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Abstract
Many situations involve uncertainty, which we can handle with the help of triangular 
fuzzy numbers (TFNs). Many scenarios arise in which players in a matrix game can-
not reliably estimate their payoffs using crisp numbers, as in real-world scenarios. 
In these circumstances, TFNs are helpful in game theory. Solving a zero-sum two-
player game when all the decision variables and parameters are fuzzy is a worldwide 
topic of interest to scholars. This article presents a novel solution methodology to 
solve the zero-sum two-person fully fuzzy matrix game. The payoff matrix, decision 
variables, and strategies are all taken as TFNs. Two subsidiaries’ fully fuzzy lin-
ear programming problem (FFLPP) models for both players have been developed to 
achieve the objective. These two FFLPP models are converted into crisp linear pro-
gramming problems (LPPs). This procedure uses a ranking approach to the objec-
tive function and introduces fuzzy surplus and fuzzy slack variables in constraints. 
These crisp LPPs are then solved using TORA software (2.0 version) to get optimal 
strategies and results. The proposed solution methodology in the paper is followed 
by a real-world example, ‘Plastic Ban Problem’, and two other examples to prove its 
applicability and validity.
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1 Introduction

Game theory is a mathematical approach for investigating situations with compet-
ing interests involving decision makers (DMs). American economists Neumann and 
Morgenstern [49] conceptualized game theory for the first time in their work “The-
ory of Games, and Economic Behavior”. The growth of the work in game theory got 
pace due to the publication of works by Nash, Shapley [44], Aumann and Peleg [6], 
Gillies [22, 23], Simon [45] and Raiffa [36], Raiffa and Luce [35] during the decade 
of 1950. Classical game theory assumes appropriate information and reliable data; 
nevertheless, it is hard to analyze information accurately in real games due to a lack 
of knowledge of some elements and a player’s vague understanding of events. In 
such cases, fuzzy set theory has shown to be highly effective in game theory. Zadeh 
[51] was the first mathematician to conceptualize fuzzy sets. This was effectively 
used in the problems of decision-making by Bellman and Zadeh [9]. This idea was 
further explored by Tanaka et al. [47] for solving fuzzy mathematical programming 
problems. Zimmermann [52] conceptualized the idea of Fuzzy linear programming 
problem (FLPP) models for the first time, in which decision variables were taken as 
fuzzy numbers. When all the variables, parameters and coefficients used in an LPP 
are taken as fuzzy numbers, such an LPP model is known as a fully fuzzy linear pro-
gramming problem (FFLPP)

Campos [16] firstly developed a method to find the solution to fuzzy matrix 
games using a ranking function to put fuzzy numbers in order. Later, Buckley and 
Feuring [15] introduced a solution for an FLPP by converting the objective func-
tion of FLPP to a multiple objective LPP model. Liu [32] introduced a method 
to solve FLPP based on the quantum of satisfaction of constraints involved in 
the FLPP. Bector et al. [8] explained duality in FLP Models and used it to solve 
fuzzy matrix games. Vijay et  al. [48] used the fuzzy relation approach to solve 
FMG with a predefined fuzzy goal. Li [30] solved FMGs with TFN payoff matrix 
with the help of �-cuts. Seikh et al. [40] used a novel approach to game solving 
based on the concept of the weighted average operator and the score function. 
Kumar and Kaur [27] gave a solution method to solve FFLPP using a ranking 
function. Ammar et al. [3] and Brikaa et al. [13] studied continuous differential 
games under a fuzzy rough environment and gave a saddle point solution. Brikaa 
et  al. [14] applied the Mehar approach to solve games with payoff matrix filled 
with dual hesitant triangular fuzzy numbers. Brikaa et al. [11, 12] studied zero-
sum multi-criteria matrix games and constrained matrix games in a rough fuzzy 
environment and provided a program algorithm for their solution. Das et al. [19] 
used TFNs to solve FFLPP by introducing fuzzy slack and surplus variables to 
convert the fuzzy constraint inequalities into equalities. Mahmoodirad et al. [34] 
converted the fuzzy problem into a crisp multi-objective non-linear problem and 
used the principles of fuzzy theory and componentwise optimization.Triangular 
Pythagorean fuzzy numbers were extended by Akram et al. [1] to the concept of 
crisp linear programming problems in a Pythagorean fuzzy environment.

Intuitionistic Fuzzy sets (IFS) were presented by Atanassov [4, 5] to add 
more accuracy to the results by adding a second component of the degree of 
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non-belongingness to fuzzy sets. The Minkowski distance of Type-2 Intuitionistic 
fuzzy sets (T2IFSs) based on the Hausdorff metric was proposed by Karmakar 
et al. [24] to construct matrix games in the T2IF environment and then used the 
proposed distance measure to solve the matrix games by producing a similarity 
measure of T2IFS. They tested the applicability and validity of the methodol-
ogy by applying it to the bio-gas plant installation challenge. Using the TOPSIS 
Technique and dominance property of game theory, Bhaumik et al. [10] studied 
the fast-rising problem of human trafficking and viewed it through the famous 
game of “Prisoners dilemma” using hesitant interval-valued IFS. Seikh and Dutta 
[37] proposed a method to convert the framed game situation into a deterministic 
model by breaking the single interval type objective function into multi-objective 
functions. Li [28, 29] proposed a two-tier LPP model for solving FMGs with pay-
off matrix as TFNs, widely known as ‘Li’s Model’. From Li’s model, it’s clear 
that in an FMG with TFN payoffs, a player’s loss ceiling and gain floor may not 
be identical; however they may be TFNs. Ammar and Birkaa [2] cracked the puz-
zle of constrained matrix games under a fuzzy rough environment by giving an 
effective method to break it into four crisp LPPs.

Later Smarandache [46] provided a better generalization of IFS to introduce Neu-
trosophic fuzzy sets by adding a third component of the degree of hesitancy to IFS. 
Trapezoidal neutrosophic linear programming (TrNLP) problems with uncertainties 
were solved using a new computing approach that simplifies the presentation of the 
complex problem by Das and Chakraborty [21]. A new methodology for solving 
neutrosophic linear programming problems (NLPPs) known as the pentagonal neu-
trosophic (PN) approach has been described by Das et al. [18], in which objectives 
and constraints were represented by pentagonal neutrosophic numbers (PNN). Seikh 
et al. [38], Seikh and Dutta [41] addressed two aspects of neutrosophic mathemat-
ical programming using two different approaches and to demonstrate the validity 
and effectiveness of the two methodologies, they provided a market share case study 
in telecom sector and another numerical example. Das et al. [20] solved fractional 
FLPP and illustrated its applications in the industry sector. Seikh et al. [42] gave a 
solution technique of FMG with payoff matrix of dense triangular fuzzy lock sets 
(DTFLS) by defining a new ranking function, further Seikh and Karmakar [39] 
solved FMGs with DTFLS payoff matrix by defining credibility equilibrium strategy 
for the decision makers.

