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Abstract
Recently Green Location-Routing Problem (GLRP) has been considered by many 
researchers. The GLRP includes location for depots and routing the vehicles simul-
taneously by considering environmental aspects. In this work an extension of GLRP 
in the presence of traffic congestion and based on variable speed is presented. The 
speed of vehicles (and hence the travel time), fuel consumption and environmental 
effects are not only dependent on the distance traveled but also they are dependent 
on the traffic congestion at a different time of the day, as well considered in this 
paper. For the addressed problem, a nonlinear mixed-integer programming formula-
tion is delivered and then a set of preprocessing rules to linearize the formulation is 
done. The objective of the proposed model is to minimize the fixed cost of operat-
ing depots, delayed and early servicing penalties as well as the costs of the  CO2 
emissions and the fuel consumption. The amount of fuel consumption and emissions 
are measured by a widely used comprehensive modal emission model. In the end, a 
heuristic algorithm based on the PSO algorithm is proposed to solve generated test 
instances. Computational results over test instances confirm the proposed algorithm 
can find optimal or near-optimal solutions.
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1 Introduction

In recent years, global warming has been one of the most controversial issues in 
the world. Scientists believe that one of the main causes of global warming is the 
accumulation of greenhouse gases created by human activities [1]. Studies show 
that fuel consumption in the transportation sector has a large share in the spread 
of this pollution. Such that according to reports from the International Energy 
Agency (IEA), a large ratio of the produced greenhouse gases are related to the 
transportation sector (about 23%), where the share of greenhouse gases produced 
by the road sector is close to 75%. Therefore, there is an urgent need to reduce 
 CO2 emissions produced by the road sector and the optimal use of vehicles will 
doubly important.

The classical routing problem is performed to route the vehicle fleet in a given 
network to service a set of customers under specified constraints of supply and 
demand. In the last two decades, the concept of the "green routing" problem has 
been grown rapidly. Kara et al. [2] have addressed this issue for the first time in 
the routing literature. They claimed that the "cost" depends not only on the dis-
tance traveled but also on the vehicle load. After that, Palmer [3] investigated the 
 CO2 emissions effects on vehicle routing problems (VRP). Bektas and Laporte 
[4] present a Mathematical model for the Pollution-Routing Problem (PRP), as 
an extension of the classical routing problem to minimizing the travel distance, 
the amount of greenhouse emissions, fuel, travel times, and their costs. Dif-
ferent types of PRP have been introduced in the literature. For example Jabali 
et al. [5] and Franceschetti et al. [6] addressed time-dependent PRP, and Sameh 
and Bahadori [7] focused on the homogeneous fleet of vehicles, time windows 
PRP. Mirzapour and Rekik [8], integrated the concept of inventory with the PRP. 
Gajanand and Narendran [9] proposed a mathematical model for minimizing 
the fuel consumption in a multiple-routing problem by using alternative routes 
approach between nodes. The concept of the Green Open Location Routing Prob-
lem (GOLRP) is addressed by [10]. They proposed a bi-objective mathematical 
model to minimize both operational costs and the environmental effects.

The comprehensive reviews of PRP and its variants were done by [11, 12] 
and [13]. Recently Mara et al. [14] reviewed current works on location- routing 
problem (LRP) and its extensive versions. LRP is a more general form of vehicle 
routing problem in which location and vehicle routing decisions are made simul-
taneously. It should be noted that it has been proven that [15] independent deci-
sion-making for location and routing can lead to sub-optimal solutions. Govindan 
et al. [16] described a bi-objective two echelon time windows LRP. This problem 
is addressed the perishable food supply chain network including retailers, distri-
bution centers and manufacturers. They also proposed a metaheuristics algorithm 
based on particle swarm optimization and multi-objective variable neighborhood 
search. A similar approach was proposed by Wang et.al [17]. They consider a 
two-echelon time window LRP including pickup and delivery services. The 
first echelon is related to the large eco-package transport, intending to minimize 
transport time. And the second echelon refers to small eco-package pickups and 
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deliveries, which is trying to minimize the cost of location-routing transportation 
cost and the environmental effects. The effect of fleet composition, location and 
routing on greenhouse gas emissions for urban transportation in Green Location 
Routing Problem (GLRP) have been analyzed by Koc¸ et al. [18]. In their GLRP 
model, three areas with different speeds are considered for each city and the vehi-
cle speed in each area is considered as a constant value. An adaptive large neigh-
borhood search algorithm was applied to solve the proposed model.

A relatively new approach has been used by Toro et al. [19], to the calculation of 
greenhouse gas emissions in GLRP. They deliver a bi-objective model concerning 
minimizing operating costs and minimizing environmental impacts. Dukkanci et al. 
[20] present a mathematical formulating for time window GLRP. In this problem 
the facility location of depots is done on a subset of a discrete set of points and also 
routing the vehicles for servicing the customers from depots as well as setting the 
value of speed for all leg of the journey are performed as a main goals. The objective 
includes minimizing the fixed operating costs of location for depots and the costs of 
the fuel and  CO2 emissions. In their proposed model, the authors used an emission 
formulation to computation the fuel consumption and emissions which is addressed 
by Scora and Barth [21], Barth et  al. [22], Barth and Boriboonsomsin [23]. Duk-
kanci et al. [20] have considered main parameters including time window and vari-
able speed in the GLRP simultaneously. We can also refer to some references which 
consider both issues for the green-routing problem (GRP). In [24] a multi-objective 
mathematical model was developed for soft time window GRP by considering time-
varying vehicle speed during the planning period. Franceschetti et al. [6] proposed a 
time window PRP, intending to determine the speed on each route segment to mini-
mize the cost of driver’s wage as well as environmental effects. In [25] the impact of 
Fuel-efficient behavior of GRP with variable speed on the route cost and fuel con-
sumption was investigated Figliozzi [26] proposed a mathematical model for time 
windows GRP, in which minimizing the speed-dependent  CO2 emission is a part of 
the objective function. In the model, the planning horizon time is divided into a set 
of time zone, and then a set of speeds have corresponded to each arc of the transport 
network.

In addition to the GRP features mentioned above, another important factor that 
should be considered is traffic congestion. Indeed, considering the traffic congestion, 
especially at the distribution of urban transportation, gives a realistic insight into 
GRPs.

Congestion in urban areas is a common phenomenon and usually, speeds are 
significantly reduced in the morning and evening. This means that in addition 
to the distance travelled the travel time between two points also depends on the 
speed of the vehicle as well as the time of the day. On the other hand, road con-
gestion, in turn, leads to increased fuel consumption and  CO2 emissions [23]. In 
short, congestion increases travel time, fuel consumption, and as a result more 
 CO2 emissions. Figliozzi [27], analyzed different levels of congestion and time-
definitive customer demands on  CO2 emissions in an urban distribution network. 
Jabali et al. [5] have been used the ideas from [27] to time window VRP. In their 
model, the planning horizon is partitioned into two periods, i.e.; a free-flow speed 
and a peak period speed. The peak period includes the fixed travel speed and in 
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a free-flow speed period, the model decides on its optimal speed value. Time-
Dependent PRP (TDPRP) introduced by Franceschetti et al. [28]. One of the main 
approaches of TDPRP is to determine the speeds on each leg of the routes. In 
this respect, it is different from similar issues and is more practical. Inspired by 
Jabali et al. [5], Xiao and Konak [29] addressed the GRP model with a time win-
dow by considering time-varying traffic congestion. The impact of traffic conges-
tion and vehicle loads on emissions has been verified in their work. A hybrid 
algorithm based on iterated neighborhood search was applied to solve the model. 
Hoshmand and Mirhassani [30], applied the same concepts to Time-Dependent 
GRP (TDGRP) model. The objective was to minimize the  CO2 emissions, consid-
ering the presence of congestion. Due to congestion and instability of the vehicle 
speeds during the day, the planning horizon is divided into three time periods: 
morning peak, free-flow speed, and evening peak. Different speeds are associated 
with each period. After proposing MILP mathematical modeling, they applied a 
hybrid heuristic algorithm based on some decomposes technique and simulated 
annealing method. Raeesi and Zografos [31], developed TDGRP for urban freight 
distribution networks. They consider several factors affecting fuel consumption 
and emission includes, including load vehicle, fleet size and mix, departure times, 
and traffic-congested urban road. Liu et al. [32], proposed a mathematical model 
TDGRP with the hard time window, wherein some factors such as vehicle speeds, 
travel time, load vehicle, and service time that affecting fuel consumption and the 
resulting emission, were considered. The same model was developed by Zhang 
et  al. [33]. To solve the model, a hyper-heuristic algorithm based on greedy 
search and tabu algorithms was applied.

