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Abstract
This paper addresses a closed-loop supply chain consisting of a manufacturer and 
a retailer. While producing a single item, the manufacturer executes a perfect pro-
duction process influenced by learning effect. Production process is supported by 
raw materials as well as used materials. Collected used items follow an inspection 
process which is subject to learning and incurs Type I and Type II errors. Return 
of used items is random. The demand of the end-product is in a linear relationship 
with retail price and product quality. The proposed model is developed and optimal 
results are analysed with a numerical example. Sensitivity analysis is carried out 
to investigate the effects of various parameters on optimal decisions. It is observed 
from the numerical study that higher learning in production and inspection results 
in achieving a higher system profit, and the price sensitivity factor in demand has 
a significant impact on the retail price. Some important managerial insights of the 
proposed model are also discussed.

Keywords Supply chain · Price and quality dependent demand · Remanufacturing · 
Learning · Random return · Inspection error

1 Introduction

In the business world today, the manufacturing firms heavily rely on fast-forward 
technologies to achieve their efficiency and get an advantageous platform to con-
trol the other competing firms. It is, therefore, a crucial job for managers to deal 
with the machineries which are managed by none other than ‘human beings’. So 
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the fact is, how much we improve our technology, at the end of the day it comes 
to manpower only because mankind does not limit its creativity. As a conse-
quence, the ‘human factor’ has drawn the attention of researchers, practitioners, 
and especially manufacturing sectors where human involvement has surpassed 
the machinery use, e.g. garment factories, business firms of leather-goods, sports-
items, etc. [30]. The human factor ‘learning’ was first introduced by Wright [44] 
for an aircraft company. Thereafter, several researchers followed his paved path 
to explore learning in different directions under diverse circumstances [20, 45]. 
Unlike the conventional production process, they addressed learning achievement 
in practice where the workers gain skill from repetitive works and implement that 
in subsequent operations.

Although supply chain management prevails the mainstream system, remanufac-
turing has an explicit contribution towards ecology as well as economy. Moving one 
step ahead of decreasing waste, manufacturing firms can actually bag some more 
profit through recycling. Schrady [40] was among the pioneer researchers to address 
remanufacturing in an EOQ model. After that, a new pathway of manufacturing was 
opened to satisfy the demand of different quality items produced through raw mate-
rial as well as used material. Owing to the fact that used items are returned at differ-
ent conditions, it is worth running a screening process to classify the inappropriate 
products. This manual inspection process may incur error which is again categorized 
in two types—type I error (qualified items are detected as non-qualified) and type 
II error (non-qualified items are identified as qualified). Manual inspection can find 
a maximum of 80% defect in product [25], and an error can generate a wide differ-
ence in competing business firms which deal with aircraft materials, multi-charac-
teristic components, etc. [37]. To reduce error and to have access to some incred-
ible achievements, it is very convincing to assume ‘learning effect’ in the screening 
process [28, 30]. In the literature, learning effect in inspection has been used to 
optimize the inspection time as well as inspection rate and get benefitted from that. 
However, its use to minimize inspection error is infrequent [8], specifically when 
remanufacturing is involved.

Remanufacturing has been practiced in different industries from the very begin-
ning where the products are very expensive to manufacture and the used products 
can replace the over-priced components like aircraft [44]. A case study for house-
hold appliances in the Gulf Cooperation Council (GCC) region showed the effi-
ciency of reverse logistic process on the economy [2]. Zhang et  al. [47] made a 
real case study on waste electrical and electronics equipments (WEEE) using four 
dynamic game models. Inspection process is an integral part of remanufacturing 
where the quality and durability are checked. Inspection has been practically studied 
in various industries. Shen and Chen [41] performed a case study in a Japanese fash-
ion industry where a quality-based inspection has been carried out for outsourcing 
production. Their findings suggest some important strategies to maintain the product 
quality and improve the supply chain performance.

It is evident from the above discussion that some questions are yet to be answered 
while dealing with learning and inspection in manufacturing/remanufacturing firms: 
How the manufacturing model will respond if we incorporate the learning effect in 
inspection? Specifically, what are the consequences of learning effect if we include 
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it in a remanufacturing model? Our aim in this study is to figure out the answers and 
accomplish the practical scenarios with some favorable strategies.

2  Literature review

In the last few decades, a growing number of literatures have been observed on our 
presumed topics: remanufacturing, price and quality dependent demand, learning in 
production, and inspection. In the following, we discuss those research works which 
fall in the domain of our concerned areas.

