��
�
dj = d

��
�
∑

wj

�
d − Cj

�
∕wj to minimize the total weighted mean absolute deviations 

of job completion times from the common due date. They determined several domi-
nant solution properties to organize two efficient heuristic solution algorithms for 
their problem. Koulamas [15] proposed a polynomial time (O(n3)) dynamic pro-
gramming to solve the problem of 
1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

ajVj +
∑

bjUj +
∑

�d where Vj(Uj ) is a binary deci-
sion variable that is 1 if job j is early(tardy) and aj(bj ) is the penalty cost of job j if it 
is early(tardy). Furthermore, Koulamas [15] showed that there is a linear time algo-
rithm to solve 1��

�
dj = d

��
�
∑

ajVj +
∑

bjUj +
∑

�d optimally. De et  al. [16] showed 
that there is a linear-time algorithm for the problem of 1��

�
dj = d

��
�
∑

bjUj +
∑

�d . 
Koulamas [17] proposed a linear time dynamic programming algorithm to solve of 
1
��
�
dj = d

��
�
∑

�jEj +
∑

bjUj +
∑

�d . For the same problem’s optimal solution, Kahl-
backer and Cheng [18] proposed an O(n2) polynomial-time algorithm for the prob-
lem in parallel machine environment. Li and Chen [19] proposed a polynomial-time 



1564 OPSEARCH (2023) 60:1561–1574

1 3

O(n3) algorithm to solve the problem of 
1
�
�
�
dj = d, pj = p

�
�
�
∑

�jEj +
∑

�jTj +
∑

ajVj +
∑

bjUj +
∑

�d where all jobs have the 
same processing time. Shabtay et  al. [20] investigated the problems of 
1
�
�
�
dj = d

�
�
�
∑

�jQj +
∑

�jYj +
∑

�d and 1||
|

d ≤ dj ≤ d + �||
|

∑

�jQj +
∑

�jYj +
∑

�d +
∑

�� where 

Qj = min
(
pj,max

(
0, d − Cj + pj

))
∀j , Yj = min

(
pj, Tj

)
∀j , � is the time interval for 

the common due date window and � is the penalty of the common due date window. 
Their problems’ objective functions are to minimize the penalty cost of early and 
tardy work, the common due date assignment cost, and the cost of the common due 
date window. They showed polynomially solvable cases of their problem when the 
common due date and the common due date window are unbounded. They also 
stated that their problem becomes NP-Hard when it is bounded. Yeung et al. [21] 
proposed an O(nlogn) polynomial-time algorithm to find the optimal solution of the 
problem of 1��

�
d ≤ dj ≤ d + �

��
�
∑

�Ej +
∑

�Tj +
∑

aVj +
∑

bUj +
∑

�d where a(b ) 
is the penalty cost of any job if it is early(tardy). We summarize the literature review 
for due date assignment problems in Table 1 by adding other important studies in 
multi machine environment. As seen in Table 1, 

∑n

j=1

�
�jEj + �jTj + �d

�
 problem for 

all machine environments has not been studied by researchers. As long as we know 
from the reported literature, Mosheiov and Yovel [27] only investigated ∑n

j=1

�
�jEj + �jTj + �d

�
 problem with unit processing times ( Pj = 1∀j ) by proposing 

a heuristic approach. The rest of studies considered 
∑

�Ej +
∑

�Tj +
∑

�d problem 
or its variants by proosing heuristics and polynomial time algorithms. Since ∑n

j=1

�
�jEj + �jTj + �d

�
 problem is NP-Hard, it needs still an approximate solution 

approach for finding a near-optimal solution. As seen from the literature given in 
Table 1, there are so few studies considering metaheuristic for the problem when the 
common due date is a decision variable, most of the studies in Table 1 have pro-
posed heuristics for NP hard problem with thecommon due date that is a decision 
variable.