Most of the work discussed above involves fuzziness, either in the payoff matrix 
or in the objective function, with a few exceptions dealing with fuzzy payoffs and 
fuzzy goals. Very little work deals with fully fuzzified matrix games, where even 
the players’ strategies are taken as fuzzy numbers. In this paper, we will look at the 
case of a fully fuzzified matrix game (FFMG) in which the payoffs and strategies 
of the players are treated as arbitrary TFNs. A few researchers who have worked 
with FFMGs have solved the problem using the traditional Yager’s [50] resolu-
tion method. This has motivated us to work in the direction of solving Fully Fuzzy 
Matrix Games (FFMG) using a novel technique, hence this article. This paper pro-
poses a new, effective, and simple linear programming (LP) model technique for 
solving fully fuzzified matrix games with TFNs as payoffs. We defuzzified the 
objective function using a ranking function and introduced fuzzy surplus and slack 
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variables in constraint inequalities, which are fuzzy too. As a result, our method is a 
novel approach to solving such challenges.

According to the following outline, this paper is written: Some preliminary defi-
nitions of the Fuzzy set theory are introduced in Sect. 2. In Sect. 3, the focus is on 
FFMG concepts, and its solution methodology is explained. In Sect. 4, three numer-
ical are solved to show the practical applicability of the proposed solution method-
ology. The results obtained have been discussed in Sect. 5. Section 6 compares the 
results obtained by some other renowned researchers. Finally, the conclusion arrives 
in Sect. 7.

2  Preliminaries

This section is devoted to some fundamental notions and definitions of fuzzy set 
theory and its algebra (Fig. 1).

Definition 1 [25] A Triplet Ẽ = (eL, e, eR) is known as Triangular Fuzzy Number 
(TFN) if its membership function Ẽ(z) ∶ ℝ → [0, 1] is given by

Definition 2 [25] The � -cut Ẽ𝛼 of TFN Ẽ =
(
eL, e, eR

)
 is written as the crisp set 

Ẽ𝛼 =
[(
e − eL

)
𝛼 + eL,

(
e − eR

)
𝛼 + eR

]
=
[
LE𝛼 ,

R E𝛼

]
 (say) for some 0 ≤ � ≤ 1.

Definition 3 [25] A TFN Ẽ =
(
eL, e, eR

)
 is known as 

(a) a non-negative fuzzy number iff eL ≥ 0.
(b) a non-positive fuzzy number iff eR ≤ 0.
(c) an unrestricted fuzzy number iff eL < 0 . and eR > 0

(d) a zero fuzzy number iff eL = e = eR = 0 and we write it as 0̃ = (0, 0, 0)
(e) a unit fuzzy number iff eL = e = eR = 1 and we write it as 1̃ = (1, 1, 1)

Remark Any real number � can be written as a TFN �̃� = (𝜆, 𝜆, 𝜆)

Ẽ(z) ∶=

⎧⎪⎨⎪⎩

z−eL

e−eL
if eL ≤ z ≤ e

eR−z

eR−e
if e ≤ z ≤ eR

0 otherwise

Fig. 1  membership function of 
TFN
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Definition 4 [25] Two TFNs Ẽ =
(
eL, e, eR

)
 and G̃ =

(
gL, g, gR

)
 are taken to be equal 

iff eL = gL ; e = g ; eR = gR.

Definition 5 [31] A ranking or defuzzifying function F is a real function defined 
with domain as the set of all fuzzy numbers, which maps each fuzzy numbers 
into the real line, where a natural order exists, i.e F ∶ N(ℝ) → ℝ , where N(ℝ) 
is a set of all fuzzy numbers. If E = (eL, e, eR) ∈ N(ℝ) is a TFN then we take 
F(E) =

1

4

[
eL + 2e + eR

]
.

Definition 6 [25] Arithmetic operations on two TFNs Ẽ =
(
eL, e, eR

)
 and 

G̃ =
(
gL, g, gR

)
 are outlined as follows:- 

(i) Addition: Ẽ⊕ G̃ =
(
eL + gL, e + g, eR + gR

)
.

(ii) Subtraction: Ẽ⊖ G̃ =
(
eL − gR, e − g, eR − gL

)
.

(iii) Multiplication: Let Ẽ =
(
eL, e, eR

)
 be any TFN and G̃ =

(
gL, g, gR

)
 be a non-neg 

TFN (i.e. gL ≥ 0 ) Then 

(iv) Scalar Multiplication: 

(v) Division: Let Ẽ =
(
eL, e, eR

)
 be any TFN and G̃ =

(
gL, g, gR

)
 be a non-neg TFN, 

then
  Ẽ⊘ G̃ =

(
eL

gR
,
e

g
,
eR

gL

)
.

Definition 7 [25] The ordering of two TFNs Ẽ =
(
eL, e, eR

)
 and G̃ =

(
gL, g, gR

)
 is 

conceptualised as follows 

 (i) G̃ ⪯ Ẽ if and only if F(G̃) ≤ F(Ẽ).
 (ii) G̃ ≺ Ẽ if and only if F(G̃) < F(Ẽ).

where F is the defuzzification function.
Note:- F(G̃ + Ẽ) = F(G̃) + F(Ẽ) and the extension of this property for n-fuzzy 

numbers Ẽ1, Ẽ2,… , Ẽn , may be given as F
�∑n

k=1
Ẽk

�
=
∑n

k=1
F
�
Ẽk

�
.

Ẽ⊗ G̃ =

⎧⎪⎨⎪⎩

�
eLgL, eg, eRgR

�
if eL ≥ 0�

eLgR, eg, eRgL
�

if eR < 0�
eLgR, eg, eRgR

�
if eL < 0; eR ≥ 0.

𝜆 Ẽ =

{(
𝜆eL, 𝜆e, 𝜆eR

)
if 𝜆 ≥ 0(

𝜆eR, 𝜆e, 𝜆eL
)

if 𝜆 < 0
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3  Fuzzy matrix games (FMG)

3.1  Fully fuzzified matrix games (FFMG)

Let Ẽ =
(
ãjk

)
m×n

∈ (TFN(ℝ))m×n be fuzzy matrix with TFN entries where 
ãjk =

(
(ajk)L, ajk, (ajk)R

)
∈ (TFN(ℝ))m×n , TFN(ℝ) being the set of all TFNs. The 

matrix Ẽ is called the fuzzy payoff matrix for player-I and the fuzzy entity (z̃T Ẽ t̃) 
for z̃ ∈ S̃I and t̃ ∈ S̃II is called fuzzy expected payoff value set to player-I. Then by a 
fully fuzzified matrix game we mean a triplet 

(
S̃I , S̃II , Ẽ

)
=FFMG (say), where S̃I and 

S̃II are sets of all fuzzy mixed TFN strategies for player-I and player-II respectively, 
i.e.