Schrady [40] was one of the early researchers who carried out elementary works 
on remanufacturing. Inderfurth et  al. [19] differentiated between product recovery 
environments where products can be recycled in various ways. They [18] further con-
sidered a manufacturing-remanufacturing model where newly manufactured items 
were used to satisfy the demand of remanufactured items if needed. They approved 
the loss in profit to maintain the goodwill. Savaskan et al. [39] discussed about three 
channels to collect the used items—either through manufacturer or retailer, or third 
party. Later, Hong et  al. [16] considered three partnerships for collection of used 
materials: manufacturer and retailer, retailer and third party, and manufacturer and 
third party. They showed that the manufacturer–retailer partnership was the most 
profitable one. Das and Dutta [5] studied a multi-period CLSC model with a stra-
tegic recovery process depending on the  promotional offer and buying pattern of 
the consumers. Further, they [6] extended their model with an expanded recovery 
system along with a probabilistic relation between the offered incentive for returning 
used items and its probability. Govindan et al. [15] made a literature survey on 382 
papers on closed-loop supply chain and reverse logistics, to recognize the research 
gap and guide the practitioners to a new direction. Giri and Sharma [13] analyzed 
a model for both single and multi-manufacturing and remanufacturing cycles. Jena 
et al. [24] considered an investment for advertisement, to collect the returned prod-
ucts. This advertising was done in five different ways incorporating the cost sharing 
matter. Among them, the centralized advertising policy was found to be the most 
appropriate strategy. Giri and Dey [11] analyzed a dual channel recycling model 
with uncertainty in used product collection in which any shortfall amount of used 
products was met by fresh raw materials supplied by a backup supplier. Sun et al. 
[42] dealt with 3D printing waste materials to recycle and issue high-quality materi-
als from it. They used real-life data which results in a significant implication of their 
model towards ecological balance along with business. Recently, Dutta et  al. [10] 
studied about the challenges and barriers faced by different industries while adopt-
ing the concept of reverse logistics, the ongoing trend in Indian context. They used 
fuzzy method to analyze the model and found that, classification of the barriers into 
different zones is the most effective strategy to handle them.

Price and/or quality dependent demand has drawn attention of many researchers 
during the last couple of decades. Whitin [43] was among the seminal researchers 
to address price-dependent demand in an EOQ model. Reyniers and Tapiero [38] 
assumed the quality factor in a contractual issue and examined both the cooperative 
and non-cooperative settings. Baiman et al. [3] also discussed about product quality 
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and price along with risk neutral supplier and buyer under a contractible situation. 
Later, assuming price and quality dependent market demand, a comparison was 
made by De Giovanni [7] to identify the effective strategy between quality improve-
ment and advertising strategy. This type of demand was also adopted by Maiti and 
Giri [32, 33] in a game theoretic model where different game structures were ana-
lyzed to find the best solution. Nagare and Dutta [35] addressed price, inventory 
stock, and time dependent demand for short life-cycle products under a single-period 
ordering and realistic pricing policies. Recently, price dependent demand along with 
greening and sales effort was studied under coordination mechanism and cost shar-
ing contract [34].

Learning can be defined as a power function between time and quantity [44]. Fur-
ther explanation can be given as, when the product quantity doubles, a fixed percent-
age of cost decrease takes place [21]. Jaber and Bonney [20] analyzed learning effect 
in production along with forgetting effect which is a similar type of effect occurs in 
the course of non-production time. Glock and Jaber [14] developed a multi-stage 
production-inventory model with imperfect production, where defective items are 
recycled. Their production and recycling processes both are subject to learning and 
forgetting effects. Kar et al. [26] optimized some EPQ models using genetic algo-
rithm with stock-dependent demand and permissible delay in payment. They devel-
oped these models for deteriorating products where the set up and production costs 
are subject to learning effect. Lolli et  al. [31] presented an imperfect production 
system under the influence of learning and forgetting. Afshari et al. [1] also devel-
oped a model with learning-forgetting effect. Recently, Huang and wang [17] pro-
posed three recycling modes: no remanufacturing, manufacturer remanufacturing, 
and third party remanufacturing. They investigated the influence of profit sharing as 
well as learning effect in production and pricing decisions. They observed that, for 
increasing learning effect, the production cost decreases, and from shared informa-
tion, the pricing decision can also be optimized.

Another important human factor in this context is ‘inspection error’ which was 
introduced by Jacobson [22] and categorized into two types—Type I error (eligible 
products are rejected as non-eligible) and Type II error (non-eligible products are 
accepted as eligible). These errors have major impacts on industries [37]. Yoo et al. 
[46] considered a profit maximization model with imperfect production and imper-
fect inspection which result in defective products as well as inspection error. Khan 
et al. [30] assumed the same environment with learning in production process for 
a cost effective model. Duffuaa and El-Ga’aly [9] examined a multi-objective opti-
mization model where inspection measurement error was introduced and screened 
items are marketed/recycled according to their quality. Jauhari et  al. [23] consid-
ered a three-layer supply chain performed by a single supplier, a single manufac-
turer, and a single retailer under an imperfect production and inspection process. Pal 
and Mahapatra [36] considered a three-stage supply chain for deteriorating prod-
ucts where shortage and backorder were allowed. They assumed price and stock-
dependent stochastic demand along with imperfect production and inspection. Khan 
et  al. [28] developed an inventory model where inspection is subject to learning. 
This assumption was adopted by Giri and Glock [12] in their inventory model with 
remanufacturing. Recently, Dey and Giri [8] investigated an inventory model where 
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batch-wise inspection process was introduced in retailer’s inventory and learning 
effect was implemented in inspection error. They observed that learning effect in 
inspection error basically minimizes the error percentage and eventually optimizes 
the cost function.