In this study, we consider 1��
�
dj = d

��
�
∑

�jEj +
∑

�jTj +
∑

�d where each job’s 
weights for earliness and tardiness are different from others. By using some proper-
ties of optimal solutions of similar problems such as 1��

�
dj = dres

��
�
∑

ajEj +
∑

�jTj , 

1
��
�
dj = d

�
�
�
∑

Ej +
∑

Tj , 1
��
�
dj = d

�
�
�
∑

�Ej +
∑

�Tj and 

1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d , we propose a heuristic for single machine 
weighted earliness/tardiness scheduling and common due date assignment problem. 
The remainder of the paper is as follows: Sect. 2 presents a mathematical model for 
the problem. Section 3 introduces our proposed heuristic for the problem. Section 4 
presents an experimental study to compare our proposed heuristic with an exact 
solution approach. Section 5 draws a conclusion and future projection for the reader.
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2  Mathematical model

In this section, we present a mixed-integer linear programming model for our inves-
tigated problem. The model was originally proposed by Keha et  al. [33]. We just 
add common due date assignment consideration into the model. There are n jobs 
to be processed in a single machine. Each job has its own earliness and tardiness 
weights in the objective function. All jobs have the same common due date which is 
a decision variable that is a part of the performance criterion of the problem. Deter-
mination of this common due date has a constant cost for all jobs in the objective 
function. We have some assumptions for the investigated problem as follows: the 
machine can only process at most one job at the same time, the machine is ready to 
process jobs at zero start time, processing times of jobs, and costs for earliness and 
tardiness are non-negative and preemption is not allowed. Indices, parameters, deci-
sion variables, and equations/inequations of the model are as follows:

Indices:
j , k : indices of jobs ( j ∈ {1,2,… , n} and k ∈ {1,2,… , n})
Parameters:
pj ∶ processing time of job j
�j ∶ earliness unit cost/weight of job j
�j ∶ tardiness unit cost/weight of job j
� ∶ common due date assignment cost for each job
M : arbitrary large number ( M =

∑n

j=1
pj)

Decision variables:
Cj ∶ completion time of job j
Ej ∶ earliness duration of job j
Tj ∶ tardiness duration of job j
d ∶  common due date
yjk ∶ binary decision variable for determining which job is processed before 

another job. If job j  is processed before job k  in the machine, then it is 1. Other-
wise, it is 0.

Objective function:

S.t.:

(1)Min
∑

j

�jEj +
∑

j

�jTj + n�d

(2)Cj ≥ pj ∀j

(3)Cj + pk ≥ Ck +M
(
1 − yjk

)
∀j, k and j < k

(4)Ck + pj ≥ Cj +Myjk ∀j, k and j < k

(5)Cj + Ej − Tj = d ∀j
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The objective function (1) is to minimize the cost combination of the weighted 
earliness/tardiness costs and setting common due date costs. Constraint (2) assures 
that the completion time of job j is greater than or equal to its processing time. Con-
straints (3–4) are disjunctive constraints assuring that either job j is processed before 
job k or job j is processed after job k. These constraints are for all job pairs. For any 
jobs j and k , there must be only two potential job sequences: (1) the sequence where 
the job j is processed before job k or (2) the sequence where job j is processed after 
job k . Therefore if yjk = 1 , then ykjmust be 0 or the other way around. Constraint (5) 
shows that job j can be completed as early, on time, or tardy. If Cj = d then job j is 
an on-time job and Ej(Tj ) is 0. Else if Cj < d ( Cj > d ), then job j is early (tardy) and 
Ej = d − Cj ( Tj = Cj − d ). For any job j , there is no possibility of both Ej and Tj are 
greater than zero since Cj is either equal to d or less (greater) than d.

3  The proposed heuristic

In this section, we propose a heuristic for 1��
�
dj = d

��
�
∑

�jEj +
∑

�jTj +
∑

�d by using 
some properties of optimal solutions of similar problems such as 
1
��
�
dj = dres

��
�
∑

ajEj +
∑

�jTj , 1
��
�
dj = d

��
�
∑

Ej +
∑

Tj , 1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj and 

1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d . These properties are as follows:

• For the problem of 1��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d , the optimal common due 
date must be less than or equal to the sum of processing times d∗ ≤

∑
j Pj where 

d∗ is the optimal common due date. Therefore, the optimal common due date is a 
restrictive common due date. This property (See Panwanker et  al. [2]) can be 
applied to our investigated problem.