Table 1 summarizes the findings of this study. Accordingly, it can be observed 
that there is no mathematical model for Time-dependent GLRP with a time win-
dow to consider the variable speed in a different time-dependent congested urban 
area. Typically, traffic congestion has an interval speed limits range, and due 
to time windows, the speed of a vehicle may not be the same, on two different 
routes with the same speed range. So, in this paper, an extension of the GLRP is 
addressed, in which time-dependent traffic-congested, soft and hard time window, 
and variable speed are considered simultaneously within a single optimization 
model. The main contributions are as follows.

(1) The GLRP by considering, traffic time congestion, variable speed, soft and hard 
time window simultaneously is defined formally.

(2) A new mixed integer nonlinear programming (MINLP) model for the addressed 
problem is developed in Sect. 2.

(3) By using some linearization techniques, an equivalent mixed integer linear pro-
gramming (MILP) model is delivered.

(4) Then, a Quantum Binary PSO (QBPSO) algorithms is modified to solve the 
proposed model in Sect. 3; and in the end in Sect. 4.

(5) Computational analyses on the model to evaluate the performance of the QBPSO 
method and some sensitive analysis to verify the effect of some factors of the 
model are conducted.
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2  Problem description and formulation

In the considered problem, there is the number of customers in definite locations 
with known demands that they are served by a set of vehicles. Customers’ demands 
can be met through several potential depots that the location of depots, as well as 
vehicle routing, are determined after solving the problem. The vehicle routing is 
accomplished according to traffic congestion, variable speed of vehicles, and time 
windows for serving customers. In addition, one of the main parts of the objective 
function is to reduce  CO2 emissions from transportation and fuel consumption. In 
this section, firstly a mathematical formulation of the TDGLRP with variable speed 
will be addressed. And then, the calculation of fuel consumption and emissions for a 
considered network, which is also available in the literature, is briefly stated.

2.1  Problem description and formulation

The defined problem is considered on a complete directed graph G = (N,A) . Let 
N = {1, 2, ..., n} is the set of nodes for representing both the set of potential sites 
and customers. It is assumed that the depots are located at the maximum P nodes, 
A = {(i, j) ∶ i, j ∈ N, i ≠ j} is the set of arcs with distance dij  for any arc (i, j) ∈ A , 
and ci is the fixed operating cost of a depot at node i ∈ N . Also there are fleet of 
m same vehicles, by capacity C that try to serve the customers (with nonnegative 
demand qi for a customer i ) across the at most P depot(s).

For the, soft and hard time windows and service time at node i ∈ N the notations [
li, ui

]
 , 
[
ai, bi

]
 and si are applied respectively. The continuous nonnegative variable ti 

is considered for the service start time at node i ∈ N . If a vehicle arrives at customer 
i before li , it penalties as much as PL(li − ti) ≥ 0 , and if a vehicle arrives at customer 
i after ui , it penalties as much as PU(ti − ui) ≥ 0 . Also, the vehicles are not allowed 
to service the demand point i before ai and after bi.

Congestion has always been a common phenomenon, and so there are various 
restrictions on the speed of vehicles during the day. Furthermore, each arc has its 
speed limitations. So, In addition, to consider the vehicle speed as a variable, the 
restrictions on the speed of vehicles during the day are taken into account. For this 
reason, three time periods with different limitation speeds are associated with the 
planning horizon periods called the morning peak, the free-flow speed, and the 
evening peak. In the morning and evening peak periods which incorporate with 
rush hours, the speed is low relatively. Whereas in the free-flow speed period, which 
incorporates with the middle of the day, the speed of a vehicle is more than the other 
two periods (because the traffic density is lower).

Let 
[
0, Tmax

]
 denoted for the planning horizon time for any arc (i, j) , and a1 and a2 

are considered as breakpoints of this interval for speeds change ( 0 < a1 < a2 < Tmax ) 
on this arc.

The three traffic situations with different speeds on arc (i, j) can be described as 
Fig. 1:
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In addition, it is assumed that the departure time of the vehicles from the depots is 
not necessarily zero time and it may be, the vehicle starts moving from non-zero time. 
Given the penalties for early and late service, it makes sense for the vehicle to have a 
non-zero departure time. In this respect, the following proposed model is different from 
the models addressed in the literature. The utilized sets, indices, and parameters in the 
model formulation are as Tables 2 and 3:

With respect to above notations, a mathematical formulation of the TDGLRP with 
variable speed model is as:

(1)

P1 ∶ Z1 = min
∑
j∈N

PLmax{lj − tj, 0} + PUmax{tj − uj, 0} +
∑
k∈N

ckykk + eFC

(2)S.T
∑
k∈N

yik = 1 ∀i

(3)yik ≤ ykk ∀i, k

Fig. 1  Different speed on a 
time dependent travel time for 
arc (i, j)

Table 2  Parameters and notations

p Maximum number of depots
m Maximum number of vehicles
ck The fixed operating cost for a depot at node k[
lj, uj

]
The soft time window for delivering service to customer j[

aj, bj
]

The hard time window for delivering service to customer j
PL(PU) The per unit time penalty cost for early (or delay) of delivering service
ef The unit cost of emission
cf The unit cost of fuel consumption
e = (cf + ef ) The unit combined fuel consumption and emission costs
dij distance on arc (i, j) ∈ A

a1, a2 Breakpoints indicating the time of the day at which speed changes
Tmax Pre-specified time limit indicating the duration of a workday, expressed in hour
qi Demand of customer i
C Vehicle load capacity
si Service time spent at node i  , expressed in hour
M The positive large number value
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(4)
∑
k∈N

ykk ≤ p

(5)
∑
k∈N

∑
j∈N−{k}

xk
kj
≤ m

(6)
∑

j∈N−{i}

xk
ij
= yik ∀i, k ∶ k ≠ i

(7)
∑

j∈N−{k}

xk
jk
= yik ∀i, k ∶ k ≠ i

(8)
∑

j∈N−{k}

xk
jk
=

∑
j∈N−{k}

xk
kj

∀k ∶ k ≠ j

(9)dijx
k
ij
=
∑
p

z
p

ij
∀(i, j) ∈ A, k

(10)t
p

ij
=

z
p

ij

v
p

ij

∀(i, j) ∈ A, p

(11)ti + si + t1
ij
− a1 ≤ M�1

ij
∀(i, j) ∈ A

(12)t2
ij
≤ bj�

1

ij
∀(i, j) ∈ A

(13)a1 − ti − si − t1
ij
≤ M(1 − �1

ij
) ∀(i, j) ∈ A

Table 3  The variables

xk
ij

Binary variable equals 1 if a vehicle that is assigned to depot k ∈ N travels on arc (i, j) ∈ A , and 0 
otherwise

yik Binary variable equals 1 if the customer at node i ∈ N is assigned to a depot at node k ∈ N,
�1
ij
, �2

ij Binary variable associated with time period p and if �p
ij
= 1 , then zp+1

ij
≥ 0

v
p

ij
Nonnegative variable speeds associated with time period p on the arc (i, j) ∈ A

z
p

ij
The nonnegative variable covered distance with speed vp

ij
 associated with time period p on the arc 

(i, j) ∈ A

tj The nonnegative variable service start time at node j ∈ N

t
p

ij
The nonnegative variable travel time (expressed in hour) on the arc (i, j) ∈ A by variable speed vp

ij

fij The nonnegative variable represents the total amount of flow on arc (i, j) ∈ A

FC The nonnegative variable represents the fuel consumption and emissions
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The objective function includes three components. The first one minimizes the 
penalty for late and early delivery of services, the second one, is about minimizing 
the fixed cost of operating depots. In the third part, the total cost of fuel consump-
tion and emissions based on the variable speed is minimized. The third part FC is 
obtained based on the CMEM model which will be described briefly in the next 
subsection.