From the above literature review, it is noticed that learning effect has been 
exploited to either increase the rate or decrease the time. But its impact on inspec-
tion error has not been investigated in reverse logistics process. In this paper, we 
consider a closed-loop supply chain which is run by a manufacturer and a retailer. 
The market demand we presume as deterministic and dependent on price and qual-
ity of the product. The manufacturing-remanufacturing process and the  inspection 
process are both inspired by the learning effect. The rest of the paper is organized as 
follows: In Sect. 3, assumptions and notations are provided. Formulation and analy-
sis of the proposed model are presented in Sect. 4. Section 5 discusses the numerical 
results and sensitivity analysis of some model-parameters. Section 6 addresses some 
important managerial insights. Finally, Sect. 7 draws some concluding remarks with 
future research directions.

3  Assumptions and notations

The proposed model is structured through the specified assumptions as given below:

• A closed-loop supply chain is formed by a single manufacturer and a single 
retailer for trading a single product.

• The manufacturer produces the items in a lot and delivers in equal shipments to 
the retailer.

• The used items are collected from the end-customers and undergo an inspection 
process.

• Manufacturing and remanufacturing processes are operated jointly and are sup-
ported by both raw materials and qualified returned items. Produced items are of 
the same quality.

• Production process is influenced by learning effect, which results in an increase 
in production rate as well as decrease in production time. Additionally, learning 
effect has an impact on the manufacturer’s setup cost.

• The demand rate(D) of finished items is dependent on price and quality. We take 
D = d − �pr + �q , where � , 𝛿 > 0 , d is the basic market demand, and pr and q 
denote retail price and product quality, respectively.

• The return rate is random and return of used items is managed by the retailer’s 
own channel.

• Return items are inspected thoroughly and categorized into two groups—
accepted and rejected. A fraction � ( 0 < 𝛽 ≤ 1 ) of returned items is remanufac-
turable.

• Inspection process is imperfect and it makes two types of error: Type I error 
(remanufacturable items are rejected as non-remanufacturable) and Type II error 
(non-remanufacturable items are accepted as remanufacturable).
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• Inspection process is subject to learning which has a positive impact on inspec-
tion error.

We use the following notations to develop the proposed model (m, r, and mu repre-
sent manufacturer, retailer and returned product, respectively):

Manufacturer:

Amj : Setup cost per setup in the jth cycle
Am0 : Fixed setup cost per setup
Am1 : Variable setup cost per setup
hm : Holding cost for finished products per unit per unit time
hmu : Holding cost for returned items per unit per unit time
cmw : Unit wholesale price of raw material
cm : Production cost per unit time
cmu : Unit purchase cost of used item
cmr : Unit cost to purify and restore used item
cmi : Unit inspection cost
cmI : Unit penalty cost for Type I error
cmII : Unit penalty cost for Type II error
cmd : Unit cost for disposing rejected item after inspection
P : Production rate
D : Demand rate
d : Basic market demand rate
𝛾 > 0 : Price sensitivity coefficient
𝛿 > 0 : Quality sensitivity coefficient
𝜆 > 0 : Quality improvement cost coefficient
Tpj(Tdj) : Manufacturer’s production (non-production) period in cycle j
� : Effective/serviciable remanufacturable fraction of inspected 

items (0 < 𝛽 ≤ 1)

T
1
 (= 1∕P) : Manufacturer’s production time to produce the first unit

e
1j : Probability of Type I error in the jth production cycle
e
2j : Probability of Type II error in the jth production cycle
X : Random variable (0 < X < 1)

fX(⋅) : Probability density function of X
ge11 (⋅) : Probability density function of e

11

he21 (⋅) : Probability density function of e
21

b (0 ≤ b < 1) : Learning exponent for production
b
1
 (0 ≤ b

1
< 1) : Learning exponent for setup

b
2
 (0 ≤ b

2
< 1) : Learning exponent for Type I error

b
3
 (0 ≤ b

3
< 1) : Learning exponent for Type II error

 Retailer:

Ar : Setup cost per setup
hr : Holding cost for finished items per unit per unit time
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 Retailer:

pr : Retail price (decision variable)
q : Product quality (decision variable)
n : Number of shipments from the manufacturer to the 

retailer (decision variable)
Tr : Length of an ordering cycle
Q : Batch size (decision variable)

4  Model formulation

We assume that the manufacturer produces the items in a lot and delivers to the retailer 
in n equal-sized batches of size Q. The production process is subject to learning, where 
learning induces growth in production rate, which regulates the production time as well 
as holding time. Setup cost also follows a decreasing pattern due to learning effect. The 
demand rate is dependent on retail price pr and product quality q. The retailer conducts 
an inspection process to sort out the working items. We assume that the inspection pro-
cess is imperfect and erroneous. A portion of the inspected items qualifies for recycling 
while the remaining portion is disposed off with a disposal cost. This inspection pro-
cess is also subject to learning.