Then a couplet (ũ, ṽ) where ũ, ṽ ∈ TFN(ℝ) , is known as a reasonable solution of 
FFMG if ∃ z̃∗ ∈ S̃I and t̃∗ ∈ S̃II satisfying

and ũ and ṽ are known as reasonable values of FFMG for player-I and player-II 
respectively.

let’s take Λ̃1 , Λ̃2 as reasonable value sets for player-I and player-II respectively.
Then if ∃ ũ∗ ∈ Λ̃1 and ṽ∗ ∈ Λ̃2 such that

Then the quadruple (z̃∗, t̃∗, ũ∗, ṽ∗) is called the solution of FFMG=
(
S̃I , S̃II , Ẽ

)
 and 

ũ∗, ṽ∗ are called the fuzzy optimum TFN values of FFMG for player-I and player-II 
respectively and

z̃∗ , t̃∗ are called the fuzzy optimal TFN strategies of FFMG for player-I and 
player-II respectively.

3.2  Proposed solution methodology

In this section, we now present a new method to overcome the shortcomings of 
existing methods discussed in Sect.  6.1 in solving a given FFMG 

(
S̃I , S̃II , Ẽ

)
 . The 

steps are as follows:-
Step-1: To write FFLPPs for both the players.

S̃I =

{
z̃ =

(
z̃1, z̃2,… ., z̃m

)
∶

m∑
j=1

z̃j ≃ 1̃, z̃j ∈ TFN(ℝ)

}

S̃II =

{
t̃ =

(
t̃1, t̃2,… ., t̃n

)
∶

n∑
k=1

t̃k ≃ 1̃, t̃k ∈ TFN(ℝ)

}

(z̃∗)
T
Ẽ t̃ ≥ ũ ∀ t̃ ∈ S̃II

(z̃)TẼ t̃∗ ≤ ṽ ∀ z̃ ∈ S̃I

F(ũ∗) ≥ F(ũ) ∀ ũ ∈ Λ̃1 and F(ṽ∗) ≤ F(ṽ) ∀ ṽ ∈ Λ̃2.
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Using the concepts discussed in Sect.  3, we can obtain the FFLPP for the two 
players-

For player-1 (FFLPP)I.

For player-2 (FFLPP)II.

Now, it is customary to take the stationary points (i.e. pure strategy) of the convex 
fuzzy polytope sets S̃I and S̃II in the constraints, we get the following FFLPP’s.

(FFLPP)I

where Ek (k = 1, 2,… ., n) is kth column of pay off matrix Ẽ and eT = (1, 1,… , 1)1×m
.

(FFLPP)II

where Ej (j = 1, 2,… .,m) is jth row of pay off matrix Ẽ . Here eT = (1, 1,… , 1)1×n.
This further yields
(FFLPP)I

(1)
maximize ũ where ũ = (uL, u, uR)

subject to z̃T Ẽ t̃ ⪰ ũ ∀ t̃ ∈ S̃II ;

z̃ ∈ S̃I ; z̃, t̃ are TFNs.

(2)

minimize ṽ where ṽ = (vL, v, vR)

subject to z̃T Ẽ t̃ ⪯ ṽ ∀ z̃ ∈ S̃I

t̃ ∈ S̃II .

(3)

maximize ũ

subject to z̃T Ẽk ⪰ ũ.

eT z̃ ≈ 1̃

z̃ ⪰ 0̃

(4)

minimize ṽ

subject to Ẽjt̃ ⪯ ṽ.

eT t̃ ≈ 1̃

t̃ ⪰ 0̃
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(FFLPP)II

Step-2: To get FFLPPs with equality constraints and non negative conditions.
Now using fuzzy surplus and slack TFN variables S̃k (k = 1, 2, ...., n) and s̃j 

(j = 1, 2, ....,m) . we get
(FFLPP)I

(FFLPP)II

(5)

maximize ũ

subject to
∑m

j=1
ãjk ⊗ z̃j ⪰ ũ (k = 1, 2,… ., n)

∑m

j=1
z̃j ≃ (1, 1, 1)

z̃j ⪰ 0̃ (j = 1, 2,… .,m).

(6)

minimize ṽ

subject to
∑n

k=1
ãjk ⊗ t̃k ⪯ ṽ (j = 1, 2,… .,m)

∑n

k=1
t̃k ≃ (1, 1, 1)

t̃k ⪰ 0̃ (k = 1, 2,… ., n).

(7)

maximize ũ

subject to
∑m

j=1
ãjk ⊗ z̃j ⊖ S̃k ≃ ũ (k = 1, 2,… ., n)

m∑
j=1

z̃j ≃ (1, 1, 1)

S̃k ⪰ 0̃, z̃j ⪰ 0̃ (j = 1, 2,… .,m).

(8)

minimize ṽ

subject to
n∑

k=1

ãjk ⊗ t̃k ⊕ s̃j ≃ ṽ (j = 1, 2,… .,m)

n∑
k=1

t̃k ≃ (1, 1, 1)

s̃j ⪰ 0̃, t̃k ⪰ 0̃ (k = 1, 2,… ., n).
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Since S̃k, s̃j, ãjk, z̃j, t̃k are all TFNs, lets us take S̃k = (Sk,Rk,Qk), s̃j = (sj, rj, qj), ãjk

= (ajk, bjk, cjk), z̃j = (z
j

1
, z

j

2
, z

j

3
), t̃k = (tk

1
, tk
2
, tk
3
) in Eq. (8) we get.

(FFLPP)I

(FFLPP)II

If we take (ajk, bjk, cjk)⊗ (z
j

1
, z

j

2
, z

j

3
) = (Djk,Ejk,Fjk) and

(ajk, bjk, cjk)⊗ (tk
1
, tk
2
, tk
3
) = (djk, ejk, fjk) in Eqs. (9) and (10) respectively, Then we 

get.
(FFLPP)I

(9)

maximize (uL, u, uR)

subject to
m∑
j=1

(ajk, bjk, cjk)⊗ (z
j

1
, z

j

2
, z

j

3
)⊖ (Sk,Rk,Qk) ≃ (uL, u, uR)

m∑
j=1

(z
j

1
, z

j

2
, z

j

3
) ≃ (1, 1, 1)

(z
j

1
, z

j

2
, z

j

3
) ⪰ 0, (j = 1, 2,… .,m)

(Sk,Rk,Qk) ⪰ 0̃ (k = 1, 2,… ., n).

