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Abstract
We determine the gains in efficiency accruing to a monopolist producer facing a 
non-linear market demand under a time-of-use (TOU) pricing structure as opposed 
to a flat rate pricing (FRP) structure. In particular, we consider the constant elastic-
ity of demand function and the exponential demand function for this analysis. We 
estimate the price and quantity demanded for these two types of functions and opti-
mize the profit earned by the producer. A comparison of the linear, exponential, and 
constant elasticity of demand functions shows that in cases of linear and exponen-
tial demand, the TOU pricing works to reduce the peak demand below the installed 
capacity and saves on additional investment and operation costs, while no such 
reduction takes place in the case of constant elasticity of demand. However, profit 
accruing to the monopolist under the TOU pricing structure exceeds that under FRP, 
irrespective of the form of the demand function. Thus, we conclude that regardless 
of the shape of the demand function, a time-varying pricing structure is better than 
the traditional FRP. Finally, we study some implications for the policy maker if such 
a pricing structure is implemented.
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1  Introduction

Considerable work has been carried out in the area of revenue management in the 
context of an efficient dynamic pricing scheme in electricity markets. The appli-
cation of time-of-use (TOU) pricing, a specific type of dynamic pricing, can shift 
the high load that occurs during the peak period to off-peak periods and thus pre-
vent demand from exceeding the capacity during the peak period. This ensures 
better capacity utilization during all periods by taking into account the consum-
ers’ responsiveness to changing electricity prices. In this context, there is a need 
to estimate the gains of a TOU pricing scheme over that of a flat rate pricing 
(FRP) policy and underline the benefits arising from this shift to dynamic pricing.

Electricity costs can be based on the average or marginal costs. In the first 
case, also known as FRP, the prices do not vary according to the time of the 
day. In the second case, also known as dynamic pricing, prices vary to balance 
the supply and demand at a given time. The TOU pricing scheme lies between 
these two extremes. Under this scheme, each day is divided into multiple periods 
according to consumers’ demands, and there is a demand and supply balance in 
all time periods, giving the right price signals to the consumers to enable them to 
adjust their use of electrical appliances to minimize their bills. This leads to effi-
ciency in the market for electricity and ensures that the generation, transmission, 
and distribution losses are minimized. In the case of an FRP scheme, electricity 
required during peak periods may exceed the capacity of the generators, which 
then act as a constraint in the supply of electricity. The introduction of any form 
of dynamic pricing can help to mitigate this inefficiency by reducing demand dur-
ing the peak periods as consumers respond to the high prices by readjusting their 
usage throughout the day. Also, the capacity which may remain idle during off-
peak periods are put to better use because of a higher demand for power.

Thus, under the TOU pricing, one can expect significant gains for the electric-
ity suppliers in the form of increased profit and benefits to the consumers in the 
form of reduced bill under such a scheme. In their previous study, the authors [4] 
used linear demand and cost functions to estimate the prices and profits of suppli-
ers in both FRP and TOU pricing strategy under both monopolistic and oligopo-
listic setup. The suppliers’ profits of were found to higher under the TOU pricing 
scenario, which reflects the efficiency gains earned through the implementation 
of such a scheme. Decreasing demand during peak periods in response to higher 
prices leads to proper capacity utilization and minimization of losses in this situ-
ation as opposed to the case of FRP. In this paper, we extend the model to study 
the case when the demand function is not linear while still considering a linear 
cost structure under a monopolistic setup.

We use constrained optimization techniques to show that profits increase when 
a price structure that varies by the time of the day is adopted, even when we 
relax the assumption of linear demand functions. The exponential demand func-
tion and constant elasticity of demand function are considered in this study. This 
is followed by a comparative analysis of the results based on the three demand 
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functions. We conclude that regardless of the form of demand function considera-
tion, the profit under a TOU pricing is greater than that under FRP.

This paper is organized as follows. In Sect.  2, we summarize the literature on 
this topic and the various models used by researchers to study dynamic pricing and 
its forms in electricity markets. Section 3 tabulates the assumptions and econom-
ics behind the model. In Sect. 4, the model of TOU pricing is optimized under the 
assumption of a monopoly market condition. We summarize the computational 
results and analysis in Sect. 5.

2 � Literature review

The pricing systems in the electricity markets have been undergoing significant 
changes in the past few decades. Electricity markets around the world have seen the 
introduction of various forms of dynamic pricing with an aim to reduce the load 
during periods of peak demand and use of consumers’ responsiveness to electric-
ity prices to encourage a shift of demand from a period of high demand to a period 
of low demand. Several authors have modelled the electricity pricing market using 
experimental data and optimizing methods to understand the effects of a time-
dependent pricing system on consumers’ demand.

A study exploring the residential customer response to critical peak pricing of 
electricity in California [3] used hourly data collected from a 15-month experiment. 
The high prices used were about three times the on-peak price in the TOU pric-
ing scheme. Using descriptive statistics, the authors showed significant load reduc-
tion during critical periods, with the size of the load reduction being the highest in 
extreme temperatures.

Filippini [2] used the static and dynamic partial adjustment models to understand 
the responsiveness of residential electricity demand to prices under a TOU pric-
ing scheme based on aggregate data for 22 Swiss cities. Using log-linear demand 
function, the authors calculated elasticities for both static and dynamic models. As 
expected, the own price elasticities are lower in the peak period than in the off-peak 
period. The magnitude of the elasticities suggests that residential demand for elec-
tricity is inelastic in the short run and becomes elastic in the long run. Also, the 
positive values of cross-price elasticities indicate that the off-peak and peak elec-
tricity demands are substitutes of each other, suggesting that the TOU price can be 
effective in achieving energy conservation at least in the long run that allows effec-
tive capacity utilization for producers.

While several models have examined the wholesaler’s optimization problem to 
determine the effect of dynamic pricing on their profits and market powers, [3] pro-
posed a mathematical model for a retailer to determine the price to be charged to 
consumers on the basis of the TOU and to manage a portfolio of contracts to insure 
against risk.

In a study by Reiss and Matthew [6], a representative sample data of 1300 resi-
dents in California is used to estimate the aggregate and individual consequences 
of tariff structure changes. The authors focused on the heterogeneity in household 
price elasticities, how these influence their appliance holdings, how these household 
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consumption responses are adjusted in response to complex price schedules and 
included these features in a model of endogenous sorting along a non-linear demand 
schedule. The price effects were found to vary across the appliances with all being of 
considerable practical significance, and the income effects were found to be almost 
insignificant. On estimation of households’ demand sensitivity on the margin, it was 
found that a change in the marginal price may change consumption within the cur-
rent segment or may equivalently cause a jump to a different tier.

A framework for analysing demand, supply, and prices under real-time pricing 
and information asymmetry is useful [7]. Real-time pricing creates a closed-loop 
feedback system between the physical and market layers of the system, which is 
expected to increase the sensitivity and lower the robustness to demand and gen-
eration uncertainty in the absence of a designed control law. The authors allowed 
the consumers to adjust their consumption in response to a signal, reflecting real-
time prices; In their model, they analysed the properties of a full non-linear model 
as opposed to first-order linear differential equations examined in previous studies. 
They concluded that a real-time pricing mechanism must consider demand and price 
variation and that it requires proper analysis of consumers’ response to price signals.