4.1  Manufacturer’s total cost

4.1.1  Manufacturing cost: learning in production

As per our assumption, the manufacturer produces a total of nQ items, in which one 
portion comes from raw materials and the rest portion from collected used items. 
The manufacturing process is subject to learning which follows the Wright’s learn-
ing curve. Wright’s learning curve represents a power function relating to production 
time and produced units, which basically explains the fact of lowering the unit produc-
tion time by a constant percentage if the produced quantity is doubled. The learning 
curve is defined by the relation Ti = T1i

−b , where Ti is the time to produce the ith unit. 
Figure 1a, b shows the inventory pattern during a production period [30]. Using the 
wright’s learning curve function, the production time can be formulated as

The above can be rewritten as

Using (2), the production quantity Q(t) at any time t can be expressed as

(1)Tpj = ∫
jQp

(j−1)Qp

T1x
−bdx =

T1

1 − b
Q1−b

p
[j1−b − (j − 1)1−b]

(2)Qp =

[

(1 − b)Tpj

T1

1

j1−b − (j − 1)1−b

]

1

1−b
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Therefore, the inventory incurred at the time of production for the jth production 
cycle can be written as

Hence, the first shipment in the jth cycle will take place after time T1j where

In the non-production period of the ith cycle, the inventory can be calculated from 
Fig. 1 as

(3)Q(t) =

[

(1 − b)t

T1

1

j1−b − (j − 1)1−b

]
1

1−b

(4)Ipj = ∫
Tpj

0

Q(t)dt =
T1

2 − b
[j1−b − (j − 1)1−b](nQ)(2−b)

(5)T1j = ∫
Q+Qp

Qp

T1x
−bdx =

T1

1 − b
Q1−b[(1 + (j − 1)n)1−b − ((j − 1)n)1−b]

Inventory level

Time
(a)

(b)
Time

Inventory level

Fig. 1  (a) Manufacturer’s inventory under learning. (b) Manufacturer’s total inventory under learning
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The total inventory moved from the manufacturer to the retailer in a cycle is 

n(n−1)Q2

2D
 . So, in the jth cycle, the manufacturer’s average inventory is

Therefore, the manufacturer’s holding cost for the jth cycle is obtained as

Hence, for the jth cycle, the manufacturing cost in case of learning is the sum of 
setup cost, production cost, and holding cost. Here the setup cost is also impacted 
by learning effect. The setup cost is composed of a fixed cost ( Am0 ) and a decreasing 
cost component ( Am1 ). The cost component Am1 decreases due to repeated number 
of setups made for production in each cycle. Therefore, the setup cost Am for the 
jth cycle can be expressed as in [26]: Amj = Am0 + Am1j

−b1 , where b1 is the learning 
exponent assumed for setup cost.

Thus, the manufacturer’s cost in case of learning is obtained as [30]:

4.1.2  Remanufacturing item cost: learning in inspection

Used items are supposed to collect from the end-customers through the retailer and 
stored at the manufacturer. We assume that the return rate is XD where the random 
variable X follows a uniform distribution. Here the return rate is basically a fraction 

(6)
Idj =

nT1

1 − b
Q2−b

[

(1 + (j − 1)n)1−b − ((j − 1)n)1−b
]

+
n(n − 1)Q2

D
−

T1(j
1−b − (j − 1)1−b)

2 − b
(nQ)2−b

Ipj + Idj −
n(n − 1)Q2

2D

=
nT1

1 − b
Q2−b

[

(1 + (j − 1)n)1−b − ((j − 1)n)1−b
]

+
n(n − 1)Q2

2D
−

T1(j
1−b − (j − 1)1−b)

(2 − b)(1 − b)
(nQ)2−b

hm

[

nT1Q
2−b((1 + (j − 1)n)1−b − ((j − 1)n)1−b)

1 − b

−
T1(j

1−b − (j − 1)1−b)

(2 − b)(1 − b)
(nQ)2−b +

n(n − 1)Q2

2D

]

(7)

Amj + cm
T1

1 − b
(nQ)1−b[j1−b − (j − 1)1−b]

+ hm

[

nT1Q
2−b

1 − b
((1 + (j − 1)n)1−b − ((j − 1)n)1−b) +

n(n − 1)Q2

2D

−
T1(j

1−b − (j − 1)1−b)

(2 − b)(1 − b)
(nQ)2−b

]
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of demand rate. Therefore, the expected quantity of returned items in each cycle is 
E[X]nQ.

As per our assumption, inspection is erroneous and it can generate Type I and 
Type II errors. Let e1j and e2j be the probabilities of Type I and Type II errors 
respectively, in the jth production run, where e1j = e11j

−b2 and e2j = e21j
−b3 . e11 and 

e21 represent the respective probabilities of Type I and Type II errors during the 
first cycle. We assume that a fraction � of the total expected returned items is 
remanufacturable. Therefore, the expected number of rejected items for Type I 
error is �nQE[X]E[e1j] . The expected number of rejected items for Type II error 
is (1 − �)nQE[X](1 − E[e2j]) . So, at the end of inspection, the expected number 
of rejected items is �nQE[X]E[e1j] + (1 − �)nQE[X](1 − E[e2j]) . The rest por-
tion of inspected items goes to the remanufacturing process. Now, the expected 
number of non-recyclable items identified for recycling as qualified item is 
(1 − �)nQE[X]E[e2j] . This amount of items along with the rejected items is finally 
disposed off with some disposal cost. The expected number of recyclable items 
after inspection is E[X]nQ − �nQE[X]E[e1j] − (1 − �)nQE[X](1 − E[e2j]).