(10)

minimize (vL, v, vR)

subject to
n∑

k=1

(ajk, bjk, cjk)⊗ (tk
1
, tk
2
, tk
3
)⊕ (sj, rj, qj) ≃ (vL, v, vR)

n∑
k=1

(tk
1
, tk
2
, tk
3
) ≃ (1, 1, 1)

(tk
1
, tk
2
, tk
3
) ⪰ 0̃, (k = 1, 2,… ., n)

(sj, rj, qj) ⪰ 0̃ (j = 1, 2,… .,m).
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(FFLPP)II

Step-3: To get crisp (LPP)I & (LPP)II for player-I & II respectively.
Now using the defuzzification function in objective functions and algebra of 

fuzzy numbers ‘Definition 6’ for constraints in Eqs. (11) and (12) gives us the fol-
lowing crisp LPPs for Player-I and player-II respectively.

(LPP)I

(11)

maximize (uL, u, uR)

subject to
m∑
j=1

(Djk,Ejk,Fjk)⊖ (Sk,Rk,Qk) ≃ (uL, u, uR) (k = 1, 2,… ., n)

�
m∑
j=1

z
j

1
,
m∑
j=1

z
j

2
,
m∑
j=1

z
j

3

�
≃ (1, 1, 1)

z
j

2
− z

j

1
≥ 0

z
j

3
− z

j

2
≥ 0

Rk − Sk ≥ 0

Qk − Rk ≥ 0

Sk ≥ 0, z
j

1
≥ 0 (j = 1, 2,… .,m).

(12)

minimize (vL, v, vR)

subject to
n∑

k=1

(djk, ejk, fjk)⊕ (sj, rj, qj) ≃ (vL, v, vR) (j = 1, 2,… .,m)

�
n∑

k=1

tk
1
,

n∑
k=1

tk
2
,

n∑
k=1

tk
3

�
≃ (1, 1, 1)

tk
2
− tk

1
≥ 0

tk
3
− tk

2
≥ 0

rk − sk ≥ 0

qk − rk ≥ 0

tk
1
≥ 0; sk ≥ 0. (k = 1, 2,… ., n).
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(LPP)II

(13)

maximize
1

4
(uL + 2u + uR)

subject to
m∑
j=1

Djk − Qk = uL

m∑
j=1

Ejk − Rk = u

m∑
j=1

Fjk − Sk = uR (k = 1, 2,… ., n)

z
j

2
− z

j

1
≥ 0

z
j

3
− z

j

2
≥ 0

Rk − Sk ≥ 0

Qk − Rk ≥ 0

Sk ⪰ 0, z
j

1
⪰ 0 (j = 1, 2,… .,m).

(14)

minimize
1

4
(vL + 2v + vR)

subject to
n∑

k=1

djk + sj = vL

n∑
k=1

ejk + rj = v (j = 1, 2,… .,m)

n∑
k=1

fjk + qj = vR

tk
2
− tk

1
≥ 0

tk
3
− tk

2
≥ 0

rj − sj ≥ 0

qj − rj ≥ 0

tk
1
≥ 0; sj ≥ 0, (k = 1, 2,… ., n).
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Step-4: To get the optimum solution of FFMG for the players.
Now, solving crisp LPP’s (13) and (14) will give the complete fuzzy optimum 

solution of the FFMG. z̃j, (j = 1, 2,… .,m) gives the optimal fuzzy strategies for 
Player-I and t̃k, (k = 1, 2,… ., n) gives the optimal fuzzy strategies for Player-II, 
ũ = (uL, u, uR) and ṽ = (vL, v, vR) are the optimum fuzzy values of the FFMG for 
Player-I and Player-II respectively.

3.3  Flow chart of the solution methodology

A visual representation of suggested solution methodology is given in the follow-
ing flow chart (Fig. 2).

The next section contains three examples that demonstrates the application and 
computing procedure of the proposed solution methodology.

4  Numerical examples

Example 1 (Campos [16]) Consider the FFMG defined by the following payoff 
matrix of TFNs

Let us write ̃180 = (175, 180, 190), ̃156 = (150, 156, 158), 9̃0 = (80, 90, 100) and 
assuming that z̃1, z̃2 are the fuzzy optimal strategies and ũ is the fuzzy optimal value 
of game for player-I, we have the following FFLPP-I for Ist player

Taking z̃1 = (z1
1
, z1

2
, z1

3
); z̃2 = (z2

1
, z2

2
, z2

3
); ũ = (uL, u, uR);S̃1 = (S1,R1,Q1); S̃2 = (S2,R2,Q2) in 

Eq. (15) we get

Ẽ =

[
(175, 180, 190) (150, 156, 158)

(80, 90, 100) (175, 180, 190)

]

(15)

maximize F(ũ)

subject to ̃180⊗ z̃1 ⊕ 9̃0⊗ z̃2 ⊖ S̃1 ≃ ũ

̃156⊗ z̃1 ⊕
̃180⊗ z̃2 ⊖ S̃2 ≃ ũ

z̃1 ⊕ z̃2 ≃ 1̃

z̃1, z̃2, S̃1, S̃2 ⪰ 0̃, where 0̃ = (0, 0, 0)
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On solving the above fuzzy equations using algebra of fuzzy numbers and using the 
defuzzification function, we have to solve the following crisp LPP for Player-I

(16)

maximize
1

4
(uL + 2u + uR)

subject to (175, 180, 190)⊗ (z1
1
, z1

2
, z1

3
)⊕ (80, 90, 100)

⊗ (z2
1
, z2

2
, z2

3
)⊖ (S1,R1,Q1) ≃ (uL, u, uR)

(150, 156, 158)⊗ (z1
1
, z1

2
, z1

3
)⊕ (175, 180, 190)

⊗ (z2
1
, z2

2
, z2

3
)⊖ (S2,R2,Q2) ≃ (uL, u, uR)

(z1
1
, z1

2
, z1

3
)⊕ (z2

1
, z2

2
, z2

3
) ≃ (1, 1, 1)

(z1
1
, z1

2
, z1

3
) ⪰ 0̃

(z2
1
, z2

2
, z2

3
) ⪰ 0̃

(S1,R1,Q1) ⪰ 0̃

(S2,R2,Q2) ⪰ 0̃. where 0̃ = (0, 0, 0)