Against the background of these studies, our study focuses on using non-linear 
demand functions to obtain the TOU prices and efficiency gains for producers in 
the case of a single decision-making firm and comparing these results with those 
obtained using a linear demand function.

3 � The model assumptions

In this model of TOU pricing, the demand function is considered non-linear and, we 
assume the following:

(a)	 There are three time zones in a day, peak period (that has the highest demand), 
off-peak (with the lowest demand), and shoulder (having demand somewhere 
between peak and off-peak periods), with the prices being set in advance.

(b)	 We do not consider the classification of consumers according to their usage 
and price responsiveness (say, residential and commercial). The consumers are 
considered as one unit, represented by a common market demand function.

(c)	 The demand function is non-linear; in particular, we use an exponential demand 
function and a constant elasticity of demand function. The cost structures are, 
however, assumed to be linear.

(d)	 There is a monopolistic market structure in which a single firm makes the pro-
duction decisions.

(e)	 The electricity is generated in a plant having capacity restrictions. That is, power 
generated cannot exceed the specified capacity.

(f)	 The optimal price chosen by the monopolist in each period does not exceed a 
specified ceiling.

(g)	 For calculating the efficiency gains, we consider only the variable costs for each 
period. The power plant can operate at constant marginal costs or variable costs 
that decrease as the load increases. Both these cases are discussed in our model.
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(h)	 The fixed cost that reflects the cost associated with setting up a generator is 
assumed to be a one-time cost, which does not vary between off-peak, shoulder, 
and peak periods. The generated power is transmitted through transmission lines, 
and some of it is lost in the process as transmission losses. We assume this loss 
is a fixed percentage of energy generated under all cases.

(i)	 We do not consider the existence of externalities in our market.
(j)	 A country can rely on both renewable and non-renewable resources for meeting 

its electricity, but we do not make this distinction in our model.

4 � Mathematical model for a monopolist

This section describes the mathematical model to determine the efficiency gains 
in the TOU pricing vis-à-vis FRP for a monopolist using constrained optimization 
techniques. In Sect. 4.1, the profit maximizing prices and quantities are determined 
for a monopolist facing exponential demand functions, under an FRP scheme. First, 
we assume that the marginal cost is constant in all three periods. Then, we consider 
the case of decreasing marginal costs as the generation increases. In Sect. 4.2, the 
aforementioned exercise is repeated under a TOU pricing scheme. Sections 4.3 and 
4.4 describe these cases under the assumption of a constant elasticity demand func-
tion. Section 4.5 provides a comparative summary of various cases. The model is 
verified by assuming three demand functions for three time periods or zones (peak, 
shoulder, and off-peak). The computational result, obtained from optimization using 
AMPL modelling languages software, is summarized under Sect. 4.6.

Each day is divided into peak, off-peak, and shoulder periods, denoted by the suf-
fix t, where t = 1 for the peak period, t = 2 for the shoulder period, and t = 3 for the 
off-peak period.

We examine the price structure, quantity produced, and profit earned by the 
monopolist in the case of two demand functions: exponential demand function and 
constant elasticity of demand function.

The definitions used in this model are as follows:

qt =	� Demand for energy per hour in time period t (KWHr).

zt =	�  Energy generated per hour in time period t (KWHr).

At , bt =	�  Parameters of the demand function
pt =	�  Price charged by the monopolist at time period t in case of the 

TOU pricing ( Rs.∕KWHr).
p =	�  Price charged by the monopolist in the case of uniform pricing 

( Rs.∕KWHr).
C =	�  Capacity of the power generator of the firm in power ( MW).
F =	�  Fixed cost of the system (generation and distribution) of elec-

tric power ( Rs.)
�t =	�  Marginal cost associated with an extra unit of electricity at 

time period t. ( Rs.∕KWHr)
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� =	�  Total profit earned by the monopolist ( Rs.)
Tl%	�  Percentage of energy generated that is lost while transmission.
∴
(
1 − Tl%

)
zt = qt	�  Demand for energy per hour in time periodt

  
 

where k  = (1 − Tl%).
The number of hours in a day is assumed to be divided into n1 hours of peak 

period, n2 hours of shoulder period, and n3 hours of off-peak period.
The energy generated in each period cannot exceed capacity; hence, zt ≤ 1000C , 

∀t = 1,2, 3.
In the case of flat pricing, the price p that maximizes the monopolist’s profit can-

not exceed a specified level p . In the case of the TOU pricing, the prices p1, p2 , and 
p3 that maximize the monopolist’s profit cannot exceed a specified p̃.

Hence, for the flat pricing structure, we have p ≤ p , and for the TOU pricing 
structure, we have pt ≤ p̃, t = 1,2, 3

For both exponential and constant elasticity demand forms that are discussed in 
the subsequent sections, we assume that for both flat and TOU pricing structure 

We assume that the firm faces a linear cost structure given by

where �t represents the marginal cost of generation, and F represents the fixed cost 
associated with electric power system.

The monopolist is assumed to be a profit maximizing agent. Thus, the monopolist 
maximizes,

Profit (�) = Revenue – Cost; subject to the capacity constraints.

4.1 � The monopolist faces an exponential demand function and charges the same 
price in all three periods

The exponential demand function is given by

The elasticity of the demand functions is given by (−bp) , so b captures the responsive-
ness of quantity as the prices change. We assume that ||b1|| < ||b2|| < |b3| for our model.

∴kzt = qt

p = p̃ = Rs.10.5∕KWh

(1)TC = F +

3∑

t=1

nt�tzt

(2)qt = Ate
−btp, t�1,2, 3
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4.1.1 � Constant marginal costs

We assume that the monopolist faces a constant marginal cost, � , in all three periods.

The monopolist’s problem, thus, reduces to

We use the method of Lagrange multipliers to solve this problem.

where�1, �2, �3areLagrangemultipliers . The Kaurash Kuhn Tucker (KKT) first-
order necessary conditions give us

1.	

2.	

3.	

4.	
As the aforementioned problem is a characterization of non-linear optimiza-

tion, we might consider imposing certain regularity conditions on the constraints 
to ensure that the Lagrange multipliers obtained at the optimal point are positive. 
Hence, we check whether the constraints satisfy the linear independence constraint 
qualification (LICQ).

(3)Thus, profit � = n1pq1 + n2pq2 + n3pq3 −
�

k

(
n1q1 + n2q2 + n3q3

)
− F

Maximize� =
(
p −

�

k

) 3∑

t=1

ntAte
−btp − F

subjectto ∶ Ate
−btp ≤ 1000Ck, t = 1,2, 3

0 < p ≤ p

(4)L =
(
p −

�

k

) 3∑

t=1

ntAte
−btp +

3∑

t=1

�t
(
1000Ck − Ate

−btp
)
+ �

(
p − p

)
− F

�L

�p
= 0

(5)⇒

3∑

t=1

[
nt

(
1 −

(
p −

�

k

)
bt

)
+ �tbt

]
Ate

−btp − � = 0

(6a)
�L

��t
= 1000Ck − Ate

−btp ≥ 0and�t ≥ 0, t = 1,2, 3

(6b)
�L

��
= p − p ≥ 0and� ≥ 0

(7)�t
�L

��t
= 0, t = 1,2, 3 and �

�L

��
= 0…
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We assume that a generator can operate at full capacity during the peak periods, 
but a lower demand in the off-peak and shoulder periods does not require it to oper-
ate at full capacity. Thus, two cases are considered under each scenario. In the first 
case, there is full-capacity utilization in none of the three periods, and in the second 
case, full-capacity utilization occurs during the peak period but not in the off-peak 
or shoulder periods.