If the inspection rate of returned items is I ( I > P > D ), then the accumu-
lated used items is depleted at the current rate of production until time E[X]nQ/I. 
Now, the inventory level of returned items at any time t is E[X]nQ − Q(t) upto 
the time of inspection Tj = E[X]nQ∕I (Fig. 2), where Q(t) can be obtained from 
Eq. (3). At the end of the inspection process, the inventory reaches to the level 
E[X]nQ − �nQE[X]E[e1j] − (1 − �)nQE[X](1 − E[e2j]) . So, the inventory level at 
any time t is E[X]nQ − �nQE[X]E[e1j] − (1 − �)nQE[X](1 − E[e2j]) − Q(t) . Let Tdj 
be the time of total depletion of remanufacturable items, which can be obtained 
as

(8)

E[X]nQ − �nQE[X]E[e1j] − (1 − �)nQE[X](1 − E[e2j])

−

[

(1 − b)Tdj

T1(j
1−b − (j − 1)1−b)

]

1

1−b

= 0

⇒ Tdj =
T1(j

1−b − (j − 1)1−b)

1 − b

[

E[X]nQ
(

� + E[e2j] − �E[e1j] − �E[e2j]
)

]1−b

Tj

Inventory level 

Tdj

Time 

Fig. 2  Used item inventory
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Therefore, the expected holding cost of returned items from the time of inspection 

The used item cost includes purchasing cost, inspection cost, penalty cost, recovery 
cost, and disposal cost. Now, the manufacturer’s total cost is the sum of remanufac-
turing and manufacturing costs. Remanufacturing cost includes all the costs associ-
ated with returning of used items. So this cost can be written as

4.2  Retailer’s total cost

The retailer receives the ordered quantity in n shipments from the manufacturer 
(Fig. 3). The retailer’s total cost which includes ordering cost, purchasing cost, and 
holding cost can be written as

(9)

= hmu

[

∫
Tj

0

[

E[X]nQ −

(

1 − b

T1(j
1−b − (j − 1)1−b)

t

)
1

1−b ]

dt

+ ∫
Tdj

Tj

[

E[X]nQ − �nQE[X]E[e1j]

− (1 − �)nQE[X]E[e2j] −

(

1 − b

T1(j
1−b − (j − 1)1−b)

t

)
1

1−b ]

dt

]

= hmu

[

(E[X]nQ)2

I
(1 − � − E[e2j] + �E[e1j] + �E[e2j])

+
T1(j

1−b − (j − 1)1−b)

(1 − b)(2 − b)

[

E[X]nQ
(

� + E[e2j] − �E[e1j] − �E[e2j]
)

]2−b
]

(10)

Amj + cm
T1

1 − b
(nQ)1−b[j1−b − (j − 1)1−b]

+ cmiE[X]nQ + cmr[E[X]nQ − �nQE[X]E[e1j] − (1 − �)nQE[X](1 − E[e2j])]

+ cmIE[X]nQ�E[e1j] + cmIIE[X]nQ(1 − �)E[e2j] + cmdE[X]nQ(1 − � + �E[e1j])

+ cmwnQ(1 − E[X]� + E[X]�E[e1j])

+ hm

[

nT1Q
2−b

1 − b
((1 + (j − 1)n)1−b − ((j − 1)n)1−b)

+
n(n − 1)Q2

2D
−

T1(j
1−b − (j − 1)1−b)

(2 − b)(1 − b)
(nQ)2−b

]

+ hmu

[

(E[X]nQ)2

I
(1 − � − E[e2j] + �E[e1j] + �E[e2j])

+
T1(j

1−b − (j − 1)1−b)

(1 − b)(2 − b)

[

E[X]nQ
(

� + E[e2j] − �E[e1j] − �E[e2j]
)

]2−b
]
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4.3  Average expected total profit

The total expected cost of the supply chain system can be obtained by summing up the 
manufacturer’s expected cost and the retailer’s expected cost. Therefore, the average 
expected total profit can be obtained as

Our main concern is to find the optimal values of n, Q, pr and q that maximize the 
average expected total profit AETPj(n,Q, pr, q) , j = 1, 2,….

(11)TCr = nAr + wnQ + hr
nQ2

2D

(12)

AETPj =
D

nQ

[

prnQ − Amj − nAr − �q2
nQ

D
− cm

T1

1 − b
(nQ)1−b[j1−b − (j − 1)1−b]

− cmiE[X]nQ − cmr[E[X]nQ − (1 − �)nQE[X](1 − E[e2j])]

− �nQE[X]E[e1j] − cmIE[X]nQ�E[e1j] − cmIIE[X]nQ(1 − �)E[e2j]

− cmdE[X]nQ(1 − � + �E[e1j]) − cmwnQ(1 − E[X]� + E[X]�E[e1j])

− hm

[

nT1Q
2−b

1 − b
((1 + (j − 1)n)1−b − ((j − 1)n)1−b) +

n(n − 1)Q2

2D

−
T1(j

1−b − (j − 1)1−b)

(2 − b)(1 − b)
(nQ)2−b

]

− hr
nQ2

2D
− hmu

[

(E[X]nQ)2

I
(1 − �

−E[e2j] + �E[e1j] + �E[e2j]
)

+
T1(j

1−b − (j − 1)1−b)

(1 − b)(2 − b)

[

E[X]nQ
(

� + E[e2j]

− �E[e1j] − �E[e2j]
)

]2−b
]]

Inventory level

nT

Time

Fig. 3  Retailer’s inventory
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Now, we check the concavity of profit function AETPj w.r.t. the decision variables.
Differentiating (12) partially with respect to pr , we get

Differentiating (13) partially with respect to pr , we can easily get

Similarly, it can be shown that

The above results indicate the concavity nature of the average expected total profit 
function AETPj(n,Q, pr, q) with respect to pr and q for fixed n and Q.