(14)ti + si + t1
ij
+ t2

ij
− a2 ≤ M�2

ij
∀(i, j) ∈ A

(15)t3
ij
≤ bj�

2

ij
∀(i, j) ∈ A

(16)a2 − ti − si − t1
ij
− t2

ij
≤ M(1 − �2

ij
)

(17)t
p

ij
≤ Tmax

∑
k

xk
ij

∀(i, j) ∈ A

(18)ti + si +
∑
p

t
p

ij
− (bi + si)(1 − xk

ij
) ≤ tj ∀(i, j) ∈ A, k ∶ k ≠ i, j

(19)tk +
∑
p

t
p

ij
− Tmax(1 − xk

kj
) ≤ tj ∀k, j ∶ k ≠ j

(20)ti ≤ Tmax ∀i

(21)v
p

ijl
≤ v

p

ij
≤ v

p

iju
∀(i, j) ∈ A, p

(22)aj(1 − yjj) ≤ tj ≤ bj(1 − yjj) + Tmaxyjj ∀j

(23)
∑

j∈N−{i}

fji ≤
∑

j∈N−{i}

fij − qi(1 − yii) +
∑
k∈N

qkyii ∀i

(24)fij ≤ C
∑
k∈N

xk
ij

∀(i, j) ∈ A

(25)
∑

j∈N−{i}

fji ≤ C(1 − yii) ∀i

(26)xk
ij
, yik, �

1

ij
, �2

ij
∈ {0, 1} ∀i, j, k

(27)v
p

ij
, t

p

ij
, z

p

ij
, tj, fij ≥ 0 ∀i, j, p
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Equality (2) shows that each customer is allocated to one depot exactly. Restric-
tion (3) states that customers should not be assigned to nodes where there are no 
open locations. The maximum number of depots used is indicated by Constraint (4). 
Constraint (5) is about the maximum number of vehicles that can be used for cus-
tomer service. Constraints (6) and (7) ensure that if a specific depot serviced a cus-
tomer, a vehicle will refer to the customer before and after the other two customers 
assigned to that depot.

Due to equality (8), the number of vehicles entering and leaving the depot is the 
same. The Constraint (9) indicates the distance traveled at different speeds on each 
arc, and constraints (10) is about the time passed at different speeds. Constraints 
(11)–(16) stipulate that the vehicle travels on arc (i, j) should occur at one, two or 
three of the time congestion regions. Constraint (17) guarantees that, a vehicle trav-
els on arc (i, j) in time period p , if both customers i and j are allocated to a common 
depot.

The inequality (18) calculates the arrival time of a vehicle at node j after leaving 
the node i.

Constraint (19) computing of the time of arrival of the vehicle to the first cus-
tomer visited after leaving the depot by departure time tk . Constraint (20) indicates 
the return time (no later than Tmax ) of the vehicle to the depot. The constraint (21) 
shows the speed limits at different time congestions. Constraint (22) shows the limi-
tation of hard time window for customers.

This inequality also ensure that, if mode yjj = 1 occurs i.e., depot is located at a 
node j , then departure time of the vehicle is at most Tmax . The flow conservation 
between nodes (except for opened depots) provided by constraint (23). This con-
straint guarantees that the demands of customer are met as well as vehicle capacity 
by constraint (24). Notice that fij is the total amount of demand (excluding customer 
j ) in the path, and if k is selected as the depot, the customer k is not considered.

It should be noted that load level vehicles restrictions also prevent the creation of 
sub-tour by constraint (25).

Finally, constraint (26) and (27) show the binary restrictions as well as non-nega-
tivity limitations on variables.

2.2  The CMEM model for calculating fuel consumption and emissions

The amount of greenhouse gas emissions is directly related to fuel consumption, 
so the amount of emissions can be calculated after determining the amount of fuel 
consumption.

The superior model from the literature to calculate the emission is that takes 
into account other more precise parameters of the vehicles such as engine friction 
coefficient, engine speed, and vehicle speed while moving. Scora and Barth [21], 
Barth et al. [22], Barth and Boriboonsomsin [23], and Dukkanci et al. [20], used 
a comprehensive modal emission model (CMEM) to calculate emission. In this 
model, it has been tried to consider all the factors influencing the amount of fuel 
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consumption and emissions. To present and display the model CMEM, it is nec-
essary to define the symbols as follows:

� The fuel-to-air mass ratio
� The efficiency parameter for diesel engines
� The heating value of a typical diesel fuel
ntf The efficiency of the vehicle drive train, 

which is related to the overall efficiency 
of all engine transmission components to 
the wheels

pacc The engine power demand related to 
engine losses and the performance of 
vehicle accessories such as the use of air 
conditioning

ptract The total tensile power required (in kW)
� Weight of goods shipped
a The instantaneous acceleration
S The frontal surface area (in  m2)
g The gravitational constant (in m/s2)
� The road angle
Cd The coefficient of aerodynamic drag
Cr The coefficient of rolling resistance
� The air density (in kg/m3)
� The conversion factor of fuel
V The engine displacement (in L)
K The engine friction factor
Υ The engine speed

The core of the CMEM is the fuel consumption rate. Fuel consumption per 
cycle is about a linear function of work output per cycle for power level less than 
two-thirds of the power at wide-open throttle. This is directly related to the engine 
power demand ( p ) and engine speed ( Υ ). The basic fuel consumption module 
(based on [35]) is as follows:

in which, p = ptract
/
ntf + pacc and ptract in turn, is calculated as follows:

For simplifying the above formulation of fuel consumption rate Fr (in L) the 
new parameters are defined. Suppose that the vehicle travels a road of d units (in 
m) at a constant speed v , if � = �∕�� , � = 1

/
1000ntf � , � = a + g sin � + gCr cos � , 

� = 0.5Cd�S , then:

Fr = �

(
KΥV +

P

�

)/
�

ptract =
(
Ma +Mg sin � + 0.5Cd�Sv

2 +MgCr cos �
)
v
/
1000

Fr = ���dM + ��d�v2 + �KΥVd∕v
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Note that, it can be easily shown that function fuel consumption Fr has a minimum 
point in terms of v (assuming the other parameters are constant). The minimum point 
is determined according to the values �, �,Υ,V and K . This means that the fuel con-
sumption is decreased if the speed increases up to a certain value, and after this speci-
fied amount, fuel consumption increases in proportion to the increase in speed.

By using the above specific formulations, the third part of the objective function of 
the mathematical model of TDGLRP is defined as:

All three of these components translate directly into the total cost of fuel consump-
tion and related emissions calculated by the unit cost e = (cf + ef ) multiplied by the 
total amount of fuel consumed overall links.

The proposed model P1 is different from the other related GLRP models and its 
extension because of the incorporation of Time-dependent and variable speeds simul-
taneously. However, due to the variable speed, nonlinear expressions appear both in 
the in constraints and in the objective function. In the next section and to get rid of 
nonlinearity terms, some linearization operations are performed and then the problem 
is solved.