Thus, for t = 2,3 , the constraint (6a) holds with strict inequality; hence, 
�2 = �3 = 0 for each case.

Theoretical solutions and simulations in AMPL have established that the price 
constraint in Eq. (6b) does not bind in deriving the optimal solution to the problem 
under any of the cases discussed as follows. Hence, we agree that 𝜇 = 0 ⇔ p < p  
for both cases 1 and 2.

Case 1   The capacity constraint is slack for all three periods. Therefore, from (6)

Putting �1 = �2 = �3 = 0 in constraint (4),

The aforementioned expression is non-linear in p, and hence, a solution for p can-
not be obtained in the closed form. So we use Newton–Raphson’s method of itera-
tion1 to approximate the value of p from Eq. (8).

First, we select an interval 
[
p1,p2

]
 in which a root of the function.

f (p) =
∑3

t=1

�
nt

�
1 −

�
p −

�

k

�
bt

��
Ate

−btp is present.
Differentiating with respect to p

It can be easily verified2 that f ∶ [p1, p2] → ℝ satisfies the following:

(1)	 f
(
p1
)
.f
(
p2
)
< 0(1)

(2)	 f (p) is continuously differentiable for p ∈
(
p1, p2

)

(3)	 f
�

(p) ≠ 0∀p ∈
(
p1, p2

)

(4)	 f ��(p) does not change its sign in (p1,p2).

𝜕L

𝜕𝜆1
>0 ⇒ 10000Ck>A1e

−b1p

∴�1 = 0

(8)
3∑

t=1

[
nt

(
1 −

(
p −

�

k

)
bt

)]
Ate

−btp = 0

(9)f
�

(p) = −

3∑

t=1

(
2 −

(
p −

�

k

)
bt

)
ntAte

−btp

1  Detailed solution available on request.
2  Detailed Proof available on request.
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These conditions ensure that the Newton–Raphson’s iterative method converges.
Next, we define the iterative procedure as

where p(j) denotes the jth iteration of p. A starting value p0 can be chosen from the 
interval [p1, p2].

A stopping rule for the iterations can be defined as follows:
We fix the value of � = 0.005.
Stopping Rule: 

||||
f (p(j))
f
� (p(j))

||||
< 𝜀.

The computations were conducted using a C +  + program. The value of p thus 
obtained by running the C +  + code is denoted by p∗.

As not all capacity constraints are assumed to be active, by the KKT conditions, 
the corresponding Lagrange multipliers are zeroes. Thus, the question of checking 
for LICQ does not arise in this case.

It can be checked that this value of p(= p∗) maximizes the monopolist’s profit.3
Therefore, q∗

t
= Ate

−btp
∗

, t = 1,2, 3 and the profit earned by the monopolist

Case 2   The capacity constraint is tight for the peak period and slack for the off-peak 
and shoulder periods.

Therefore, from (5)

Therefore, from the constraint equation for the peak period, we have

Therefore, p∗ = 1

b1
log

A1

1000Ck
and q∗

t
= At

[
1000Ck

A1

] bt

b1 , t = 1,2, 3.

p(j+1) = p(j) −
f
(
p(j)

)

f
�
(
p(j)

) ,

�∗ =
(
p∗ −

�

k

) 3∑

t=1

ntAte
−btp

∗

− F

𝜕L

𝜕𝜆1
= 0 ⇒ 10000Ck = A1e

−b1p, 𝜆1>0

𝜕L

𝜕𝜆t
>0 ⇒ 10000Ck>A1e

−b1p, 𝜆t = 0, t = 2, 3

log1000Ck1 = logA1 − b1p

3  The value of p obtained after running the C program is 8.15 in contrast to the optimal value of 8.99 
obtained through AMPL. Thus, the N-R method does not provide an optimal solution to the NLP prob-
lem but for the sake of theoretical completeness, it is applied to solve the non-linear equation in (8) that 
cannot otherwise be solved by usual mathematical methods. When the problem is fed into AMPL, the 
optimal solution of the non-linear programming problem is obtained, nevertheless.
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In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for peak period. This is trivially linearly independent, hence 
LICQ is satisfied.

The total profit earned by the monopolist in this case is given by

4.1.2 � Decreasing marginal costs

We assume that the marginal cost associated with generation of electricity 
decreases as more units are produced. Hence, the per unit electricity �t cost varies 
across periods with 𝛿1 < 𝛿2 < 𝛿3 and the profit function becomes

The monopolist’s problem thus reduces to

We solve the constrained optimization problem with the help of Lagrange 
multipliers

where�1, �2, �3aretheLagrangemultipliers . The KKT first-order necessary condi-
tions give us

1.	

� =
(
p −

�

k

) 3∑

t=1

ntqt − F

⇒ �∗ =

(
1

b1
log

A1

1000Ck
−

�

k

) 3∑

t=1

ntAt

[
1000Ck

A1

] bt

b1

− F

(10)� = n1pq1 + n2pq2 + n3pq3 −
1

k

(
n1q1�1 + n2q2�2 + n3q3�3

)
− F

Maximize� =

3∑

t=1

(
p −

�t

k

)
ntAte

−btp − F

subjectto ∶ Ate
−btp ≤ 1000Ck, t = 1,2, 3

0 < p ≤ p

(11)L =

3∑

t=1

(
p −

�t

k

)
ntAte

−btp +

3∑

t=1

�t
(
1000Ck − Ate

−btp
)
+ �

(
p − p

)
− F

�L

�p
= 0

(12)⇒

3∑

t=1

[
nt

(
1 −

(
p −

�t

k

)
bt

)
+ �tbt

]
Ate

−btp − � = 0
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2.	

3.	

4.	
For t = 2,3 the constraint (13a) always holds with strict inequality, hence in 

each case �2 = λ3 = 0.

As justified previously, the constraint (13b) also holds with strict inequality in all 
cases, hence � = 0.

Case 1   The constraint is slack in all three periods.

Putting �1 = �2 = λ3 = 0 in Eq. (12),

Like previously, the aforementioned expression is non-linear in p and, hence, a 
solution for p cannot be obtained in a closed form. So we use Newton–Raphson’s 
method of iteration to approximate the value of p from Eq. (15).

We mimic the process that was followed while solving for p in Eq. (8) in the case 
of constant marginal costs.

The value of p thus obtained is denoted by p∗. As previously, as there are no 
active inequality constraints at the optimal point, LICQ is not required. In view of 
the facts stated about p∗ , we proceed as follows.

Therefore, q∗
t
= Ate

−btp
∗

, t = 1,2, 3 and profit earned by the monopolist

Case 2   The constraint is tight for the peak period but slack for the off-peak and 
shoulder periods.