Note: In case of no learning, we can check the concavity of the profit function 
with respect to the number of shipments n (for fixed Q, pr and q) under some spe-
cific conditions.

Let us consider n as not discrete but a continuous variable. Then differentiating 
(12) twice partially with respect to n, we get

From (16), we see that the first three terms are negative. So, 𝜕
2AETPj

𝜕n2
< 0 provided 

that

(13)

�AETPj

�pr
=D − �pr +

Amj

nQ
� +

Ar

Q
� + cm

�T1

1 − b
(nQ)−b[j1−b − (j − 1)1−b]

+ cmiE[X]� + cmr�
(

E[X] + �E[X]E[e1j] − (1 − �)nQE[X](1 − E[e2j])
)

+ cmIE[X]��E[e1j] + cmIIE[X]�(1 − �)E[e2j] + cmdE[X]�(1 − �

+ �E[e1j]) + cmw�(1 − E[X]� + E[X]�E[e1j]) + hm�

[

T1Q
1−b

1 − b
((1

+(j − 1)n)1−b − ((j − 1)n)1−b)
]

− hm�

[

T1(j
1−b − (j − 1)1−b)

(1 − b)(2 − b)
(nQ)1−b

]

+ hmu

[

�(E[X]nQ)

I
(1 − � − E[e2j] + �E[e1j] + �E[e2j])

]

+ hmu

[�T1(nQ)
1−b(j1−b − (j − 1)1−b)

(1 − b)(2 − b)

[

E[X]
(

� + E[e2j] − �E[e1j]

− �E[e2j]
)

]2−b]

(14)
𝜕2AETPj

𝜕p2
r

= −2𝛾 < 0

(15)
𝜕2AETPj

𝜕q2
= −2𝜆 < 0

(16)

�2AETPj

�n2
= −

2Am1D

n3Q
− b(b + 1)

cmDT1n
−b−2Q−b

1 − b
− bhm

DT1n
−b−1Q1−b

1 − b

+ bhmu
DT1n

−b−1Q1−b

1 − b

[

E[X]
(

� + E[e2j] − �E[e1j] − �E[e2j]
)

]2−b
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Therefore, in case of no learning, the average expected total profit function 
AETPj(n,Q, pr, q) is concave with respect to real n provided that the condition 
𝛽 + E[e2j] < 𝛽E[e1j] + 𝛽E[e2j] is satisfied.

We can also check the concavity of profit function (12) with respect to Q and 
pr graphically (see Fig. 4) for fixed n and q. Assuming that the average expected 
profit function (12) is concave in Q, pr and q, we can find the optimal solution 
following the algorithm as given below:

Algorithm:

 Step 1. Set j = 1 .
 Step 2. Set n = 1 . Use line search technique on n to find the optimal values of Q, pr 

and q for which AETPj is maximized.
 Step 3. Determine the optimal value of AETPj.
 Step 4. Set j = j + 1.
 Step 5. Repeat steps 2, 3 and 4 until the desired number of cycles.
 Step 6. Stop.

5  Numerical example

In this section, we demonstrate the proposed model with a numerical example. 
The data for the numerical example are taken as follows:

(17)𝛽 + E[e2j] − 𝛽E[e1j] − 𝛽E[e2j] < 0 ⇒ 𝛽 + E[e2j] < 𝛽E[e1j] + 𝛽E[e2j]

Fig. 4  Concavity of AETP w.r.t. Q and p
r
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Here we assume that X follows the uniform distribution:

and e11 and e21 follow uniform distributions:

The concavity of average expected total profit with respect to Q and pr (for fixed n 
and q) can be seen from Fig. 4.

Table  1 shows the optimal results for consecutive ten cycles. Note that the 
expected total profit of the supply chain increases as the number of cycles increases. 
This indicates the significance of learning in the proposed model. In the first few 
cycles, the percentage increase in profit is noteworthy. After that the percentage 
increase in profit becomes negligible i.e., the expected total profit becomes constant 
(approximately). In other words, the profit curve becomes plateau. This behaviour of 
the profit curve is due to the fact that the workers approach to their verge of potential 
after a few production cycles from the beginning.

cmw = $120 per unit; cmII = $50 per unit Am0 = $300 per setup; b = 0.32;

cmu = $10 per unit; cmr = $20 per unit Am1 = $100 per setup; b1 = 0.32;

cm = $100000 per year; hm = $4 per unit per year; � = 0.75; b2 = 0.4;

cmi = $0.5 per unit; hr = $5 per unit per year; P = 1500 units per year; b3 = 0.3;

cmd = $0.5 per unit; hmu = $2 per unit per year; d = 2000 units per year; � = 1;

cmI = $200 per unit Ar = $50 per order;; � = $200 per year; � = 3.5;

I = 175200 units per year.