Fig. 2  Flowchart of the solution methodology
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Solving the above crisp LPP in 15 variables and 18 constraints, we get

(17)

maximize
1

4
(uL + 2u + uR)

subject to 175z1
1
+ 80z2

1
− Q1 = uL

180z1
2
+ 90z2

2
− R1 = u

190z1
3
+ 100z2

3
− S1 = uR

150z1
1
+ 175z2

1
− Q2 = uL

156z1
2
+ 180z2

3
− R2 = u

158z1
3
+ 190z2

3
− S2 = uR

z1
1
+ z2

1
= 1

z1
2
+ z2

2
= 1

z1
3
+ z2

3
= 1

z1
2
− z1

1
≥ 0

z1
3
− z1

2
≥ 0

z2
2
− z2

1
≥ 0

z2
3
− z2

2
≥ 0

R1 − S1 ≥ 0

Q1 − R1 ≥ 0

R2 − S2 ≥ 0

Q2 − R2 ≥ 0

z1
1
, z2

1
, S1, S2 ≥ 0.

z̃1 = (z1
1
, z1

2
, z1

3
) = (0.74, 0.74, 0.74) = ̃0.74

z̃2 = (z2
1
, z2

2
, z2

3
) = (0.26, 0.26, 0.26) = ̃0.26

ũ = (uL, u, uR) = (150.08, 156.39, 166.39).

Maximum objective function value = 157.32
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Now assuming that t̃1, t̃2 are the fuzzy optimal strategies and ṽ is the fuzzy optimal 
value of the game for Player-II we have the following FFLPP-II

Taking t̃1 = (t1
1
, t1
2
, t1
3
);t̃2 = (t2

1
, t2
2
, t2
3
);ṽ = (vL, v, vR);s̃1 = (s1, r1, q1);s̃2 = (s2, r2, q2) in 

Eq. (18) we get

On solving the above fuzzy equations using algebra of fuzzy numbers and using the 
defuzzification function, we have to solve the following crisp LPP to get optimum 
values for Player-II

(18)

minimize F(ṽ)

subject to ̃180⊗ t̃1 ⊕
̃156⊗ t̃2 ⊕ s̃1 ≃ ṽ

9̃0⊗ t̃1 ⊕
̃180⊗ t̃2 ⊕ s̃2 ≃ ṽ

t̃1 ⊕ t̃2 ≃ 1̃

t̃1, t̃2, s̃1, s̃2 ⪰ 0̃ where 0̃ = (0, 0, 0)

(19)

minimize F(ṽ)

subject to (175, 180, 190)⊗ (t1
1
, t1
2
, t1
3
)⊕ (150, 156, 156)

⊗ (t2
1
, t2
2
, t2
3
)⊕ (s1, r1, q1) ≃ (vL, v, vR)

(80, 90, 100)⊗ (t1
1
, t1
2
, t1
3
)⊕ (175, 180, 190)

⊗ (t2
1
, t2
2
, t2
3
)⊕ (s2, r2, q2) ≃ (vL, v, vR)

(t1
1
, t1
2
, t1
3
)⊕ (t2

1
, t2
2
, t2
3
) ≃ (1, 1, 1)

(t1
1
, t1
2
, t1
3
) ⪰ 0̃

(t2
1
, t2
2
, t2
3
) ⪰ 0̃

(s1, r1, q1) ⪰ 0̃

(s2, r2, q2) ⪰ 0̃, where 0̃ = (0, 0, 0).
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Now solving the above crisp LPP in 15 variables and 18 constraints, we get

(20)

minimize
1

4
(vL + 2v + vR)

subject to 175t1
1
+ 150t2

1
+ s1 = vL

180t1
2
+ 156t2

2
+ r1 = v

190t1
3
+ 158t2

3
+ q1 = vR

80t1
1
+ 175t2

1
+ s2 = vL

90t1
2
+ 180t2

2
+ r2 = v

100t1
3
+ 190t2

3
+ q2 = vR

t1
1
+ t2

1
= 1

t1
2
+ t2

2
= 1

t1
3
+ t2

3
= 1

t1
2
− t1

1
≥ 0

t1
3
− t1

2
≥ 0

t2
2
− t2

1
≥ 0

t2
3
− t2

2
≥ 0

r1 − s1 ≥ 0

q1 − r1 ≥ 0

r2 − s2 ≥ 0

q2 − r2 ≥ 0

t1
1
≥ 0;t2

1
≥ 0;s1 ≥ 0;s2 ≥ 0.

t̃1 = (t1
1
, t1
2
, t1
3
) = (0.21, 0.21, 0.21) = ̃0.21

t̃2 = (t2
1
, t2
2
, t2
3
) = (0.79, 0.79, 0.79) = ̃0.79

ṽ = (vL, v, vR) = (155.21, 161.25, 171.25).

Minimum objective function value = 162.24
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Let us now discuss one more example of FFMG where the payoff matrix consists of 
some non-positive TFNs.

Example 2 (Li [28]) Consider the FFMG defined by the following payoff matrix of 
TFNs

Let us write 2̃0 = (18, 20, 23), 4̃0 = (38, 40, 43),�(−18) = (−21,−18,−16) and�(−32) = (−33,−32,−27) and 
assuming that z̃1, z̃2 are the fuzzy optimal strategies and ũ is the fuzzy optimal value 
of game for player-I, we have the following FFLPP-I for Ist player

Taking z̃1 = (z1
1
, z1

2
, z1

3
); z̃2 = (z2

1
, z2

2
, z2

3
); ũ = (uL, u, uR);S̃1 = (S1,R1,Q1); S̃2 = (S2,R2,Q2) in 

Eq. (21) we get

On solving the above fuzzy equations using algebra of fuzzy number and using the 
defuzzification function, we have to solve the following crisp LPP to get optimal 
values for Player-I

Ẽ =

[
(18, 20, 23) (−21,−18,−16)

(−33,−32,−27) (38, 40, 43)

]

(21)

maximize F(ũ)

subject to 2̃0⊗ z̃1 ⊕
�(−32)⊗ z̃2 ⊖ S̃1 ≃ ũ

�(−18)⊗ z̃1 ⊕ 4̃0⊗ z̃2 ⊖ S̃2 ≃ ũ

z̃1 ⊕ z̃2 ≃ 1̃

z̃1, z̃2, S̃1, S̃2 ⪰ 0̃ where 0̃ = (0, 0, 0)

(22)

maximize
1

4
(uL + 2u + uR)

subject to (18, 20, 23)⊗ (z1
1
, z1

2
, z1

3
)⊕ (−33,−32,−27)