3  Solution method

TDGLRP with variable speed is an extended version of the classical VRP and so it is 
NP-hard. It is remarkable that, when the number of customers and depots are increased, 
the model size grows rapidly and so obtaining good or even feasible solutions to 
medium scale and large scale cases of the proposed model in a reasonable time is not 
possible with Mixed-Integer Nonlinear Programming (MINLP) solvers. Our proposed 
model encompasses nonlinear terms in both objective and constraints which makes 
the model more complicated. In this section, we try to provide an efficient method 
to achieve optimal or near-optimal solutions in a reasonable computation time. The 
addressed method is based on two main phases. In the first phase of the approach by 
using some linearization techniques, the nonlinearity terms associated with the model 
are linearized. Then in the second phase, the adoptive PSO method is applied to solve 
the linearized model.

3.1  Linearization phase

For linearization of the first term of objective function i.e. ∑
j∈N

PLmax{lj − tj, 0} + PUmax{tj − uj, 0} , two additional nonnegative continuous 

variables Tlj and Tuj (for any j ) are added to the problem as well as the following new 
sets constraint:

Fr = FC =
�
(i,j)∈A

⎡
⎢⎢⎢⎣

�
���dij�

�
k∈N

xk
ij

�
+ (���dijfij) +

�
���dij

�
(i,j)∈A

�
p

(v
p

ij
)
2

+

⎛
⎜⎜⎜⎝
KΥV�dij

�
(i,j)∈A

1∑
p

v
p

ij

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
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Then the first part of objective function is changed to 
∑
j∈N

PLTlj + PUTuj.

In the linearization operation of the multiplication of variables, the type of line-
arization can be different depending on what kind of variables are multiplied. In the 
main model, the variable speed is continuous. Due to the complexity of linearization 
of the multiplication of continuous variables, the variable speed is considered as a 
discrete variable [20] and the linearization is performed based on it. There are differ-
ent approaches for linearizing expressions that contain integer variables, but using 
binary variables is a common method for this type of linearization. There are two 
important approaches to display a discrete variable using binary variables. In the 
first approach, for each value that a discrete variable can take, a binary variable is 
defined and a constraint is added to the problem that only one of these variables can 
take the value 1 to select only one velocity. Although this method is manageable, the 
number of defined binary variables increases rapidly as the number of states that 
speed can take. Another method can be used to show the integer variable based on 
binary variables. This method uses the rule that any integer can be written in base2. 
So, a finite sets Rp

ij
= {1, 2, 3, ...r, ..} with r ∈ R , for speed levels are defined corre-

sponds to a fixed speed vp
ijr

 , i.e. vp
ij
∈
{
v
p

ij1
, v

p

ij2
, ..., v

p

ijr
, ...

}
 , to linearize the expres-

sions that contain vp
ij
(as a discrete variable). For this reason and for every period p , 

Since vp
ijl
≤ v

p

ij
≤ v

p

iju
 , then vp

ij
 can be written as vp

ij
=

Ω∑
�=0

2��
p

ij�
 wherein �p

ij�
 are binary 

variables and Ω is the smallest number that holds in the equation vp
iju

≤ 2Ω or for 

convenience we can say Ω =

[
ln v

p

iju

ln 2

]
+ 1 ( Ω is defined as a parameter based on the 

upper-bound of speed at each arc and period).
To linearize expressions that include 

(
v
p

ij

)2

 , first, one of the multiplicative varia-
bles vp

ij
 is written based on binary variables �p

ij�
 and then the linearization approach 

by multiplying the integer variables by the binary variables is performed. In this 
way, a new integer variable �p

ij�
 is defined and replaced by the multiplication of the 

integer and binary variables vp
ij
�
p

ij�
:

such that �p

ij�
∈ Z

+ . And the following constraints also added to the model because 
of substituting vp

ij
�
p

ij�
= �

p

ij�
.

(28)lj − tj ≤ Tlj ∀j

(29)tj − uj ≤ Tuj ∀j

(
v
p

ij

)2

= v
p

ij
v
p

ij
= v

p

ij

Ω∑
�=0

2��
p

ij�
=

Ω∑
�=0

2�v
p

ij
�
p

ij�
=

Ω∑
�=0

2��
p

ij�

(30)�
p

ij�
≤ M�

p

ij�
∀(i, j) ∈ A, p, �
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These constraints guarantee that, if �p
ij�

= 1 , then �p

ij�
= v

p

ij
 and if �p

ij�
= 0 then 

�
p

ij�
= 0.

Now, consider the nonlinearity term 1∑
p

v
p

ij

 , the following method can be used to 

linearize this expression, firstly define the new continues variable hij and let 
1∑

p

v
p

ij

= hij , then 1 =
∑
p

hijv
p

ij
 , so

where in �p

ij�
= hij�

p

ij�
 for every (i, j) ∈ A, p, � . And the constraints similar to the pre-

vious constraints are added to the problem:

Finally for nonlinearity term tp
ij
=

z
p

ij

v
p

ij

 the same technique is applied. To this end, in 

first, let vp
ij
t
p

ij
= z

p

ij
 and so 

Ω∑
�=0

2�t
p

ij
�
p

ij�
= z

p

ij
 . By defining the new nonnegative contin-

ues variable �p

ij�
 , we have 

Ω∑
�=0

2��
p

ij�
= z

p

ij
 which �p

ij�
= t

p

ij
�
p

ij�
 for every (i, j) ∈ A, p, � . 

And following constraints are also added to the main model:

So, the problem P1 is converted to the following problem P′
1
:

(31)M(�
p

ij�
− 1) + v

p

ij
≤ �

p

ij�
∀(i, j) ∈ A, p, �

(32)�
p

ij�
≤ M(1 − �

p

ij�
) + v

p

ij
∀(i, j) ∈ A, p, �

hijv
p

ij
= hij

Ω∑
�=0

2��
p

ij�
=

Ω∑
�=0

2�hij�
p

ij�
=

Ω∑
�=0

2��
p

ij�

(33)�
p

ij�
≤ M�

p

ij�
∀(i, j) ∈ A, p, �

(34)M(�
p

ij�
− 1) + hij ≤ �

p

ij�
∀(i, j) ∈ A, p, �

(35)�
p

ij�
≤ M(1 − �

p

ij�
) + hij ∀(i, j) ∈ A, p, �

(36)�
p

ij�
≤ M�

p

ij�
∀(i, j) ∈ A, p, �

(37)M(�
p

ij�
− 1) + t

p

ij
≤ �

p

ij�
∀(i, j) ∈ A, p, �

(38)�
p

ij�
≤ M(1 − �

p

ij�
) + t

p

ij
∀(i, j) ∈ A, p, �
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3.2  Quantum BPSO algorithm

QBPSO is comprehensively applied to solve IP problems. One of the main contribu-
tions of this paper is adapting the algorithm to solve the transformed Mixed Integer 
problem efficiency. The modification is carried out on the global best position at 
each iteration to improve the overall algorithm performance.

3.2.1  Preliminaries

The particle swarm optimization (PSO) method is a population-based algorithm 
originally proposed by Kennedy and Eberhart [36]. In the system, the social behav-
ior of the flock of birds is simulated, so that the birds (particles) represent the nomi-
nation solutions to the problem, flying through the search space to gain the optimal 
solution. In each iteration, the particles move to the desired level by tracing their 
best-discovered solutions so far and determine the best global position by each par-
ticle in the swarm.

Suppose the dimension of the search space is K . For the i-th particle, the cur-
rent position and velocity vectors are represented as Xi = (x1

i
, ..., x

j

i
, ..., xK

i
) and 

Vi = (v1
i
, ..., v

j

i
, ..., vK

i
) . Let Pbesti = (pbest1

i
, ..., pbest

j

i
, ..., pbestK

i
) demonstrate the 

best position of the i-th particle and Gbest = (gbest1, ..., gbestj, ..., gbestK) be the 
group’s best position recorded so far. The following equations show how to update 
the velocity and position of i-th particle at t-th iteration to t + 1-th iteration:

where w is the inertia weight, c1 and c2 are utilise to show the acceleration coeffi-
cients. These coefficients represent the degree of belief on the particle’s own experi-
ence and the whole swarm experience, respectively. Also r1 and r2 are random values 
in the interval [0, 1].