f (X) =

{ 1

0.9−0.5
, 0.5 ≤ X ≤ 0.9

0, otherwise

g(e11) =

{

1

0.04
, 0 ≤ e11 ≤ 0.04

0, otherwise

h(e21) =

{

1

0.04
, 0 ≤ e21 ≤ 0.04

0, otherwise

Table 1  Optimal results for 
consecutive ten cycles

⋆ % change (last column) in profit is calculated for current cycle 
w.r.t. the previous cycle

i n
∗

Q
∗

p
∗
r

q
∗

AETP
∗
j

1 5 234.54 329.41 0.61 202007
2 4 217.05 327.34 0.61 206314(+2.32%)

3 3 258.00 326.83 0.61 207552(+0.60%)

4 3 244.35 326.48 0.61 208282(+0.35%)

5 3 235.02 326.22 0.61 208786(+0.24%)

6 3 228.12 326.01 0.61 209165(+0.18%)

7 3 222.78 325.83 0.61 209464(+0.14%)

8 3 218.54 325.68 0.61 209710(+0.12%)

9 2 307.56 325.68 0.61 209918(+0.1%)

10 2 302.85 325.59 0.61 210098(+0.08%)
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Table 2 shows a comparison of the optimal results of the model under different 
circumstances. The first row shows the optimal results of the basic model without 
inspection error, where no learning is considered in the production process. The 
second row shows the optimal results of the model without learning in production, 
although inspection is considered with learning effect. Though learning effect influ-
ences inspection error, it can not reduce the error to zero level. This causes the dimi-
nution in profit compared to the base case.

The third row in Table  2 shows the results of the model when production is 
influenced by learning but there is erroneous inspection. Also learning is absent in 
inspection. As a result, the error occurs in a fixed percentage and cannot be mini-
mized. However, the impact of learning in production induces greater optimal 
ordered quantity, which results in an enhanced expected profit. Finally, the last row 
shows the optimal results of our proposed model. Here the profit growth can be 
explained as in the case of previous model. Moreover, learning in inspection reduces 
the error, which leads to an extra profit added to the expected total profit of the pro-
posed model.

We now compare our proposed model with Giri and Glock’s [12] model with 
some modifications. We assume price dependent demand by taking � = 0 and ignore 
the learning effect in production and inspection. So, in the profit function of our pro-
posed model, we take � = 0 , b = 0 , b1 = 0 , b2 = 0 and b3 = 0 , and equate the other 
parameters with Giri and Glock’s model-parameters. We then obtain the optimal 
results as n∗ = 3 , Q∗ = 138.09 , p∗

r
= 353.27 and the total profit as 165375 which is 

an improved profit compared to that of the basic closed-loop supply chain model of 
Giri and Glock [12] without learning and forgetting in production and inspection. 
Again, if we ignore the remanufacturing part and include the inspection process at 
the retailer’s end with inspection error then our model will be converted to Khan 
et al.’s [30] model. However, Khan et al. [30] considered a cost minimization model 
while we dealt with a profit maximization model. So quantitative comparison is not 
possible in this case.

In order to facilitate our model with more functional approach, we examine the 
impact of � (fraction of remanufacturable items) on the optimal decisions. It can be 
seen from Fig. 5 that, when the fraction increases, the average expected total profit 
increases. From the practical point of view, it is pretty obvious that, if we decrease 
the ineligible proportion from returned items, we can bag more profit. The impact 
of production rate on the optimal results is reflected in Fig. 6. As the manufacturer’s 

Table 2  Comparison of different 
models

#Average of the optimal results of the first 10 cycles

Model n
∗

Q
∗

p
∗
r

q
∗ ETP

Base model 3 131.28 356.36 0.54 160927
No learning in production 3 126.28# 357.28# 0.54# 159591#

No learning in inspection 3 240.97# 327.20# 0.61# 206941#

Proposed model 3 241.36# 326.51# 0.61# 208130#
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production rate increases, more items can be marketed over the same time span, 
which causes an increase in the expected total profit.

Now, we discuss the sensitivity of the human factor ‘learning’ in production as 
well as in inspection. In our numerical example, we take the value of the learning 
exponent b as 0.32, which means that the learning rate is about 80% for production. 

Fig. 5  Average expected total profit versus �

Fig. 6  Average expected total profit versus P 

Table 3  Average values of 
optimal results for varying b 

b n Q
∗

p
∗
r

q
∗

AETP
∗
j

0.1 7 166.05 337.98 0.58 187787
0.3 3 231.79 326.90 0.61 207356(10.4%)

0.5 2 251.04 324.68 0.62 211812(2.15%)

0.7 1 290.06 324.18 0.62 212961(0.54%)

0.9 1 342.01 324.05 0.62 213233(0.13%)
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It is interesting to note from Table 3 that the expected profit varies on a larger scale 
when the learning exponent is comparatively low, but for higher value of b, the 
change in expected profit drastically reduces. If we look into the optimal quantity, 
it can be observed that, for increasing learning exponent, the number of shipments 
also goes down sharply, which reduces the ordering cost and upholds the principle 
of rising profit.