⊗ (z2
1
, z2

2
, z2

3
)⊖ (S1,R1,Q1) ≃ (uL, u, uR)

(−21,−18,−16)⊗ (z1
1
, z1

2
, z1

3
)⊕ (38, 40, 43)

⊗ (z2
1
, z2

2
, z2

3
)⊖ (S2,R2,Q2) ≃ (uL, u, uR)

(z1
1
, z1

2
, z1

3
)⊕ (z2

1
, z2

2
, z2

3
) ≃ (1, 1, 1)

(z1
1
, z1

2
, z1

3
) ⪰ 0̃

(z2
1
, z2

2
, z2

3
) ⪰ 0̃

(S1,R1,Q1) ⪰ 0̃

(S2,R2,Q2) ⪰ 0̃. where 0̃ = (0, 0, 0)
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Solving the above crisp LPP in 15 variables and 18 constraints, we get

(23)

maximize
1

4
(uL + 2u + uR)

subject to 18z1
1
− 33z2

3
− Q1 = uL

20z1
2
− 32z2

2
− R1 = u

23z1
3
− 27z2

1
− S1 = uR

− 21z1
3
+ 38z2

1
− Q2 = uL

− 18z1
2
+ 40z2

2
− R2 = u

− 16z1
1
+ 43z2

3
− S2 = uR

z1
1
+ z2

1
= 1

z1
2
+ z2

2
= 1

z1
3
+ z2

3
= 1

z1
2
− z1

1
≥ 0

z1
3
− z1

2
≥ 0

z2
2
− z2

1
≥ 0

z2
3
− z2

2
≥ 0

R1 − S1 ≥ 0

Q1 − R1 ≥ 0

R2 − S2 ≥ 0

Q2 − R2 ≥ 0

z1
1
, z2

1
, S1, S2 ≥ 0.
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Now assuming that t̃1, t̃2 are the fuzzy optimal strategies and ṽ is the fuzzy optimal 
value of the game for Player-II we have the following FFLPP-II

Taking t̃1 = (t1
1
, t1
2
, t1
3
);t̃2 = (t2

1
, t2
2
, t2
3
);ṽ = (vL, v, vR);s̃1 = (s1, r1, q1);s̃2 = (s2, r2, q2) in 

equation (24) we get

On solving the above fuzzy equations using algebra of fuzzy numbers and using the 
defuzzification function, we have to solve the following crisp LPP to get optimum 
values for Player-II

z̃1 = (z1
1
, z1

2
, z1

3
) = (0.64, 0.64, 0.64) = ̃0.64

z̃2 = (z2
1
, z2

2
, z2

3
) = (0.36, 0.36, 0.36) = ̃0.36

ũ = (uL, u, uR) = (−1.25, 1.39, 5.11).

Maximum objective function value = 1.66

(24)

minimize F(ṽ)

subject to 2̃0⊗ t̃1 ⊕
�(−18)⊗ t̃2 ⊕ s̃1 ≃ ṽ

�(−32)⊗ t̃1 ⊕ 4̃0⊗ t̃2 ⊕ s̃2 ≃ ṽ

t̃1 ⊕ t̃2 ≃ 1̃

t̃1, t̃2, s̃1, s̃2 ⪰ 0̃ where 0̃ = (0, 0, 0)

(25)

minimize F(ṽ)

subject to (18, 20, 23)⊗ (t1
1
, t1
2
, t1
3
)⊕ (−21,−18,−16)

⊗ (t2
1
, t2
2
, t2
3
)⊕ (s1, r1, q1) ≃ (vL, v, vR)

(−33,−32,−27)⊗ (t1
1
, t1
2
, t1
3
)⊕ (38, 40, 43)

⊗ (t2
1
, t2
2
, t2
3
)⊕ (s2, r2, q2) ≃ (vL, v, vR)

(t1
1
, t1
2
, t1
3
)⊕ (t2

1
, t2
2
, t2
3
) ≃ (1, 1, 1)

(t1
1
, t1
2
, t1
3
) ⪰ 0̃

(t2
1
, t2
2
, t2
3
) ⪰ 0̃

(s1, r1, q1) ⪰ 0̃

(s2, r2, q2) ⪰ 0̃ where 0̃ = (0, 0, 0)
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Solving the above crisp LPP in 15 variables and 18 constraints, we get

(26)

minimize
1

4
(vL + 2v + vR)

subject to 18t1
1
− 21t2

3
+ s1 = vL

20t1
2
− 18t2

2
+ r1 = v

23t1
3
− 16t2

1
+ q1 = vR

− 33t1
3
+ 38t2

1
+ s2 = vL

− 32t1
2
+ 40t2

2
+ r2 = v

− 27t1
1
+ 43t2

3
+ q2 = vR

t1
1
+ t2

1
= 1

t1
2
+ t2

2
= 1

t1
3
+ t2

3
= 1

t1
2
− t1

1
≥ 0

t1
3
− t1

2
≥ 0

t2
2
− t2

1
≥ 0

t2
3
− t2

2
≥ 0

r1 − s1 ≥ 0

q1 − r1 ≥ 0

r2 − s2 ≥ 0

q2 − r2 ≥ 0

t1
1
≥ 0;t2

1
≥ 0;s1 ≥ 0;s2 ≥ 0.

t̃1 = (t1
1
, t1
2
, t1
3
) = (0.54, 0.54, 0.54) = ̃0.54

t̃2 = (t2
1
, t2
2
, t2
3
) = (0.46, 0.46, 0.46) = ̃0.46

ṽ = (vL, v, vR) = (−.08, 2.38, 6.45).

Minimum objective function value = 2.78
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We now take a practical problem known as plastic ban problem in Seikh et al. [43] 
to show how our methodology can be used to tackle a real world problem.