(39)

P�
1
∶ Z1 = min

∑
j∈N

∑
j∈N

PLTlj + PUTuj +
∑
k∈N

ckykk

+ e
∑
(i,j)∈A

[(
���dij�

∑
k∈N

xk
ij

)
+ (���dijfij) +

(
���dij

∑
(i,j)∈A

∑
p

Ω∑
�=0

2��
p

ij�
+

(
KΥV�dij

∑
(i,j)∈A

hij

)]

S.T (2) − (9) and (11) − (37)

Ω∑
�=0

2��
p

ij�
= z

p

ij
∀i, j, p

(40)�
p

ij�
,∈ {0, 1} ∀i, j, p, �

(41)Tlj, Tuj, �
p

ij�
,�

p

ij�
, hij ≥ 0, �

p

ij�
, v

p

ij
∈ Z+ ∀i, j, p, �

(42)Vi(t + 1) = wVi(t) + c1r1(Pbesti(t)) − Xi(t)) + c2r2(Gbest(t)) − Xi(t))

(43)Xi(t + 1) = Xi(t) + Vi(t + 1)
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3.2.2  Binary PSO (BPSO)

Kennedy and Eberhart [36] proposed the Binary version of PSO (BPSO). In this 
version, each particle is represented by a string of 0 and 1. Particle velocity is related 
to the probability with which a little flip will occur [37]. Remarkably, the updat-
ing equation for velocity (42) is remained unchanged while the equation of updating 
position changes as follows:

where uj
i
(t) is a random number belonging to [0, 1] , and S(vj

i
(t)) is the velocity value 

sigmoid function ( 1∕(1 + exp(−v
j

i
(t))) ) that specifies the probability of the j th bit of 

i th particle, i.e., xj
i
(t)  being 0 or 1 at tth iteration.

3.2.3  Quantum Binary PSO (QBPSO)

The idea of "mechanism of biological evolution" and "simulation of things" have pro-
duced successful theories, one of which is binary quantum PSO (QBPSO) proposed 
by Yang et al. [38]. One of the major drawbacks of the BPSO method is being unintel-
ligent S(vj

i
) , making it unable to lead the particles to the promising region of the search 

space. Furthermore, parameter selection is difficult. QBPSO overcomes these disad-
vantages. In QBPSO, a population of quantum particle vector Q(t) is used instead of a 
sigmoid function. Remarkably, quantum bit or ‘qubit’, is the smallest unit that carries 
information which can be either "1" or "0" or at each extraordinary position. Hence, the 
quantum particle population is expressed as Q(t) = [Q1(t), ...,Qi(t), ...,QN(t)] , where 
Qi(t) = [q1

i
(t), ..., q

j

i
(t), ..., qK

i
(t)] and 0 ≤ q

j

i
(t) ≤ 1 , i = 1, 2, ...,N, j = 1, 2, ...,K rep-

resent the probability of the i th particle in the j th bit for taking zero value at the t th 
iteration.

In QBPSO, a quantum particle vector  Qi(t) = [q1
i
(t), ..., q

j

i
(t), ..., qK

i
(t)] updates the 

position of particles by the following rule:

Also, for updating the quantum particle vector, the following rules are used:

where �, �  are control parameters and satisfied in relations � + � = 1, 0 ≤ �, � ≤ 1 . 
Furthermore, these parameters are tuned to control the degree of Qi . w, c1, c2 are 

(44)x
j

i
(t) =

{
1 if u

j

i
(t) > S(v

j

i
(t))

0 otherwise

(45)x
j

i
(t) =

{
1 if u

j

i
(t) > q

j

i
(t)

0 otherwise

(46)Qgroupbest(t) = � ∗ Gbest(t) + � ∗ (1 − Gbest(t))

(47)Qselfbest,i(t) = � ∗ Pbesti(t) + � ∗ (1 − Pbesti(t))

(48)Qi(t + 1) = w ∗ Qi(t) + c1 ∗ Qselfbest,i(t) + c2 ∗ Qgroupbest(t)
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PSO parameters and satisfied in relations w + c1 + c2 = 1, 0 ≤ w, c1, c2 ≤ 1 . The 
parameters represent the degree of belief on oneself, local maximum, and global 
maximum, respectively. The general framework of QBPSO for the proposed model 
is described as follows:

3.2.4  QBPSO for solving the proposed BLPP

Below, the QBPSO algorithm is adopted for solving mixed-integer linear prob-
lems. In this algorithm, by the calculation fitness function iteratively, it is possi-
ble to get closer to the optimal solution step by step.

Adopted QBPSO algorithm.
Step 1: (Initialization).
1.1 Set the values parameters of the QBPSO algorithm and population sizes N , 

Qi.
1.2. By Eq. (44), for any particle, the initialized value of the decision variables 

Xm = (xkm
ij
, ym

ik
, �1m

ij
, �2m

ij
, �

pm

ij�
) generate randomly; then, by fixing Xm in the problem 

P′ , the linear problem is solved. (Of course, since the values of vp
ij
 are determined 

with respect to the values of �p
ij�

 and also, �p

ij�
 values are set based on vp

ij
 values, so 

practically, after determining the values of �p
ij�

 , the variables vp
ij
 and �p

ij�
 have the 

role of parameter in the model).
Let Y∗

m
= (t

p

ij
, z

p

ij
, tj, fij, Tlj, Tuj, hij, �

p

ij�
,�

p

ij�
)∗
m

 be the optimal solution to the linear 
problem. Then, by fixing Xr and optimal values of the Y∗

m
 (regarding Xr ) in the 

objective function of problem P′ , the fitness value of the current position of m-th 
particle (Xm, Y

∗
m
) is calculated by using F(Xm, Y

∗
m
) , where F known as P′ ’s objec-

tive function. Consider the personal best position of m-th particle 
Pbestm = (Xbestm, Ybestm) equal to (Xm, Y

∗
m
) and set the global best position 

Gbest = (Xbest, Ybest);
Step 2: (Updating Xm) Change Qm and update Xm according to the QBPSO 

algorithm;
Step3: (Determining the particle’s fitness) By fixing the new Xm in the problem 

P′ , the related optimal continuous variables Y∗
m
 are obtained. Then, by fixing (Xm, Y

∗
m
) 

in the objective functions of problem P′ , the position and fitness value of F(Xm, Y
∗
m
) 

is calculated;
Step4: (Updating the personal best position) If the fitness value of (Xm, Y

∗
m
) is 

better than that of Pbesti = (Xbesti, Ybesti) , update Pbesti;
Step5: (Updating the global best position) After comparing fitness value of Gbest 

with that of all personal best positions, the Gbest is updated with the global best 
position Gbest = (Xgbest, Ygbest);

Step6: (Termination) Go to step2 until the stopping criterion is met.
Note that, in the initialization phase, feasible solutions are generated, and this 

property is kept during the algorithm implementation.
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4  Computational experiments

In this section, the evaluation of the proposed model and the efficiency of the algo-
rithm are done. Firstly, the setting procedure of existing parameters in the algorithm 
will be explained. Then, the computational results on some existing test problems 
are provided by the proposed algorithm.

Computations are performed on a PC running with a Core(TM) i5, 3.19 GHz pro-
cessor, and 4.0 GB RAM, and Windows 10 operating system. Also, GAMMS math-
ematical modeling-language with ILOG CPLEX 12.6 solver is used for coding the 
QBPSO algorithm.

4.1  Test instances and determining the value of parameters

The base of instances tested here are available at [39]. All values of emission param-
eters extracted from [20], and the VRP parameters are considered based on instances 
available at [39].