(13a)
�L

��t
= 1000Ck − Ate

−btp ≥ 0, and�t ≥ 0, t = 1,2, 3

(13b)
�L

��
= p − p ≥ 0 and � ≥ 0

(14)�t
�L

��t
= 0, t = 1,2, 3 and �

�L

��
= 0

𝜕L

𝜕𝜆1
>0 ⇒ 10000Ck>A1e

−b1p

∴�1 = 0

(15)
3∑

t=1

[
nt

(
1 −

(
p −

�t

k

)
bt

)]
Ate

−btp = 0

�∗ =

3∑

t=1

(
p∗ −

�t

k

)
ntAte

−btp
∗

− F

𝜕L

𝜕𝜆1
= 0 ⇒ 10000Ck = A1e

−b1p, 𝜆1>0
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Therefore, from the constraint equation for the peak period, we have

Therefore, p∗ = 1

b1
log

A1

1000Ck
and q∗

t
= At

[
1000Ck

A1

] bt

b1 , t = 1,2, 3

In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for the peak period. This is trivially linearly independent, hence 
LICQ is satisfied.

The total profit earned by the monopolist in this case is given by

4.2 � The monopolist facing an exponential demand curve charges different prices 
in different time periods

4.2.1 � Constant marginal costs

If the monopolist charges different prices in different periods but faces the same mar-
ginal costs in all three periods, then the profit function becomes

Thus, the optimization problem for the monopolist becomes

We solve the problem using the method of Lagrange multipliers.

𝜕L

𝜕𝜆t
>0 ⇒ 10000Ck>A1e

−b1p, 𝜆t = 0, t = 2, 3

log1000Ck1 = logA1 − b1p

� =

3∑

t=1

(
p −

�t

k

)
ntqt − F

⇒ �∗ =

3∑

t=1

(
1

b1
log

A1

1000Ck
−

�t

k

)
ntAt

[
1000Ck

A1

] bt

b1

− F

� = n1p1q1 + n2p2q2 + n3p3q3 −
�

k

(
n1q1 + n2q2 + n3q3

)
− F;

Maximize� =

3∑

t=1

(
pt −

�

k

)
ntAte

−btpt − F

subjecttoAte
−btpt ≤ 1000Ck, t = 1,2, 3

0 < pt ≤ p̃, t = 1,2, 3

𝜓 =

3∑

t=1

(
pt −

𝛿

k

)
ntAte

−btpt +

3∑

t=1

𝜑t

(
1000Ck − Ate

−btpt
)
+

3∑

t=1

𝜇t(p̃ − pt) − F…(16),
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where �1, �2, �3 are the Lagrange multipliers.
The KKT first-order necessary conditions give us

1.	

2.	

3.	

4.	

The constraint (18a) holds with strict inequality for t = 2,3 hence �2 = �3 = 0 
in all cases. The price constraints (18b) also hold with strict inequality in all cases, 
thus �t = 0∀t = 1,2, 3.

Case 1   The constraints for all three periods are slack.

Putting �1 = �2 = �3 = 0 in Eq. (17)

Therefore, p∗
t
=

k+�bt

kbt
and q∗

t
= Ate

−
(

k+�bt

k

)

, t = 1,2, 3

As previously, as there are no active inequality constraints at the optimal point, 
LICQ is not required.

The total profit of the monopolist is given by

��

�pt
= 0

(17)⇒

[
nt

(
1 −

(
pt −

�

k

)
bt

)
+ �tbt

]
Ate

−btpt − �tpt = 0

(18a)��

��t

= 1000Ck − Ate
−btpt ≥ 0 and�t ≥ 0, t = 1,2, 3

(18b)
𝜕𝜓

𝜕𝜇t

= p̃ − pt ≥ 0 and 𝜇t ≥ 0

(19)�
t

��

��
t

= 0 and �
t

��

��
t

= 0, t = 1, 2, 3

𝜕𝜓

𝜕𝜑1

>0 ⇒ 10000Ck>A1e
−b1p1

∴�1 = 0

(20)
[
nt

(
1 −

(
pt −

�

k

)
bt

)]
Ate

−btpt = 0

�∗ =

3∑

t=1

(
p∗
t
−

�

k

)
ntq

∗
t
− F
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Case 2   The peak period constraint is tight

Therefore, p∗ = 1

b1
log

A1

1000Ck
and q∗

1
= 1000Ck

Putting �2 = �3 = 0 in Eq. (17), we have

In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for peak period. This is trivially linearly independent, hence 
LICQ is satisfied.

The total profit earned by the monopolist becomes

4.2.2 � Decreasing marginal costs

According to the previous assumption, we have 𝛿1 < 𝛿2 < 𝛿3 . If the monopolist faces 
marginal costs which decrease as the load increases, the profit function becomes

The optimization problem for the monopolist thus becomes

⇒ �∗ =

3∑

t=1

ntAt

bt
e
−
(

k+�bt

k

)

− F

𝜕𝜓

𝜕𝜑1

= 0 ⇒ 10000Ck = A1e
−b1p1 ,𝜑1>0

𝜕𝜓

𝜕𝜑t

>0 ⇒ 10000Ck>Ate
−btpt ,𝜑t = 0, t = 2, 3

p∗
t
=

k + �bt

kbt
and q∗

t
= Ate

−
(

k+�bt

k

)

, t = 2,3

�∗ =

3∑

t=1

(
p∗
t
−

�

k

)
ntq

∗
t
− F

⇒ �∗ = n11000Ck

[
1

b1
log

A1

1000Ck
−

�

k

]
+

3∑

t=2

ntAt

bt
e
−
(

k+�bt

k

)

− F

� = n1p1q1 + n2p2q2 + n3p3q3 −
1

k

(
n1�1q1 + n2�2q2 + n3�3q3

)
− F

Maximize� =

3∑

t=1

(
pt −

�t

k

)
ntAte

−btpt − F
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We solve the constrained optimization problem by the method of Lagrange 
multipliers.

The KKT first-order necessary conditions give us

1.	

2.	

3.	

4.	

The capacity constraints (23a) hold with strict inequality for t = 2,3 , hence 
�2 = �3 = 0 in each case. The price constraints (23b) also hold with strict ine-
quality ∀t = 1,2, 3 in all cases, that is, �t = 0.

Case 1   All capacity constraints are slack.

Putting �1 = �2 = �3 = 0 in Eq. (22), we have

subjectto ∶ Ate
−btpt ≤ 1000Ck, t = 1,2, 3

0 < pt ≤ p̃, t = 1,2, 3

(21)

𝜓 =

3∑

t=1

(
pt −

𝛿t

k

)
ntAte

−btpt +

3∑

t=1

𝜑t

(
1000Ck − Ate

−btpt
)
+

3∑

t=1

𝜇t(p̃ − pt) − F

where�1,�2, �3 are the Lagrangemultipliers

��

�pt
= 0

(22)⇒

[
nt

(
1 −

(
pt −

�t

k

)
bt

)
+ �tbt

]
Ate

−btpt − �t = 0

(23a)��

��t

= 1000Ck − Ate
−btpt ≥ 0and�t ≥ 0, t = 1,2, 3

(23b)
𝜕𝜓

𝜕𝜇t

= p̃ − pt ≥ 0and𝜇t ≥ 0, t = 1,23

(24)
�t

��

��t

= 0and�t

��

��t

= 0, t = 1,2, 3

𝜕𝜓

𝜕𝜑1

>0 ⇒ 10000Ck>A1e
−b1p1

∴�1 = 0
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Therefore, p∗
t
=

k+�tbt

kbt
and q∗

t
= Ate

−
(

k+�t bt

k

)

, t = 1,2, 3

As previously, as there are no active inequality constraints at the optimal point, 
LICQ is not required.