Example 3 (Plastic Ban Problem: Seikh et al. [43]) Consider the FFMG defined by 
the following payoff matrix of TFNs

Ẽ =

B1 B2 B3
A1 (115, 120, 125) (108, 110, 112) (73, 75, 77)
A2 (175, 180, 185) (115, 120, 125) (70, 72, 75)
A3 (140, 143, 146) (140, 143, 146) (145, 150, 155)

where A1,A2,A3 and B1,B2,B3 are the policies initiated by player‑I and player‑
II respectively to reduce the consumption of plastic (Seikh et  al. [43]). Let us write 
̃120 = (115, 120, 125), ̃180 = (175, 180, 185), ̃143 = (140, 143, 146), ̃110 = (108, 110, 112),

7̃5 = (73, 75, 77), 7̃2 = (70, 72, 75), ̃150 = (145, 150, 155) and assuming that z̃1, z̃2, z̃3 
are the fuzzy optimal strategies and ũ is the fuzzy optimal value of game for player‑I, 
we have the following FFLPP‑I for Ist‑player

Taking z̃1 = (z1
1
, z1

2
, z1

3
), z̃2 = (z2

1
, z2

2
, z2

3
), z̃3 = (z3

1
, z3

2
, z3

3
), ũ = (uL, u, uR), S̃1 = (S1,R1,Q1),

S̃2 = (S2,R2,Q2), S̃3 = (S3,R3,Q3) in above FFLPP-I, Using the algebra of TFNs [6] 
and solution methodology [3.2] we have the following crisp LPP-I for Ist-player

maximize F(ũ)

subject to ̃120⊗ z̃1 ⊕
̃180⊗ z̃2 ⊕

̃143⊗ z̃3 ⊖ S̃1 ≃ ũ

̃110⊗ z̃1 ⊕
̃120⊗ z̃2 ⊕

̃143⊗ z̃3 ⊖ S̃2 ≃ ũ

7̃5⊗ z̃1 ⊕ 7̃2⊗ z̃2 ⊕
̃150⊗ z̃3 ⊖ S̃3 ≃ ũ

z̃1 ⊕ z̃2 ⊕ z̃3 ≃ 1̃

z̃1, z̃2, z̃3, S̃1, S̃2, S̃3 ⪰ 0̃, where 0̃ = (0, 0, 0)
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Solving the above crisp LPP involving 21 variables and 24 constraints, we get

(27)

maximize
1

4
(uL + 2u + uR)

subject to 115z1
1
+ 175z2

1
+ 140z3

1
− Q1 = uL

120z1
2
+ 180z2

2
+ 143z3

2
− R1 = u

125z1
3
+ 185z2

3
+ 147z3

3
− S1 = uR

108z1
1
+ 115z2

1
+ 140z3

1
− Q2 = uL

110z1
2
+ 120z2

2
+ 143z3

2
− R2 = u

112z1
3
+ 125z2

3
+ 146z3

3
− S2 = uR

73z1
1
+ 70z2

1
+ 145z3

1
− Q3 = uL

75z1
2
+ 72z2

2
+ 150z3

2
− R3 = u

77z1
3
+ 75z2

3
+ 155z3

3
− S3 = uR

z1
1
+ z2

1
+ z3

1
= 1z1

2
+ z2

2
+ z3

2
= 1z1

3
+ z2

3
+ z3

3
= 1

z1
2
− z1

1
≥ 0z1

3
− z1

2
≥ 0

z2
2
− z2

1
≥ 0

z2
3
− z2

2
≥ 0z3

2
− z3

1
≥ 0z3

3
− z3

2
≥ 0 R1 − S1 ≥ 0

Q1 − R1 ≥ 0

R2 − S2 ≥ 0

Q2 − R2 ≥ 0

R3 − S3 ≥ 0

Q3 − R3 ≥ 0z1
1
, z2

1
, z3

1
, S1, S2, S3 ≥ 0.
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Now assuming that t̃1, t̃2, t̃3 are the fuzzy optimal strategies and ṽ is the fuzzy opti-
mal value of the game for Player-II, we have the following FFLPP-II for IInd-player

Taking t̃1 = (t1
1
, t1
2
, t1
3
), t̃2 = (t2

1
, t2
2
, t2
3
), t̃3 = (t3

1
, t3
2
, t3
3
), ṽ = (vL, v, vR), s̃1 = (s1, r1, q1),

s̃2 = (s2, r2, q2), s̃3 = (s3, r3, q3) in above FFLPP-II, Using the algebra of TFNs [6] 
and solution methodology [3.2] we have the following crisp LPP-II for IInd-player

z̃1 = (z1
1
, z1

2
, z1

3
) = (0, 0, 0) = 0̃

z̃2 = (z2
1
, z2

2
, z2

3
) = (0, 0, 0) = 0̃

z̃3 = (z3
1
, z3

2
, z3

3
) = (1, 1, 1) = 1̃

ũ = (uL, u, uR) = (136, 141, 146).

Maximum objective function value = 141

minimize F(ṽ)

subject to ̃120⊗ t̃1 ⊕
̃110⊗ t̃2 ⊕ 7̃5⊗ t̃3 ⊕ s̃1 ≃ ṽ

̃180⊗ t̃1 ⊕
̃120⊗ t̃2 ⊕ 7̃2⊗ t̃3 ⊕ s̃2 ≃ ṽ

̃143⊗ t̃1 ⊕
̃143⊗ t̃2 ⊕

̃150⊗ t̃3 ⊕ s̃3 ≃ ṽ

t̃1 ⊕ t̃2 ⊕ t̃3 ≃ 1̃

t̃1, t̃2, t̃3, s̃1, s̃2, s̃3 ⪰ 0̃, where 0̃ = (0, 0, 0)
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Solving the above crisp LPP involving 21 variables and 24 constraints, we get

(28)

minimize
1

4
(vL + 2v + vR)

subject to 115t1
1
+ 108t2

1
+ 73t3

1
+ s1 = vL

120t1
2
+ 110t2

2
+ 75t3

2
+ r1 = v

125t1
3
+ 112t2

3
+ 77t3

3
+ q1 = vR

175t1
1
+ 115t2

1
+ 70t3

1
+ s2 = vL

180t1
2
+ 120t2

2
+ 72t3

2
+ r2 = v

185t1
3
+ 125t2

3
+ 75t3

3
+ q2 = vR

140t1
1
+ 140t2

1
+ 145t3

1
+ s3 = vL

143t1
2
+ 143t2

2
+ 150t3

2
+ r3 = v

146t1
3
+ 146t2

3
+ 155t3

3
+ q3 = vR

t1
1
+ t2

1
+ t3

1
= 1

t1
2
+ t2

2
+ t3

2
= 1

t1
3
+ t2

3
+ t3

3
= 1

t1
2
− t1

1
≥ 0

t1
3
− t1

2
≥ 0

t2
2
− t2

1
≥ 0 t2

3
− t2

2
≥ 0

t3
2
− t3

1
≥ 0 t3

3
− t3

2
≥ 0

r1 − s1 ≥ 0q1 − r1 ≥ 0r2 − s2 ≥ 0

q2 − r2 ≥ 0r3 − s3 ≥ 0 q3 − r3 ≥ 0

t1
1
, t2
1
, t3
1
, S1, S2, S3 ≥ 0.
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5  Results and discussion

1. In Example-1, solution of Eqs.  (17) and (20) using TORA software (2.0 version) 
gives TFN optimal strategies z̃∗ = (z̃1, z̃2) = ( ̃.74, ̃.26) and t̃∗ = (t̃1, t̃2) = ( ̃.21, ̃.79) 
for player-I and player-II respectively. Expected payoff of the game for player-
I  z̃∗TẼt̃∗ = ̃.74⊗ ̃180⊗ ̃.21 + ̃.74⊗ ̃156⊗ ̃.79 + ̃.26⊗ 9̃0⊗ ̃.21 + ̃.26⊗ ̃180

⊗ ̃.79 = (155.198, 161.0556, 166.3788), which is a TFN. Defuzzifying it we get 
the valve of the game as 1

4
(155.198 + 2 × 161.0556 + 166.3788) = 160.922 . It 

means that Player-I will receive around 160.922 units if he opts his strategies I 
and II with probabilities ̃0.74 and ̃0.26 and player-II opts his strategies I and II 
with probabilities ̃0.21 and ̃.79 respectively.