Of course these parameters does not include any information about the planning 
horizon congestion traffic times and the upper and lower levels of speed for arcs. For 
these reason, we assume that the planning horizon starts at the time 0, the points a1 , 
a2 , and Tmax are set at the times 2, 6, and 9  h, correspondingly. Each 
v1
ijl
, v1

iju
, v2

ijl
, v2

iju
, v3

ijl
 and v3

iju
 are generated randomly based on integer part of uniform 

distribution from U(24, 26),U(44, 48),U(53, 57),U(85, 95),U(27, 31) and U(48, 52) 
respectively. It is remarkable that, because of vp

ij
∈ Z+ , then after identifying the 

upper and lower bounds of allowable speed, the value of  vp
ij
 is belong to the set 

{v
p

ijl
, v

p

ijl
+ 2, ...., v

p

ijl
+ 2k, v

p

iju
} where vp

ijl
+ 2k = v

p

iju
  or vp

ijl
+ 2k < v

p

iju
 . Also, the hard 

time windows for delivering services are obtained from 
U(max{lj − 600, 0}, min{uj + 900, 32400}) in s.

The performance of the proposed approach is evaluated on different instances 
that described in previous section. To this end, the best parameters of the solution 
algorithm must be selected in the best way. One of the best techniques for determin-
ing the values of parameters in metaheuristics algorithms in order to obtain opti-
mum performance is the Taguchi method. Hence, in this step, to reach the optimal 
or near-optimal solution, the impact of parameters c1, c2,w , � , and �  on the QBPSO 
efficiency and capability is provided. Remarkably, based on the relations � + � = 1 
and w + c1 + c2 = 1 , setting the values of parameters c1, c2 , � is enough. For these 
factors, five levels are considered in Table 4. For this reason, the Taguchi L25 orthog-
onal array is selected (due to the number of parameters and their selected levels). 
Therefore, 25 experiments should be performed using a combination of levels for 
each parameter in accordance with L25.

The medium size of the instance (UK50_10 from the [39]) is used to calibrate 
the parameters of the proposed hybrid-based heuristic algorithm. Twenty-five parti-
cles are considered as population size, and the maximum iteration number of 100 is 
used for stopping criterion. For each set of parameters, ten runs of the algorithm are 



963

1 3

OPSEARCH (2022) 59:945–973 

considered. The average value of objective function as the signal to noise (S/N) ratio 
is performed and reported in Table 5.

As a result, to identify the best optimal combination of the levels of parameters, 
the mean value of (S/N) is computed for each level. The results are depicted in 
Fig. 2.

The results from the above figure show that the effects of the parameter � on 
QBPSO performance in reaching the optimal value of a leader’s profit are more sig-
nificant than the two remaining parameters c1, c2 . However, the optimum level of 
parameter c1, c2 and � are c1(2) = 0.2, c2(3) = 0.3 and �(1) = 0.1.

Table 6 reports the analysis of variance to determine the most effective parame-
ters in QBPSO performance. The column percentage contribution shows the signifi-
cance of parameter effects on the PSO-based method performance. It can be clearly 
deduced that � is an important and unique parameter in this method with a 98.3% 
share in yield.

Finally, based on the above analysis, the proposed hybrid algorithm with an opti-
mal combination of parameters is used to solve the problem under study.

Table 4  The levels of 
parameters

Parameter Levels

1 2 3 4 5

� 0.15 0.35 0.55 0.75 0.95
c1 0.1 0.2 0.3 0.4 0.5
c2 0.1 0.2 0.3 0.4 0.5

Table 5  The orthogonal array and the S/N ratios

Experiment Parameters S/N ratio Experiment Parameters S/N ratio

� c
1

c
2

� c
1

c
2

1 1 1 1 − 80.616 14 3 4 1 − 87.471
2 1 2 2 − 80.084 15 3 5 2 − 87.964
3 1 3 3 − 80.393 16 4 1 4 − 89.870
4 1 4 4 − 80.265 17 4 2 5 − 89.328
5 1 5 5 − 80.658 18 4 3 1 − 89.715
6 2 1 2 − 83.017 19 4 4 2 − 89.394
7 2 2 3 − 82.462 20 4 5 3 − 89.630
8 2 3 4 − 82.815 21 5 1 5 − 93.422
9 2 4 5 − 82.578 22 5 2 1 − 93.001
10 2 5 1 − 82.920 23 5 3 2 − 93.364
11 3 1 3 − 87.836 24 5 4 3 − 93.210
12 3 2 4 − 87.329 25 5 5 4 − 93.496
13 3 3 5 − 87.857
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4.2  Computational results

Based on the number of nodes from the [39], 9 different data sets are categorized 
for test instances and each of them involving 5 instances. The parameters used 
to create these instances are encoded in the filename as follows: these instances 
are based on real distances collected from randomly chosen UK cities as shown 
in [39]. The first number in the file name after UK shows the number of nodes 
contained in the instance. The second is the order number of the instance within 
the group.

So, totally 45 test instances have been used to verify the efficiency of the QBPSO 
algorithm. The computational results of the instances are brought in Table 7.

The first column of the table demonstrate the name of each data set. ZCP indicates 
the best objective value corresponding to the feasible solution obtained by CPLEX 
for the P′ within a time limit of 7200 s. CPLEX solver can obtained to the desired 
optimal solution for small instances (includes instances with 10 and 15 nodes). 
While, for medium size tests (includes instances with 20, 25, 50 and 75 nodes), 
CPLEX could not complete the solving process in a timely manner and therefore 
the best value obtained from the objective function was reported as a best solu-
tion found. Also for large scale data sets (includes instances with 100, 150 and 200 
nodes) CPLEX cannot find any feasible solution for P′ . In fact by increasing the size 
of the problem, the computing time performed by CPLEX increases too rapidly.
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-82
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Fig. 2  SNR graph

Table 6  The analysis of variance

Parameters Sum of squares Degrees of 
freedom

Mean squares Percentage 
contribu-
tion%

� 456.46 4 115.29 98.3
c1 3.15 4 1.33 1.24
c2 1.53 4 0.5 0.46
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Table 7  Computational results obtained from comparison of methods

Data set ZCP ZPSO ZQBPSO GapPSO GapQbPSO TCP TPSO TQBPSO

UK10_01 388.73 391.44 388.73 0.006971 0 67 34 45
UK10_02 421.65 421.65 421.65 0 0 98 23 35
UK10_03 379.02 379.02 379.02 0 0 96 34 40
UK10_04 523.21 544.51 523.21 0.04 0 73 22 44
UK10_05 448.92 472.73 448.92 0.05 0 89 36 48
UK15_01 283.82 283.82 283.82 0 0 247 44 52
UK15_02 295.74 295.74 295.74 0 0 155 41 59
UK15_03 562.61 562.61 562.61 0 0 276 43 56
UK15_04 497.42 497.42 497.42 0 0 289 40 55
UK15_05 329.33 329.33 329.33 0 0 251 37 60
UK20_01 424.21 424.21 424.21 0 0 1883 54 71
UK20_02 379.98 383.95 383.95 0.01 0.01 1651 65 83
UK20_03 565.43 593.28 565.43 0.04 0 971 65 80
UK20_04 221.48 256.55 221.48 0.15 0 2111 56 68
UK20_05 396.37 363.26 355.52 − 0.08 − 0.1 862 61 77
UK25_01 456.91 418.50 418.50 − 0.08 − 0.08 5338 75 109
UK25_02 325.29 340.32 322.04 0.04 − 0.009 5046 94 94
UK25_03 578.34 542.63 542.63 − 0.06 − 0.06 7004 80 100
UK25_04 601.37 577.44 563.51 − 0.03 − 0.06 7156 86 129
UK25_05 679.35 672.08 672.08 − 0.0107 − 0.01 4053 75 97
UK50_01 688.62 654.74 651.66 − 0.04 − 0.05 > 7200 127 146
UK50_02 508.17 458.50 458.50 − 0.09 − 0.09 > 7200 118 189
UK50_03 456.22 456.22 427.49 0 − 0.06 > 7200 132 141
UK50_04 449.63 412.38 412.38 − 0.08 − 0.08 > 7200 103 179
UK50_05 690.04 648.49 648.49 − 0.06 − 0.06 > 7200 115 181
UK75_01 501.42 468.07 468.07 − 0.06 − 0.06 > 7200 126 296
UK75_02 692.73 667.55 641.23 − 0.03 − 0.07 > 7200 155 247
UK75_03 789.68 751.75 732.54 − 0.04 − 0.07 > 7200 144 199
UK75_04 818.33 774.46 758.08 − 0.05 − 0.07 > 7200 142 213
UK75_05 557.21 545.38 545.38 − 0.02 − 0.02 > 7200 146 237
UK100_01 – 563.03 563.03 – – > 7200 220 307
UK100_02 – 643.92 642.43 – – > 7200 194 355
UK100_03 – 597.49 580.28 – – > 7200 254 364
UK100_04 – 854.77 854.77 – – > 7200 257 355
UK100_05 – 717.52 714.02 – – > 7200 225 336
UK150_01 – 858.83 808.39 – – > 7200 345 419
UK150_02 – 1243.64 1181.84 – – > 7200 318 458
UK150_03 – 952.26 952.26 – – > 7200 307 512
UK150_04 – 1206.71 1200.15 – – > 7200 319 544
UK150_05 – 866.54 866.54 – – > 7200 297 498
UK200_01 – 888.33 888.33 – – > 7200 445 792
UK200_02 – 1035.64 1000.05 – – > 7200 487 773
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The labels ZPSO and ZQBPSO demonstrate the best solutions of the objective 
value obtained by the PSO and QBPSO methods, respectively.