The profit earned by the monopolist becomes

Case 2   The peak period capacity constraint is tight.

Therefore, p∗ = 1

b1
log

A1

1000Ck
and q∗

1
= 1000Ck

Putting �2 = �3 = 0 in Eq. (17), we have

In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for the peak period. This is trivially linearly independent, hence 
LICQ is satisfied.

The total profit earned by the monopolist becomes

(25)
[
nt

(
1 −

(
pt −

�t

k

)
bt

)]
Ate

−btpt = 0

�∗ =

3∑

t=1

(
p∗
t
−

�t

k

)
ntq

∗
t
− F

⇒ �∗ =

3∑

t=1

ntAt

bt
e
−
(

k+�t bt

k

)

− F

𝜕𝜓

𝜕𝜑1

= 0 ⇒ 10000Ck = A1e
−b1p1 ,𝜑1>0

𝜕𝜓

𝜕𝜑t

>0 ⇒ 10000Ck>Ate
−btpt ,𝜑t = 0, t = 2, 3

p∗
t
=

k + �tbt

kbt
and q∗

t
= Ate

−
(

k+�t bt

k

)

, t = 2,3

�∗ =

3∑

t=1

(
p∗
t
−

�t

k

)
ntq

∗
t
− F

⇒ �∗ = n11000Ck

[
1

b1
log

A1

1000Ck
−

�t

k

]
+

3∑

t=2

ntAt

bt
e
−
(

k+�t bt

k

)

− F
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4.3 � The monopolist faces a constant elasticity demand function and charges 
the same price for all three periods

We consider a constant elasticity of demand function in this section of the form

The definitions used in this model are the same as those used in the model for 
exponential demand function. The parameters specific to this model are At and bt , 
where bt is the constant elasticity along the demand function for a particular period.

We assume that e3 ≥ e2 ≥ e1 , that is, the elasticity is the highest for the off-
peak period followed by the shoulder and peak periods. This is consistent with the 
economic theory of demand, being less elastic during periods of peak demand.

4.3.1 � Constant marginal costs

In this section, we assume that the monopolist faces a constant marginal cost � in 
all three periods.

The profit function of the monopolist is thus

The optimization problem of the monopolist thus reduces to

We solve this constrained optimization problem using the method of Lagrange 
multipliers.

where�1, �2, �3 are the Lagrange multipliers
The KKT first-order necessary conditions give us

(26)qt = Atp
−bt ∀t �1,2, 3

� = n1pq1 + n2pq2 + n3pq3 − �
(
n1pz1 + n2pz2 + n3pz3

)
− F

= n1pq1 + n2pq2 + n3pq3 −
�

k

(
n1q1 + n2q2 + n3q3

)
− F

Maximize� =
(
p −

�

k

) 3∑

t=1

ntAtp
−bt − F

subject to ∶ Atp
−bt ≤ 1000Ck, t = 1,2, 3

0 < p ≤ p

(27)L =
(
p −

�

k

) 3∑

t=1

ntAtp
−bt +

3∑

t=1

�t
(
1000Ck − Atp

−bt
)
+ �

(
p − p

)
− F
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1.	

2.	

3.	

4.	

As in the previous sub-sections, we assume that the high demand during a peak 
period may cause the generator to operate at full capacity, but lower demands during 
the off-peak and shoulder periods do not require operation at full capacity. Hence, we 
take two cases for each of the scenarios. In the first case, the generator does not oper-
ate at full capacity in any of the three periods, and in the second, the generator oper-
ates at full capacity during the peak period but not during the off-peak or shoulder 
periods.

For t = 2,3 constraint (29a) holds with strict inequality, hence �2, �3 = 0 for each 
case. The price constraint (29b) also holds with strict inequality for t = 1,2, 3, in all 
the cases.

Case 1   All constraints are slack.

Putting �1 = �2 = λ3 = 0 in Eq. (28)

Similarly, the above expression is non-linear in p and, hence, a solution for p can-
not be obtained in a closed form. So we use Newton–Raphson’s method of itera-
tion to approximate the value of p from Eq. (31).

We mimic the process used for solving for p earlier in Eqs. (8) and (15).
The value of p thus obtained is denoted by p∗.

�L

�p
= 0

(28)
⇒

3∑

t=1

[
nt

(
p −

(
p −

�

k

)
bt

)
+ �tbt

]
Atp

−bt−1 − � = 0

(29a)�L

��t
= 1000Ck − Atp

−bt ≥ 0 and �t ≥ 0, t = 1,2, 3

(29b)�L

��
= p − p ≥ 0 and � ≥ 0

(30)
�t
�L

��t
= 0, t = 1,2, 3 and �

�L

��
= 0

𝜕L

𝜕𝜆1
>0 ⇒ 10000Ck>A1p

−b1

∴�1 = 0

(31)
3∑

t=1

[
nt

(
p −

(
p −

�

k

)
bt

)]
Atp

−bt−1 = 0
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As previously, since there are no active inequality constraints at the optimal point, 
LICQ is not required.

Therefore, q∗
t
= Ate

−btp
∗

, t = 1,2, 3 and profit earned by the monopolist

Case 2   The peak period constraint is tight.

In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for peak period. This is trivially linearly independent, hence 
LICQ is satisfied.

The profit earned by the monopolist becomes

Thus

4.3.2 � Decreasing marginal costs

The profit function of the monopolist becomes

The optimization problem of the monopolist is

�∗ =

3∑

t=1

(
p∗ −

�

k

)
ntAt(p

∗)
−bt − F

𝜕L

𝜕𝜆1
= 0 ⇒ 10000Ck = A1p

−b1 , 𝜆1>0

𝜕L

𝜕𝜆t
>0 ⇒ 10000Ck>Atp

−bt , 𝜆t = 0, t = 2, 3

(32)Therefore p∗ = [
A1

1000Ck
]

1

b1 and q∗
t
= At

[
1000Ck

A1

] bt

b1

∀t ∈ 1, 2, 3

� =
(
p∗ −

�

k

) 3∑

t=1

ntq
∗
t
− F

⇒ �∗ =

[(
A1

1000Ck

) 1

b1

−
�

k

]
3∑

t=1

ntAt

(
1000Ck

A1

) bt

b1

− F

� = n1pq1 + n2pq2 + n3pq3 −
1

k

(
n1�1q1 + n2�1q2 + n3�3q3

)
− F

Maximize� =

3∑

t=1

(
p −

�t

k

)
n
t

Atp
−bt − F
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We solve the constrained optimization problem by the method of Lagrange 
multipliers.

where�1, �2, �3aretheLagrangemultipliers.
The KKT first-order necessary conditions give us

1.	

2.	

3.	

4.	