• For the problem of 1��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d , if � ≥ � then d∗ = 0 and 
the job sequence arranged with the shortest processing time (SPT) rule is the 
optimal sequence. This property (See Panwanker et al. [2]) can be applied to our 
investigated problem.

• For any job sequence of the problem of 1��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d , there 
exists an optimal common due date that is equal to one of the completion times 
of jobs. This property (See Panwanker et al. [2]) can be applied to our investi-
gated problem.

• For any job sequence of the problem of 1��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d , there 
exists an optimal common due date equal to C[K] , where K is the smallest integral 
value greater than or equal to n(� − �)∕(� + �) . This property (See Panwanker 
et al. [2]) cannot be applied to our investigated problem since �j(�j) is distinct for 
each job.

(6)yjk ∈ {0,1} ∀j, k

(7)Cj,Ej, Tj ≥ 0 ∀j
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• For problems of 1
�
�
�
dj = dres

�
�
�
∑

ajEj +
∑

�jTj , 1
�
�
�
dj = d

�
�
�
∑

Ej +
∑

Tj , and 

1
�
�
�
dj = d

�
�
�
∑

�Ej +
∑

�Tj
 , the common due date is an input. The optimal job 

sequences for these problems have the V-Shaped property. This property (See 
Kanet [4] and Arık [8]) of the optimal solution shows that the early jobs in the 
optimal sequence are sequenced in decreased order of Pj∕aj values and the tardy 
jobs are sequences in increased order of Pj∕�j values. Thus the optimal sequence 
can be arranged with the weighted shortest processing time (WSPT) and the 
weighted longest processing time (WLPT) rules. This property can be also 
applied to our investigated problem.

• For problems of 1
��
�
dj = dres

��
�
∑

ajEj +
∑

�jTj , 1
��
�
dj = d

��
�
∑

Ej +
∑

Tj , and 

1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj , the start time of the first job in the sequence can be 
greater than zero and none of the completion times of jobs can be equal to the 
common due date. This property (See Kanet [4] and Arık [1]) cannot be applied 
to our problem.

The problem of 1��
�
dj = d

��
�
∑

�jEj +
∑

�jTj +
∑

�d have structural similarities 

with other problems of 1
��
�
dj = dres

��
�
∑

ajEj +
∑

�jTj , 1
��
�
dj = d

��
�
∑

Ej +
∑

Tj , 

1
��
�
dj = d

��
�
∑

�Ej +
∑

�Tj and 1��
�
dj = d

��
�
∑

�Ej +
∑

�Tj +
∑

�d . We use some of 
above properties in our proposed heuristic as follows:

1. The zero start time of the machine,
2. The common due date that is less than or equal to the sum of processing times,
3. The V-shaped property of the optimal solution, and.
4. (4)The common due date is equal to one of the completion times of jobs. 

We apply these properties in our heuristics as follows:

1. We set always the start time of the first job in the sequence zero in our proposed 
heuristics,

2. We search the common due date between zero and the sum of processing times,
3. By using the V-shaped property, we order early jobs with the WLPT rule and 

tardy jobs with the WSPT rule around the determined common due date,
4. We set the common due date to the completion time of the job in position r where 

( r ∈ {0,1, 2,3,… , n} ) and we increase r by one at each iteration.

In our proposed heuristic, we search the common due date from zero. 
Whend = 0 , the best sequence of the problem can be obtained with the WSPT rule. 
Since d = 0 , all jobs are tardy and their best sequence can be obtained by using the 
WSPT rule. In case there are some early jobs because d > 0 and the start time of 
the machine is non-zero, then early jobs must be ordered with the WLPT rule and 
the remaining tardy jobs must be ordered with the WSPT rule. This is our initial 
solution ( � ) and we record it as the best solution ( �∗ ) for now. Within a for loop, 
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we test each job at the first position of solution � by increasing the position num-
ber ( r ∈ {0,1, 2,3… , n} ) of the completion time of the job by one. We set d = C[r] 
for each r (note that r = 0implies that d = 0 ). For each increment of r , we order 
early(tardy) jobs with the WLPT(WSPT). When we find a better candidate solution 
�′′ than �∗ , we replace �∗ with �′′ . Then, the remaining search goes on with new 
�∗ by using the V-shaped property and the zero-start time of the machine until the 
stopping criterion is satisfied. For this algorithm, we use a predetermined allowed 
elapsed time limitation as a stopping criterion. The pseudo-code of the proposed 
heuristic is given in Fig. 1. As seen in Fig. 1, the complexity of our proposed heuris-
tic is O(n3).