The label GapPSO(GapQbPSO ) is about the gap between ZCP and the ZPSO(ZQBPSO ) 
which is calculated by ZPSO(ZQbPSO)−ZCP

ZCP
 . The labels TCP , TPSO and TQBPSO , represent 

the time (per second) required to solve the proposed model P′ by CPLEX, PSO 
and QBPSO respectively.

According to Table 7, the QBPSO can obtain the optimal solution for all small 
size cases except for the UK20_02, and the optimality gaps ranges are from 0 to 
0.01, which showed the efficiency of the proposed algorithm for finding an optimal 
solution for these instances.

For some medium cases in particular, for size instances with 50 and 75 nodes, a 
feasible solution not available, by the CPLEX within the given time limit. In most 
of these cases, the proposed algorithm either introduces a better solution or at least 
finds a solution equal to the upper bound provided by CPLEX. Of course, this fact 
is confirmed by non-positive gaps. However, the gap between the upper bound 
obtained by CPLEX and the objective value of the QBPSO solution and is negligi-
ble, i.e. 0.1.

As the problem size increases the computation time required by CPLEX becomes 
very high. As a result, in all large-scale datasets, CPLEX is not able to find any 
feasible solution. Since the PSO and QBPSO method can obtain at least a feasible 
solution for large-scale instances, so the computation time and the performances of 
the PSO and QBPSO were reported. The computational results indicate that the time 
solutions of the PSO and QBPSO are appropriate and slightly increases with the size 
of the problem.

If we want to make a general comparison between the two PSO and QBPSO 
methods, we can say that the PSO method works relatively faster, but the QBPSO 
obtains more accurate solutions.

Remarkably, the existing time difference (albeit small) is related to the additional 
operation performed in the QBPSO method. Generally, the time required increases 
as expected but is still reasonable for this kind of problem.

4.3  Sensitive analysis of the model

In this section, some analysis for the model P′ is conducted, to evaluate of the solu-
tions about the input data changes, such as the congestion time periods, the variables 

Table 7  (continued)

Data set ZCP ZPSO ZQBPSO GapPSO GapQbPSO TCP TPSO TQBPSO

UK200_03 – 1196.87 1019.97 – – > 7200 488 871
UK200_04 – 1422.32 1351.31 – – > 7200 552 794
UK200_05 – 1388.08 1375.57 – – > 7200 547 883
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speeds, number of depots and vehicles and time windows. For this reason, we will 
provide a summary of the results for the samples that differ in one parameter.

4.3.1  The effect of congestion time periods

The congestion time period is one of the restrictions that have an effect on speed in 
delivery service time, costs and the emissions. For assessing the effect of congestion 
time dependent, three different of periods are considered. In the first one, the model 
is considered without any time dependent congestion, and in this case, there is only 
a period time [0, Tmax] and the model P′ becomes same as the model proposed in 
[20]. In the second test intermediate intervals are considered narrow and in the third 
one intermediate intervals are considered open range.

The obtained results show that using various interval traffic congestion period 
yields different results of the costs and the average speed (km per h).

Table 8, indicate that a lack of speed break points (without any time traffic con-
gestion), total costs are decreased as well as the average speed and fuel consumption 
and hence the amount of emission and the related cost also decreased. In the second 
case ( a1 = 3, a2 = 7 ), the first traffic interval, which has a higher speed limit, con-
sidered to be larger. Due to the fact that the vehicle speed is lower during this inter-
val, the average speed decreases sharply. On the other hand, the penalty for late or 
early delivery of the service will be increased, and the emission costs are high due to 
increased fuel consumption. The second interval congestion [a1, a2] known as free-
flow speed, and when the limit of this interval is reduced, (considered a more open 
interval), the average speed of the vehicle increases and the fuel consumption as 
well as pollution decreased. This can be clearly seen in the third mode. In this case, 
the penalty for late or early delay is less and the cost is lower than in the second 
case. Although the best results are for the case without any time traffic congestion, 
but it does not occur in the real world.

Table 8  Different time depend analysis

Data set Speed break points Objective function Fuel cons Avg. speed Penalty function

UK15_01 Without time congestion 280.21 91.45 68.28 2.09
a1 = 3, a2 = 7 285.32 95.95 57.08 4.17
a1 = 1, a2 = 8 282.90 92.18 60.85 0.26

UK25_01 Without time congestion 410.37 108.18 67.37 2.28
a1 = 3, a2 = 7 419.21 119.44 56.54 7.81
a1 = 1, a2 = 8 413.43 109.44 59.48 2.84

UK50_01 Without time congestion 667.33 144.56 67.45 0
a1 = 3, a2 = 7 693.84 159.01 53.77 7.96
a1 = 1, a2 = 8 680.05 146.13 55.33 4.38

UK75_01 Without time congestion 495.62 135.28 66.91 2.33
a1 = 3, a2 = 7 509.77 142.79 55.24 5.08
a1 = 1, a2 = 8 498.51 137.04 58.12 3.29
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4.3.2  The effect of variables speeds

In this section, we try to show the effect of variable speed is related to the objective 
function on different tests. To this end, three different of constant speed as well as 
variable speed are considered. The computational results are shown in Table 9.

The results of Table 9 show that using a low constant speed (with traffic conges-
tion) increases fuel consumption and hence emission cost, as well as increases the 
amount of penalty early or delay service, and ultimately the final cost is higher than 
the optimal cost. While high speeds reduce the penalty for early or late service, and 
of course if the speed increases to a certain level, the cost of emission decreases as 
fuel consumption decreased, and if the speed increases too much, the fuel consump-
tion increased as well emission costs. However, the low-speed level has an undeni-
able difference from the optimal value. The value closest to objective function No.1 
is obtained with the mean value (No. 3) of speeds, but again in no case with constant 
speed has reached the optimal value of No. 1. These results demonstrate that by 
considering the variable speed, the model seeks to find a balance between the cost of 
penalties and emission and other costs.

4.3.3  The effect of the fuel consumption cost

In the previous analysis, it was shown that determining an appropriate speed causes 
it to go down the fuel consumption and greenhouse gas emissions and hence the 
related costs.