For t = 2,3 , constraint (35) holds as strict inequality, hence �2, �3 = 0 for each case. 
The price constraint (35b) also holds with strict inequality for t = 1,2, 3 in all the cases.

Case 1   The constraint for each period is slack.

Putting �1 = �2 = �3 = 0 in Eq. (34), we obtain

subjecttoAtp
−bt ≤ 1000Ck, t = 1,2, 3

0 < p ≤ p

(33)L =

3∑

t=1

(
p −

�t

k

)
n
t

Atp
−bt +

3∑

t=1

�t
(
1000Ck − Atp

−bt
)
+ �

(
p − p

)
− F

�L

�p
= 0

(34)⇒

3∑

t=1

[
nt

(
p −

(
p −

�t

k

)
bt

)
+ �tbt

]
Atp

−bt−1 − � = 0

(35a)�L

��t
= 1000Ck − Atp

−bt ≥ 0and�t ≥ 0, t = 1,2, 3

(35b)�L

��
= p − p ≥ 0and� ≥ 0

(36)�t
�L

��t
= 0, t = 1,2, 3

𝜕L

𝜕𝜆1
>0 ⇒ 10000Ck>A1p

−b1

∴�1 = 0

(37)
3∑

t=1

[
nt

(
p −

(
p −

�t

k

)
bt

)]
Atp

−bt−1 = 0
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Similarly, the above expression is non-linear in p and, hence, a solution for p cannot 
be obtained in a closed form. So we use Newton–Raphson’s method of iteration to 
approximate the value of p from Eq. (37).

We mimic the process that was followed while solving for p earlier in Eq. (8), (15), 
and (31).

The value of p thus obtained is denoted by p∗.
As previously, as there are no active inequality constraints at the optimal point, 

LICQ is not required.
Therefore, q∗

t
= Ate

−btp
∗

, t = 1,2, 3 and profit earned by the monopolist is

Case 2   The peak period constraint is tight.

In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for peak period. LICQ is trivially fulfilled.

The profit of the monopolist is

Thus

4.4 � The monopolist faces a constant elasticity demand function and charges 
different prices in all three periods

4.4.1 � Constant marginal cost

If the monopolist charges different prices in different periods, then for constant mar-
ginal costs, the optimization problem becomes

�∗ =

3∑

t=1

(
p∗ −

�

k

)
ntAt(p

∗)
−bt − F

𝜕L

𝜕𝜆1
= 0 ⇒ 10000Ck = A1p

−b1 , 𝜆1>0

𝜕L

𝜕𝜆t
>0 ⇒ 10000Ck>Atp

−bt , 𝜆t = 0, t = 2, 3

(38)p∗ =

[
A1

1000Ck

] 1

b1

and q∗
t
= At

[
1000Ck1

A1

] bt

b1

∀t ∈ 1, 2, 3

�∗ =

3∑

t=1

(p∗ −
�t

k
)ntq

∗
t
− F

�∗ =

3∑

t=1

[(
A1

1000Ck

) 1

b1

−
�t

k

]
ntAt[

1000Ck

A1

]

bt

b1
− F
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The optimization problem of the monopolist, thus, reduces to

We solve this constrained optimization problem by the method of Lagrange 
multipliers.

where�1, �2, �3aretheLagrangemultipliers.
The KKT first-order necessary conditions give us

1.	

2.	

3.	

4.	

For t = 2,3 , constraint (41a) holds with strict inequality, hence, �2 = �3 = 0 
in both cases. The price constraints (41b) also hold with strict inequality for 
t = 1,2, 3, for both cases.

� = n1p1A1p1
−b1 + n2p2A2p2

−b2 + n3p3A3p3
−b3 −

�

k

(
n1A1p1

−b1 + n2A2p2
−b2 + n3A3p3

−b3
)
− F

Maximize� =

3∑

t=1

(
pt −

�

k

)
ntAtpt

−bt − F

subjecttoAtpt
−bt ≤ 1000Ck, t = 1,2, 3

0 < pt ≤ p̃, t = 1,2, 3

(39)

L =

3∑

t=1

(
pt −

𝛿

k

)
n
t
Atpt

−bt +

3∑

t=1

𝜆t
(
1000Ck − Atpt

−bt
)
+

3∑

t=1

𝜇t(p̃ − pt) − F

�L

�p
= 0

(40)⇒

[
nt

(
pt −

(
pt −

�

k

)
bt

)
+ �tbt

]
Atpt

−bt−1 − �t = 0

(41a)
�L

��t
= 1000Ck − Atpt

−bt ≥ 0, and�t ≥ 0, t = 1,2, 3

(41b)
𝜕𝜓

𝜕𝜇t

= p̃ − pt ≥ 0and𝜇t ≥ 0, t = 1,2, 3

(42)�t
�L

��t
= 0and�t

��

��t

= 0, t = 1,2, 3
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Case 1   The constraint is slack for all three periods.

Putting �1 = �2 = λ3 = 0 in Eq. (40)

As previously, as there are no active inequality constraints at the optimal point, 
LICQ is not required.

The profit of the monopolist is

Case 2   The peak period constraint is tight.

Therefore, p1 = [
A1

1000Ck
]

1

b1 andq1 = 1000Ck

Putting �2 = �3 = 0 in Eq. (40).
Therefore, p∗

t
=

�bt

k(bt−1)
andq∗

t
= At

[
k(bt−1)

�bt

]bt
∀t ∈ 2,3

In this case, there is only one active inequality constraint at the optimal p∗ : the capacity 
constraint for the peak period. This is trivially linearly independent, hence LICQ is satisfied.

The total profit earned by the monopolist is

𝜕L

𝜕𝜆1
>0 ⇒ 10000Ck>A1p

−b1
1

∴�1 = 0

(43)nt

(
pt −

(
pt −

�

k

)
bt

)
Atpt

−bt−1 = 0

(44)p∗
t
=

�bt

k
(
bt − 1

)∀t ∈ 1, 2, 3 and q∗
t
= At

[
k
(
bt − 1

)

�bt

]bt

∀t ∈ 1, 2, 3

�∗ =

3∑

t=1

(p∗
t
−

�

k
)ntq

∗
t
− F

�∗ =

3∑

t=1

(
�

k(bt − 1)

)
ntAt

[
k
(
bt − 1

)

�bt

]bt

− F

𝜕L

𝜕𝜆1
= 0 ⇒ 10000Ck = A1p

−b1 , 𝜆1>0

𝜕L

𝜕𝜆t
>0 ⇒ 10000Ck>Atp

−bt , 𝜆t = 0, t = 2, 3
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Thus

4.4.2 � Decreasing marginal costs

If the costs faced by the monopolist are assumed to decrease as the quantity gener-
ated increases, such that 𝛿1 < 𝛿2 < 𝛿3 , then the profit function becomes

The monopolist’s optimization problem is

We solve this constrained optimization problem by the method of Lagrange 
multipliers.

where�1, �2, �3aretheLagrangemultipliers.
The KKT first-order necessary conditions give us

1.	