4  Experimental study

In this section, we test our proposed heuristic’s performance in view of solution 
quality by comparing it with solutions obtained from a commercial solver. We 
use a stopping criterion that allows running the algorithm until n seconds or the 
algorithm ends its all steps to solve the problem. n seconds means that the algo-
rithm will use the number of jobs in the problem as a stopping criterion of the 
solution method in elapsed seconds. As seen from the literature review, there is 
no heuristic, metaheuristic or pseudo-polynomial algorithm for 
1
��
�
dj = d

��
�
∑

�jEj +
∑

�jTj +
∑

�d problem. Even there are some approximation 
algorithms for 

∑
�Ej +

∑
�Tj +

∑
�d problems and their variants, these algo-

rithms are not applicable because of the same earliness/tardiness weight consid-
eration in those problems. Therefore, we use the mathematical modelling 
approach and an commercial solver to evaluate our proposed heuristic’s perfor-
mance. We use the CPLEX solver in GAMS 28.2 commercial software to code 
and solve the mathematical model introduced in this study. The commercial solv-
er’s solution time is also restricted until n seconds. We use a benchmark data set 
of common due date scheduling problems. This data set was originally generated 
by Biskup and Feldmann [34] for the problem where the common due date is a 
parameter. In this study, we use this data set for our problem where the common 
due date is a decision variable. This data set includes seven groups of test prob-
lems. These groups have 10, 20, 50, 100, 200, 500, and 1000 jobs. Each group 
has 10 test instances. The data set can be retrieved from http:// people. brunel. ac. 
uk/ ~mastj jb/ jeb/ orlib/ schin fo. html. This data set doesn’t have � values for test 
instances so we use 6 � values where � ∈ {0,4, 8,12,16,20} for each instance. We 
use � values between 0 and 20 since other parameters in test instances such as Pj , 
�j and �j are generated randomly between 1 and 20 by Biskup and Feldmann [34]. 
There are 7 n values and 6 � values for our test groups and each group has 10 test 
instances so there are 420 test problems in our experimental study. Both our pro-
posed heuristic and the commercial solver solve each instance once. We code our 
proposed heuristic in Visual Studio 2019 by using C# programming language. 
Furthermore, we use C# programing language to generate GAMS file for all test 
instances. We call GAMS library by using C# programming language in Visual 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html
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Studio to solve test instances. Each solution’s objective function, solution times 
in milliseconds, and the common due date value are recorded. Our experimental 
study has been done on a workstation desktop having an Intel Xeon E-2136 CPU 
@ 3.30 GHz and 16 GB RAM. Our proposed heuristic solves test problems in a 
shorter time by closing more the optimal solution than the commercial solver 
does. Even the commercial solver could not find a solution for 99 test instances 
where n ≥ 200 until its solution time reaches n seconds, the proposed heuristic 
solves all test instances. For small-size instances where n ≤ 50, the commercial 
solver may find better solutions than our proposed heuristic finds. Table 2 shows 
how many times our proposed heuristic finds better solutions than the commercial 
solver within time limitations. For all test problems, the proposed heuristic’s 
solution quality is 30.74% better than solutions obtained with GAMS. When n = 
10 and � = 0, the proposed heuristic finds 7 out of 10 best solutions for test 
instances. When n = 20 and � = 8, the proposed heuristic finds none of 10 best 