A similar trend in profit is noticed in Fig. 7 which displays the influence of learn-
ing effect on setup cost, and Type I and Type II inspection errors. As the learning 
exponents increase, the average expected total profit increases. Learning in setup 
cost does not have an impressive effect on the expected total profit. It is observed 
that b2 has a major effect on profit compared to that of b3 . One of the underlying 
reasons for this is the Type I error in which a remanufacturable item is categorized 
as non-remanufacturable. For large-scale industries where crucial parts are nurtured 
and where remanufacturing is more effectual than manufacturing, false rejection of 
good items affects more than the false acceptance of bad items.

We now consider the parameters � and � which are sensitive parameters of 
price and quality. As the price sensitive coefficient increases, the retail price 
decreases. Price sensitivity coefficient and price are inversely related to one 
another. If one goes up then the other one must have to decrease.

Fig. 7  Average expected total profit versus learning exponent

Table 4  Average values of the 
optimal results for varying � 
and �

� p
∗
r

q
∗

ETP
∗
i

� p
∗
r

q
∗

AETP
∗
j

3 374.14 0.73 254954 0.5 326.39 0.31 208073
3.2 353.35 0.68 234437 0.7 326.41 0.43 208091
3.4 334.91 0.63 216373 0.9 326.51 0.55 208115
3.6 318.56 0.59 200354 1.1 326.53 0.47 208145
3.8 303.89 0.56 186056 1.3 326.59 0.79 208181
4 290.74 0.52 173222 1.5 326.57 0.92 208224
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One more exciting observation can be made from Table 4 that, along with the 
retail price, the quality also decreases for increasing � . But it acts quite sensibly 
when variation in � comes into consideration. The more sensible the consumers, 
the greater quality they achieve. This causes a rise in profit, but it is very low in 
comparison.

We now consider the impact of � , the investment cost coefficient of quality. 
When � increases, the product quality decreases (see Fig.  8). Therefore, more 
investment to maintain the product quality implies a lower quality of product.

6  Managerial insights

From the numerical results and the sensitivity analysis, some important managerial 
implications can be established throughout the study.

First, the proposed model results in better profit compared to the other cases like no 
learning in production, no learning in inspection, and in the absence of learning in both 
production and inspection. In this situation, the manufacturer should recommend learn-
ing in both production and inspection to earn additional profit.

Second, though the positive impacts of learning effect make a higher profit line dur-
ing the entire investigation, the increasing rate of profit decreases simultaneously and 
reaches a certain fixed level. In this regard, the managers have to take some effective 
steps like adopting new work methods, investing money, new mechanism, etc. to break 
the plateau form of the learning curve. This will have a beneficial influence on the 
workers which accordingly reinforces the profit.

Third, the price and quality sensitive factors influence the market demand and conse-
quently control the profit function. The higher the price sensitivity, the lower the retail 
price, which eventually causes a profit drop. Similarly, the higher the quality sensitive 

Fig. 8  Variation of product quality w.r.t. �
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factor, the higher the quality as well as the whole system profit. A strategic decision 
should be taken to fix the sensitive factors, so that the management can achieve a desir-
able profit margin.

Fourth, a lower used item proportion in remanufacturing leads to acquiring a lower 
profit. The manufacturer therefore should apply his/her best strategy to get hold of eco-
nomic growth as well as eco-friendly behaviour.

7  Conclusion

In this paper, we have studied a closed-loop supply chain with one manufacturer and 
one retailer considering price and quality dependent demand, and random return under 
the influence of the human factor ‘learning’ in production and inspection. Both man-
ufacturing and remanufacturing are performed by the manufacturer himself and the 
products from both processes are treated equally. A numerical example is provided to 
support the findings of the proposed model.

As higher price provokes customers to back off and greater quality draws customers’ 
attention, our model can help managers to choose the right decision to fix the desirable 
retail price as well as maintain the quality with minimal investment. It is observed from 
the numerical study that learning effect had a great impact on production for a few ini-
tial cycles. After that, the impact becomes negligible due to reaching workers’ maturity 
level of efficiency. At this juncture, managers should invest to break the plateau form of 
the learning curve by improving the workers’ performance through advanced training, 
adopting new technology, etc. It is also observed that learning in inspection has bagged 
some additional profit. Type I error is more functional compared to Type II error. So, 
when it comes to cost-effectiveness, the management should explore the efficient value 
of b2 to minimize the error. It is also observed that increasing the proportion of used 
items leads to raising an additional profit as well as diminishing waste resources. At 
this stage, manufacturers would like to get return items as much as possible but practi-
cally that can never happen. In this regard, what managers can do is to make some 
investment to collect used items. The industries handling aircrafts, ships, cars, etc. 
where production cost is very high, should take care of this type of investment.

This paper assumes that price and quality dependent demand can fulfil the custom-
ers’ demand but now-a-days consumers prefer greenness of the product over price and 
quality. So, there can be a preferable extension considering greening level and carbon 
emission matter. In our study, we have assumed that the remanufactured products are 
as good as the manufactured products. But in reality, consumers may not accept the 
manufactured and the remanufactured products as the same. So, a price differentiation 
along with separate markets would be a practical approach to extend this work. One can 
immediately extend our model by assuming another human factor ‘forgetting’ which is 
an inseparable part of learning. Another extension can be done by incorporating multi-
item instead of a single item in the production process. Further, the inclusion of multi-
ple manufacturers/retailers can give us a major extension on a more general note.
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