�∗ =

3∑

t=1

(
p∗
t
−

�

k

)
ntq

∗
t
− F

�∗ = n11000Ck

[(
A1

1000Ck

) 1

b1

−
�

k

]
+

3∑

t=2

(
�

k(bt − 1)

)
ntAt[

k
(
bt − 1

)

�bt
]

bt

− F

� = n1p1q1 + n2p2q2 + n3p3q3 −
1

k

(
n1�1q1 + n2�2q2 + n3�3q3

)
− F

Maximize� =

3∑

t=1

(
pt −

�t

k

)
ntAtpt

−bt − F

subjecttoAtpt
−bt ≤ 1000Ck, t = 1,2, 3

0 < pt ≤ p̃, t = 1,2, 3

(45)

L =

3∑

t=1

(
pt −

𝛿t

k

)
n
t

Atpt
−bt +

3∑

t=1

𝜆t
(
1000Ck − Atpt

−bt
)
+

3∑

t=1

𝜇t(p̃ − pt) − F

�L

�p
= 0
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2.	

3.	

4.	

For t = 2,3, the constraint (47a) holds with strict inequality and hence �2 = �3 = 0 
in both cases. Price constraints (47b) also hold with strict inequality for t = 1,2, 3, , 
for both cases.

Case 1   The constraint is slack for all three periods.

Putting �1 = �2 = λ3 = 0 in Eq. (46),

As previously, as there are no active inequality constraints at the optimal point, 
LICQ is not required.

The total profit of the monopolist is

(46)⇒

[
nt

(
pt −

(
pt −

�t

k

)
bt

)
+ �tbt

]
Atpt

−bt−1 − �t = 0

(47a)�L

��t
= 1000Ck − Atpt

−bt ≥ 0and�t ≥ 0, t = 1,2, 3

(47b)
𝜕𝜓

𝜕𝜇t

= p̃ − pt ≥ 0and𝜇t ≥ 0, t = 1,2, 3

(48)�t
�L

��t
= 0and�t

��

��t

= 0, t = 1,2, 3

𝜕L

𝜕𝜆1
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−b1
1

∴�1 = 0

(49)nt

(
pt −

(
pt −

�t

k

)
bt

)
Atpt

−bt−1 = 0

(50)

Therefore p∗
t
=

�bt

k
(
bt − 1

)∀t ∈ 1, 2, 3 and q∗
t
= At

[
k
(
bt − 1

)

�bt

]bt

∀t ∈ 1, 2, 3
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Thus

Case 2   The peak period constraint is tight.

Therefore, p∗
1
= [

A1

1000Ck
]

1

b1 andq∗
1
= 1000Ck

and, p∗
t
=

�bt

k(bt−1)
andq∗

t
= At

[
k(bt−1)

�bt

]bt
∀t ∈ 2,3

In this case, there is only one active inequality constraint at the optimal p∗ : the 
capacity constraint for the peak period. This is trivially linearly independent, hence 
LICQ is satisfied.

The total profit earned by the monopolist in this case becomes

4.5 � Comparative summary

Tables 1, 2, 3

�∗ =
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−
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)
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t
− F
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k
(
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�bt

]bt

− F

𝜕L
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= 0 ⇒ 10000Ck = A1p

−b1 , 𝜆1>0

𝜕L

𝜕𝜆t
>0 ⇒ 10000Ck>Atp
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−
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−
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]
+
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4.6 � Computational results

Kaicker et al. [5] estimated the linear demand functions for the peak, shoulder, and 
off-peak periods using the data collected from a local electricity supplier.4 We form 
those demands as the basis and estimate the exponential and constant elasticity of 
demand functions using specific price ranges for peak, shoulder, and off-peak peri-
ods. As the optimal prices for the peak, shoulder, and off-peak periods lie in the 
range of Rs. 9–9.5, Rs. 8–8.5, and Rs. 6.5–7 respectively, we use these ranges to 
estimate the parameters of the non-linear functions under study. We use a fairly 
small price interval for the estimation to obtain a better approximation of the expo-
nential and constant elasticity of demand functions.

We use AMPL to derive the optimal prices and profits under a flat rate and TOU 
pricing scheme. Highest prices are observed during peak periods, followed by shoul-
der and off-peak periods under the TOU pricing scheme for both exponential and 
constant elasticity of demand functions. The peak period demand is lower than the 
shoulder and off-peak demands under the TOU pricing scheme because of the lower 
prices in the shoulder and off-peak periods. In the case of an exponential demand 
function, there is a gain in profit of Rs. 1,332,711 under the TOU pricing scheme 
over the FRP scheme assuming constant marginal costs. The corresponding increase 
in profits under decreasing marginal costs is Rs. 1,153,657. For constant elasticity 
of demand functions, we see a gain in profit of Rs. 493,235 assuming constant mar-
ginal costs and a gain in profit of Rs. 352,760 assuming decreasing marginal costs. 
The peak period demand for the estimated constant elasticity of demand curves 
remains at capacity under both the TOU and FRP scheme, which shows that dif-
ferential pricing does not help to reduce demand below capacity in this case. The 
demands for off-peak and shoulder periods are seen to be lower under dynamic pric-
ing as compared to FRP probably because of smaller reductions in prices observed 
in this case. Capacity = 500 MW.

Transmission Loss = 4%
Fixed Cost = Rs. 2,700,000.

4.6.1 � Linear demand

Tables 4, 5, 6, 7, 8

4  The data on power generation and operating costs have been obtained by modelling a 500 MW genera-
tor in a power plant in central India. Each day has been divided into 9 h of off-peak, 8 h of shoulder, and 
7 h of peak period, as assumed by Cellibi and Fuller (2001)..
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Table 4   Parameters in the model

Peak demand Shoulder demand Off-Peak demand

A 1,200,000 1,100,000 1,000,000
B 80,000 85,000 96,000
�(const. variable cost) 3.24 3.24 3.24
�t(decreasing variable cost) 3.24 3.30 3.36
Transmission Loss 4%
Fixed Cost (Rs.) 2,700,000

Table 5   Demand and price 
under constant marginal cost 

Flat pricing TOU pricing

Demand (KWh) Peak(t = 1) 480,000 465,000
Shoulder(t = 2) 335,000 406,563
Off-Peak(t = 3) 136,000 338,000

Price(Rs./KWh) Peak(t = 1) 9 9.18
Shoulder(t = 2) 9 8.15
Off-Peak(t = 3) 9 6.89

Table 6   Revenue, Cost and 
Profit under constant marginal 
cost 

Flat pricing TOU pricing

Revenue (Rs.) 65,376,000 77,416,654
Cost (Rs.) 27,216,000 34,929,597
Profit (Rs.) 38,160,000 42,487,057

Table 7   Demand and price 
under decreasing marginal cost 

Flat pricing TOU pricing

Demand(KWh) Peak (t = 1) 480,000 465,000
Shoulder (t = 2) 335,000 403,906
Off-Peak (t = 3) 136,000 332,000

Price(Rs./KWh) Peak (t = 1) 8.99 9.18
Shoulder (t = 2) 8.99 8.18
Off-Peak (t = 3) 8.99 6.95

Table 8   Revenue, cost and profit 
under decreasing marginal cost 

Flat pricing TOU pricing

Revenue (Rs.) 65,376,064 77,158,646
Cost (Rs.) 27,536,533 35,251,081
Profit (Rs.) 37,839,525 41,907,565
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4.6.2 � Exponential demand