Table 2  How many times our 
proposed heuristic finds the 
better solutions

n / � 0 4 8 12 16 20

10 7 1 1 1 1 1
20 1 0 0 0 0 0
50 7 7 4 5 5 3
100 10 10 9 10 10 10
200 10 10 10 10 10 10
500 10 10 10 10 10 10
1000 10 10 10 10 10 10

Table 3  Average solution times of the proposed heuristic and the commercial solver for test instance 
group

Method n/� 0 4 8 12 16 20

Heuristic 10 0.0073 0.0012 0.0014 0.0013 0.0013 0.0015
20 0.0036 0.0025 0.0027 0.0036 0.0024 0.0026
50 0.0238 0.0186 0.0194 0.0184 0.0192 0.0182

100 0.1523 0.1449 0.1435 0.1440 0.1447 0.1448
200 1.4010 1.4058 1.4025 1.3985 1.4051 1.4036
500 35.8555 35.5052 35.4952 35.4644 35.5365 35.6059

1000 459.9797 464.5944 464.1628 464.6156 464.8264 464.7775
Gams 10 1.3448 2.2815 1.8015 0.7861 0.7845 0.7943

20 20.1625 20.1578 20.1630 20.1574 20.1629 20.1654
50 50.4269 50.2991 50.2972 50.2900 50.2825 50.2964

100 100.3657 100.4070 100.4001 100.4019 100.3658 100.3933
200 201.0243 200.8899 200.9466 200.8416 200.9014 200.9393
500 502.3755 502.3962 503.4606 502.5705 502.5700 502.7197

1000 1008.1621 1006.6984 1013.9403 1008.0730 1007.4889 1007.4585
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solutions for test instances. When n ≤ 50, the proposed heuristic does not outper-
form the commercial solver and it just finds 44 of 180 best solutions. When n ≥ 
100, the proposed heuristic obtains better solutions for test instances except for 

Fig. 1  The pseudo-code for the proposed heuristic for 1���dj = d
���
∑

�jEj +
∑

�jTj +
∑

�d
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one instance. Table  3 shows the average solution times of compared solution 
approaches for each test group. As seen in Table 3, the proposed heuristic con-
sumes less time than the commercial solver to obtain a solution. If n ≥ 100 then 
these solutions are better than the commercial solver finds and they are obtained 
in a shorter time with the proposed heuristic. We use the same stopping criterion 
for both methods to be fair in comparison. Someone may wonder what the solu-
tion quality of GAMS will be if there is no time limitation. We test our mathe-
matical model using GAMS with its default settings to solve problems optimally. 
Most of the problems where n ≥200 could not be solved optimally and the solver 
did not report solutions for these problems. The solution quality of GAMS for 
these problems when it works with its default settings is still worse than the solu-
tion quality of the proposed heuristic. Since our proposed heuristic is an O(n3) 
algorithm, we use n as a parameter in our stopping criterion.

5  Conclusion

This study investigates a heuristic algorithm for single machine weighted earli-
ness/tardiness scheduling and common due date assignment problem where earli-
ness/tardiness weights of jobs are different. The objective function of the problem 
is to minimize the cost combination of weighted earliness/tardiness and common 
due date assignment cost. By using several properties such as the V-shaped prop-
erty, the zero-start time, and the common due date that equals to a completion 
time of a job in the sequence of similar problems, we develop a heuristic solution 
approach. Since there is no similar heuristic or solution method in the literature, 
we test our proposed heuristic against the mathematical model coded in a com-
mercial solver. For a fair comparison, we use the same computer environment 
and solution time restriction in our experimental study. When the number of jobs 
increases, the efficiency of our proposed heuristic increases and it finds better 
solutions in a shorter time than the commercial solver finds. For future research, 
this heuristic can be extended into a parallel machine environment with addi-
tional objective functions such as the total tardy work and the total number of 
tardy jobs. Moreover, solution of this heuristic can be used as an initial solution 
for other solution improvement heuristics or metaheuristics such as genetic algo-
rithm, simulated annealing and tabu search. Furthermore, additional constraints 
such as sequence-dependent setup times and release times can be considered in a 
future extension for the proposed heuristic.
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