Table 9  Analysis of variables speed vs different fixed speed

Data set No Speed break points Objective function Fuel cons Penalty function

UK15_01 1 v
p

ijl
≤ v

p

ij
≤ v

p

iju
284.45 92.03 2.39

2 v1
ij
= 25, v2

ij
= 55, v3

ij
= 30 288.91 97.85 8.01

3 v1
ij
= 40, v2

ij
= 75, v3

ij
= 43 285.03 93.90 2.74

4 v1
ij
= 45, v2

ij
= 100, v3

ij
= 50 285.64 94.39 1.17

UK25_01 1 v
p

ijl
≤ v

p

ij
≤ v

p

iju
418.50 104.36 5.02

2 v1
ij
= 25, v2

ij
= 55, v3

ij
= 30 430.03 114.51 10.80

3 v1
ij
= 40, v2

ij
= 75, v3

ij
= 43 419.90 106.05 5.17

4 v1
ij
= 45, v2

ij
= 100, v3

ij
= 50 421.35 108.78 1.33

UK50_01 1 v
p

ijl
≤ v

p

ij
≤ v

p

iju
651.66 145.45 4.94

2 v1
ij
= 25, v2

ij
= 55, v3

ij
= 30 674.36 151.77 9.82

3 v1
ij
= 40, v2

ij
= 75, v3

ij
= 43 653.00 146.11 5.32

4 v1
ij
= 45, v2

ij
= 100, v3

ij
= 50 657.81 147.71 3.38

UK75_01 1 v
p

ijl
≤ v

p

ij
≤ v

p

iju
468.07 136.33 3.54

2 v1
ij
= 25, v2

ij
= 55, v3

ij
= 30 479.40 141.84 6.06

3 v1
ij
= 40, v2

ij
= 75, v3

ij
= 43 470.25 138.76 3.93

4 v1
ij
= 45, v2

ij
= 100, v3

ij
= 50 472.96 139.20 3.18
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Now, we try to do additional tests to evaluate the sensitivity of the resulting solu-
tions to changes in unit fuel costs. For this reason, we consider different amounts of 
costs in interval [0.5 2.4] . Remarkably, the basic cost per liter in the samples is 1.4. 
Table 10 reports a summary of results, the columns of which show the value of an 
objective function, fuel consumption, average vehicle speed, and penalty function.

The computational results from Table 10 show that the fewer changes of the unit 
fuel consumption do not significantly alter emission cost, penalty cost, and overall 
the solutions obtained.

However, more drastic changes may lead to significant differences in the solution 
obtained. The higher the fuel cost, leads to a decrease in average speed, a decrease 
in fuel consumption and consequently a decrease in emission cost, an increase in the 
amount of late and early penalties, and the total increase in the objective function 
value. Also, the lower the fuel cost, leads to an increase in average speed, an increase 
in fuel consumption and consequently an increase in emission cost, a decrease in the 
amount of late and early penalties, and the total increase in the objective function 
value. Of course, it can also be inferred that the effect of fuel consumption on the 
objective function is almost less than the soon and late penalty. In fact in some cases 
for serving customers within the predetermined hard time windows or even soft time 
windows (with high penalties for delayed and early), vehicles are forced to increase 
their speed even if it leads to the need for more fuel and so emission. In the next 

Table 10  Analysis of the effect of different value of the fuel cost

Data set Fuel cost Objective function Fuel cons Penalty function Average speed

UK15_01 0.5 284.51 93.33 1.84 61.65
1 283.85 92.19 2.55 59.48
1.4 283.82 91.45 2.39 58.07
2 284.27 91.33 2.86 57.73

2.4 284.53 91.12 3.04 57.29
UK25_01 0.5 419.47 108.13 5.38 58.77

1 419.09 107.33 6.33 57.00
1.4 418.50 106.78 7.02 55.39
2 418.85 105.59 7.37 55.11

2.4 419.33 105.06 8.15 54.35
UK50_01 0.5 652.20 148.75 6.35 56.03

1 651.78 146.62 6.81 55.33
1.4 651.66 145.45 7.94 53.16
2 653.05 144.39 9.15 51.74

2.4 653.88 144.03 9.68 51.25
UK75_01 0.5 470.35 139.58 2.06 58.85

1 468.66 138.05 2.82 58.11
1.4 468.07 136.33 3.54 56.49
2 469.83 135.70 5.21 54.75

2.4 471.10 135.13 6.02 54.36
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analysis, the effects of time windows on the overall costs and fuel consumption are 
investigated.

4.3.4  The effect of time windows

In this section, the effects of time windows are investigated on the addressed model. 
The results reported in Table  11 for narrowing the hard and soft time windows 
simultaneously are narrowed up to 50%, i.e. the distance from upper and lower 
bounds are decreased up to 50%.

It is deduced from the results that narrowing up to up to 20% has no signifi-
cant effect on solutions. Whereas it causes to increase the total cost and the fuel 
consumption up to is less than 2%. While, if time windows are narrowed down by 
more than 30%, there are considerable changes on the solutions in terms of fuel 
consumption (and so emission cost) and objective costs, as far as these changes 
are close to 10%. Also, as the distance between soft and hard time windows 

Table 11  Analysis of the effect of different value of the fuel cost

Data set Fuel cost (%) Objective function Fuel cons Penalty function Average speed

UK15_01 0 283.82 91.45 2.39 58.07
10 284.08 91.66 2.22 58.61
20 285.21 92.20 1.83 59.19
30 287.24 94.27 1.06 59.76
40 289.75 96.58 0.89 60.23
50 292.56 98.61 0.84 61.13

UK25_01 0 418.50 106.78 7.02 55.39
10 418.35 107.05 6.65 55.90
20 419.33 107.54 6.03 56.33
30 420.46 108.23 4.35 57.80
40 423.79 110.77 2.15 58.14
50 426.03 113.25 1.08 58.79

UK50_01 0 651.66 145.45 7.94 53.16
10 650.85 145.45 7.15 53.25
20 652.03 147.23 5.92 54.74
30 653.27 148.74 4.13 55.76
40 655.52 150.16 2.78 57.29
50 657.94 151.39 2.13 57.88

UK75_01 0 468.07 136.33 3.54 56.49
10 468.31 136.80 3.39 56.52
20 467.90 137.75 2.88 56.93
30 469.33 138.86 2.21 57.50
40 470.25 140.39 1.62 58.15
50 471.04 141.21 1.05 58.44
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decreases, the amount of penalties decreases, and instead, using more speed for 
timely service is needed. Therefore the emission costs are increased.

5  Conclusions

This paper developed a variant of GLRP. And an attempt has been made to pre-
sent a model whose vacancy is sensed in the literature and is considered practical 
and close to reality.

To this end, the routing problem for a fleet of vehicles in the presence of traffic 
congestion with different time zones was done while taking variable speed decisions 
into account. Due to the variable speed of the vehicle, the model was considered 
nonlinear and we have proposed some linearization techniques to get rid of linear 
expressions to obtain the optimal or near-optimal solutions. Then heuristic QBPSO 
algorithm was developed for solving the linearized model.

In continue, comparison of the proposed QBPSO method with PSO and CPLEX 
solver in terms of solution quality and time was reported. Computational results 
confirmed the efficiency of the proposed method for different sizes of the problem. 
One of the advantages of this method is its ability to be widely used to solve simi-
lar linear and nonlinear programming problems. Also, we believe that the applied 
method has the adaptable ability to improve itself or integrate with other algorithms 
to develop the methods.

In the end different sensitivity analyses have conducted for the computational 
study of the proposed model. To this end some key parameters such as the conges-
tion time, speeds, time window and fuel consumption and emission cost are changed. 
The overall results show that how much the fuel consumption, emissions, and objec-
tive functions are affected by these parameters. Our experiments confirm the supe-
riority of the proposed model over time-independent approaches as well as constant 
velocity, both in terms of emission and final costs. It seems that the proposed model 
can be used for problems with alternative fuels or even cold GVRP, which can be 
considered as a suggested work for future research. Furthermore, the structure of the 
linearized model is such that heuristic methods such as benders decomposition and 
Lagrangean relaxation can be applied to solve it.

Herein, some parameters such as time windows and demands were assumed to be 
a fixed values that may be considering as a nondeterministic parameters would be a 
worthy for future research.
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