Tables 9, 10, 11, 12, 13

Table 9   Parameters in the model

Peak demand Shoulder demand Off-Peak demand

A 2,256,410 2,287,879 2,216,216
B 0.172 0.212 0.272
� (const. variable cost) 3.24 3.24 3.24
�t (decreasing variable cost) 3.24 3.30 3.36
Transmission Loss 4%
Fixed Cost (Rs.) 2,700,000

Table 10   Demand and price 
under constant marginal cost 

Flat pricing TOU pricing

Demand (KWh) Peak (t = 1) 480,000 464,532
Shoulder (t = 2) 339,575 411,529
Off-Peak (t = 3) 191,706 325,563

Price (Rs./KWh) Peak (t = 1) 8.99 9.19
Shoulder (t = 2) 8.99 8.09
Off-Peak (t = 3) 8.99 7.05

Table 11   Revenue, cost and 
profit under constant marginal 
cost 

Flat pricing TOU pricing

Revenue (Rs.) 70,206,000 77,181,900
Cost (Rs.) 29,031,600 34,674,800
Profit (Rs.) 41,174,385 42,507,093

Table 12   Demand and price 
under decreasing marginal cost 

Flat pricing TOU pricing

Demand (KWh) Peak (t = 1) 480,000 464,532
Shoulder (t = 2) 339,575 406,113
Off-Peak (t = 3) 191,705 314,680

Price (Rs./KWh) Peak (t = 1) 8.99 9.18
Shoulder (t = 2) 8.99 8.15
Off-Peak (t = 3) 8.99 7.17
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4.6.3 � Constant elasticity demand

Tables 14, 15, 16, 17, 18
The profit accruing to a monopolist is higher under a differential pricing 

scheme as opposed to a flat rate scheme irrespective of the demand function used 
and the form of marginal cost. In the cases of linear and exponential demand 
functions, the flat rate peak period demand is above the level that can be sup-
plied by the installed capacity and is thus constrained by the capacity level. The 
introduction of a TOU pricing structure helps shift the load to periods of lower 
demands and thus brings the peak period optimal demand below the 480,000 
KWHr mark. Thus, under variable pricing scheme, installation of excess capacity 
for meeting the peak period market demand is not required. Under the constant 
elasticity of demand case, we see that the peak period demand under both forms 
of pricing is constrained by the installed capacity. The implementation of TOU 
pricing does not help to bring down the demand requirement to a level which can 
be generated by a 500 MW generator used in the analysis.

Table 13   Revenue, cost 
and profit under decreasing 
marginal cost 

Flat pricing TOU pricing

Revenue (Rs.) 70,206,000 76,697,700
Cost (Rs.) 29,417,000 34,755,100
Profit (Rs.) 40,788,928 41,942,584

Table 14   Parameters in the model

Peak demand Shoulder demand Off-Peak demand

A 16,296,296 15,794,979 11,714,286
e 1.59 1.74 1.83
� (const. variable cost) 3.24 3.24 3.24
�t (decreasing variable cost) 3.24 3.30 3.36
Transmission Loss 4%
Fixed Cost (Rs.) 2,700,000

Table 15   Demand and profit 
under constant marginal cost 

Flat pricing TOU pricing

Demand (KWh) Peak (t = 1) 480,000 480,000
Shoulder  (t = 2) 333,620 429,764
Off-Peak (t = 3) 202,673 297,579

Price (Rs./KWh) Peak (t = 1) 9.18 9.17
Shoulder (t = 2) 9.18 7.94
Off-Peak (t = 3) 9.18 7.44
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5 � Conclusions and policy implications

The insights for the policymaker which can be drawn from this analysis relate to 
the efficiency gains of using dynamic pricing over any FRP scheme. Because of the 
higher profits that a monopolist is able to earn under a TOU pricing structure, the 
monopolist gains better earnings. Also, because of better capacity utilization under 
this type of pricing schedule, it does not require the installation of additional capac-
ity to service the market demand during the peak period. The capacity constraint 
that comes into play in an FRP scheme is no longer relevant under these types of 
dynamic pricing structures. The consumers also respond to the higher prices dur-
ing the peak period and lower prices during the off-peak and shoulder periods by 
reducing their peak period demand and increasing the demand during the other two 
periods. This shows that the introduction of such a schedule will help in the effective 
utilization of capacity and efficiency gains for the monopolist, which would work in 
favour of the acceptance of such time-varying pricing schedule.

Proper implementation of such a dynamic pricing system will, however, require 
installation of smart meters, an integrated method to divide the day into two or 
more periods, and the announcement of a time-varying pricing structure which 
would be predetermined. However, the gains that would emerge from this scheme 

Table 16   Revenue, cost, and 
profit under constant marginal 
cost 

Flat pricing TOU pricing

Revenue (Rs.) 72,083,200 78,055,090
Cost (Rs.) 29,203,900 34,682,616
Profit (Rs.) 42,879,239 43,372,474

Table 17   Demand and price 
under decreasing marginal cost 

Flat pricing TOU pricing

Demand (KWh) Peak (t = 1) 480,000 480,000
Shoulder (t = 2) 333,620 416,260
Off-Peak (t = 3) 202,673 278,419

Price (Rs./KWh) Peak (t = 1) 9.18 9.18
Shoulder (t = 2) 9.18 8.08
Off-Peak (t = 3) 9.18 7.72

Table 18   Revenue, cost, 
and profit under decreasing 
marginal cost 

Flat pricing TOU pricing

Revenue (Rs.) 72,083,200 77,094,500
Cost (Rs.) 29,598,800 34,257,300
Profit (Rs.) 42,484,422 42,837,182
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are expected to be higher than the incurred costs incurred. For this, the government 
should undertake a proper cost–benefit analysis using real-time demand data.In this 
paper, we modelled the TOU pricing scheme and compared it to an FRP scheme 
under a monopolistic setup for non-linear market demand functions. We then per-
formed an analytic comparison between a linear function and the two non-linear 
functions used in this study. It was found that irrespective of the form of the demand 
functions, there are efficiency gains for the producer under a time-varying pricing 
schedule. This form of pricing leads to a better demand–supply balance as a result of 
consumers responding to the higher prices during peak and lower prices during the 
other periods and also helps to reduce the pressure on the installed capacity. Thus, 
installation of additional capacity for meeting the high peak period demands is not 
required and investment and operating costs are reduced as result. The possibility of 
excess capacity remaining idle during off-peak periods is somewhat reduced due to 
higher demand because of low prices during these times of the day.

Under a constant elasticity of demand function, demand is above capacity under 
a TOU scheme as well. This means that this form of differential pricing is not effec-
tive in bringing peak demand below capacity, thus not leading to the type of load 
reduction seen in the other types of functions (linear and exponential), although the 
profit accruing to the monopolist is still higher under this pricing scheme. The impli-
cations for policymakers in the wake of higher profits for producers under the TOU 
pricing and better load redistribution in response to the lower prices in the off-peak 
and shoulder periods indicate that this type of pricing is beneficial to producers in 
terms of efficiency gains and for consumers in terms of reduction in their bills. Thus, 
acceptance of this form of pricing scheme would be easier in the wake of significant 
gains accruing to the public.
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