2. In Example-2, solution of Eqs. (23) and (26) using TORA software (2.0 version), 
gives TFN optimal strategies z̃∗ = (z̃1, z̃2) = ( ̃.64, ̃.36) and t̃∗ = (t̃1, t̃2) = ( ̃.54, ̃.46) 
for player-I and player-II respectively. Expected payoff of the game for player-
I z̃∗TẼt̃∗ = ̃.64⊗ 2̃0⊗ ̃.54 + ̃.64⊗ ̃−18⊗ ̃.46 + ̃.36⊗ ̃−32⊗ ̃.54 + ̃.36⊗ 4̃0⊗
̃.46 = (−0.084, 2.016, 5.1104), which is a TFN. Defuzzifying it we get the valve 

of the game as 1
4
(−.084 + 2 × 2.016 + 5.1104) = 2.2646 . It means that Player-I 

will receive around 2.2646 units if he opts his strategies I and II with probabilities 
̃0.64 and ̃0.36 and player-II opts his strategies I and II with probabilities ̃0.54 and 
̃.46 respectively.

3. In the plastic ban problem in Seikh et al. [43] (Example-3) solving the Eqs. (27) 
and (28)using TORA software (2.0 version) we get TFN optimal strategies 
z̃∗ = (z̃1, z̃2, z̃3) = (0̃, 0̃, 1̃) and ̃t∗ = (t̃1, t̃2, t̃3) = ( ̃.42, ̃.58, 0̃) for player-I and player-
II respectively. Expected payoff of the game for player-I z̃∗TẼt̃∗ is calculated as 

 which is a TFN. Defuzzifying it we get the value of the game as 
1

4
(140 + 2 × 143 + 146) = 143 . It means that if the NGOs in alliance with the 

government uses strategy A3 completely and AIPMA uses 42% of strategy B1 , 
58% of strategy B2 then the consumption of plastic will possibly reduce by 143 
units with a maximum upto 146 and a minimum to 140 units. Clearly NGO and 

t̃1 = (t1
1
, t1
2
, t1
3
) = (0.42, 0.42, 0.42) = ̃0.42

t̃2 = (t2
1
, t2
2
, t2
3
) = (0.58, 0.58, 0.58) = ̃0.58

t̃3 = (t3
1
, t3
2
, t3
3
) = (0, 0, 0) = 0̃

ṽ = (vL, v, vR) = (140, 145, 150).

Minimum objective function value = 145

z̃∗TẼt̃∗ = (1̃)⊗ (140, 143, 146)⊗ ( ̃.42) + (1̃)⊗ (140, 143, 146)⊗ ( ̃.58)

= (58.8, 60.06, 61.32) + (81.2, 82.94, 84.68) = (140, 143, 146),
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government alliance will never use their strategies A1 and A2 and AIPMA will 
never use strategy B3 to achieve desired goal.

6  Comparative analysis

6.1  Existing methods

Various researchers like Campos [16], Bector et al. [8], Li [28–30], Cevikel et al. [17], 
Kumar and Jangid, Seikh et al. [43] have solved the examples that we have taken in this 
article by their respective methodologies to obtain the fuzzy optimum solution of FMG 
with payoff as TFNs. Most of the researchers have used predetermined fuzzy goals, 
adequacies, aspirations, �-cut set, degree of satisfaction or any other parameter to solve 
FMG with TFNs as payoffs. Their solutions can be influenced by changing these prede-
termined fuzzy goals, adequacies, aspirations, etc. So their results cannot be best relied 
on. Rest of the researchers have used the classical Yager’s [50] resolution method to 
solve FMG, which also involves a parameters. Their results may vary by changing the 
value of these parameters as well.

6.2  Advantage of our methodology

Our solution methodology has an advantage over the other methods proposed by earlier 
mentioned researchers because of the following reasons:- 

1. We have not used the classical Yager’s [50] resolution method to solve FMG, so 
our is a new solution methodology.

2. We have not used any predetermined adequacies, aspirations or parameters etc., 
in our solution methodology, so our results can’t be influenced by changing them. 
That’s why our results are more realistic and reliable.

3. We have used fuzzy slack and surplus variables like we do in solving the crisp 
LPP models, so our solution methodology is easy to understand and less on cal-
culations.

4. The results obtained by our solution methodology are very close to the results 
obtained by researchers for all three examples in this article, which shows that 
our proposed solution methodology is valid. A representation of comparison with 
several researchers has been depicted with the help of three comparison tables, 
table-[1], [2], [3] for examples-1, 2, 3 respectively.

7  Conclusion

In this study, we have suggested a new solution methodology for finding the optimal 
solution to a fully fuzzified two-player zero-sum matrix game. TFNs indicate the 
FFMG’s fuzzy payoff matrix and fuzzy strategies for both players. Since we deal 
with a fully fuzzified game model, we have chosen strategies as TFNs for both the 
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players, though they may eventually come as reals belonging to interval [0, 1]. The 
proposed solution methodology in this study guarantees that a matrix game with 
TFN payoffs has a TFN type of optimal value, which can be defuzzified with the 
help of the ranking function utilized in this work to produce a crisp/accurate game 
value for each player. Furthermore, unlike previous researchers, we do not need any 
pre-existing fuzzy goals, adequacies, aspirations, �-cut set, degree of satisfaction, or 
any other parameter to solve the fully fuzzified matrix game with TFNs as the payoff 
in our proposed methodology. Nonetheless, our method is simple to explain, highly 
easy, and convenient to calculate. We next showed our work with three cases, and 
the results have been compared to those achieved by some of the notable researchers 
mentioned above. Scholars may use the proposed approach in the “Telecom market 
share problem,” described by Seikh et al. [41] as well as in constrained fuzzy matrix 
games, bimatrix games, and other games.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed 
during the current study.
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