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Abstract
Ultrasonic machining is a processing method typically practiced for processing the 
highly brittle/hard materials. The proposed research work is attempted at exploring 
the influence of varying input conditions namely; cobalt %, power rating, thickness 
of work, different tools, tool geometry, and abrasive size on the infiltration rate in 
ultrasonic drilling of WC–Co composite through neural modelling. The design of 
experiments methodology has been practiced for scheming out the experiments. The 
significant process variables have been acknowledged using variance analysis test 
which has revealed the abrasive size, power rating, and tool profile as the most influ-
ential factors for the infiltration rate. An artificial neural network (ANN) model is 
suggested to analyze the infiltration rate in USM with striking parameters. Multiple 
layer feed frontward neural architecture is restrained through error-back propaga-
tion-based training algorithm. Predicted results show the effectiveness of the pro-
posed neural structure with maximum error of 6%. The optimized parametric com-
bination for infiltration rate has been revealed as; cobalt- 6%, work thickness- 3 mm, 
tool- hollow, tool material- nimonic-80A alloy, abrasive size- 200, and power rating- 
80%. Microstructure analysis revealed that good edge quality with no appearance of 
cracks or burr/chipping on the edge of the drilled holes which further ensured the 
quality level of hole drilling through attempted work.
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1 Introduction

Ultrasonic machining (USM) is an unorthodox machining solution typically 
employed for processing brittle/hard materials such as; ceramics, quartz etc. [1, 
2]. Singh and Singhal [1] optimized the machining characteristics in ultrasonic 
assisted rotary machining of alumina ceramic material. It was reported that; 
feed rate is the most significant factor which affect the machining performances 
vitally. Cheema et al. [3] optimized the process parameters for wear ration, hole 
over size and roughness. Results show that abrasive size and power % are major 
momentous inputs.

Patra [4] discussed the effect of micro-rods invented to drill micro-holes in 
USM method, results revealed that higher rubbing actions leads to the conclusion 
that side walls of micro-holes are subjected to early originated cracks. Kataria 
et al. [5] reported that optimized setting of input parameters, showed an enhance-
ment of 20% in the Grey relation fuzzy grade has been observed, as compared to 
initial setting. Singh and Singhal [6–8] reported the optimized results in rotary 
type ultrasonic machining of different ceramic materials. Wang et al. [9] reported 
the hardening of work on the surface of austenitic steel tool whereas the inter-
nal portion was remained flexible and ensures slow tool wear. Singh et  al. [10] 
scrutinized the hole quality measures while attempting the ultrasonic assisted 
rotary machining of silicon based ceramic. Jadoun et al. [11] reported the drilled 
hole accuracy in the USM of a ceramic material (alumina). From the results it is 
found that the size of abrasive grit was the most significant factor in deciding the 
hole quality. In another investigated, the effect of power rating, grit size, thick-
ness of work, tool material, composition of work mate rial and profile of tool for 
the TWR and MRR in USM of WC–Co. Results concluded that the main leading 
parameter was grit size [12].

WC–Co usually consists of grains of tungsten carbide inserted in a metal-
binder phase, which reflects high hardness to resist attrition and adequate 
toughness to stand against interrupted incisions or vibration generated during 
the machining [13]. Hot abrasive jet machining (HAJM) has been suggested to 
attempted for various operations such as drilling, surface etching, grooving and 
micro finishing on the glass and ceramics [14]. The commercially available com-
position of cobalt–tungsten carbide can vary greatly; its composition normally 
ranges from 50 to 97% WC (with the presence of other metallic carbides such as 
tantalum carbide or titanium carbide) and from 3 to 16% cobalt. Most common 
and commercially acclaimed manufacturing route for the Cobalt-Bounded-Tung-
sten carbides hard materials is through Powder Metallurgy, which is consisting 
of Tungsten carbide powder generation, its consolidation, liquid phase sintering 
and post-sintering sequences. Hard materials like WC–Co composites have bet-
ter mechanical properties, by the virtue of these properties, they possess many 
industrial solicitations i.e. production of punch, wear parts, die, drilling and cut-
ting tools.

Based on the above elaborate issues and gaps observed, the present research 
work has been targeted to study the infiltration rate, which has very rarely 
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been attempted in past researches while processing the tungsten carbide–cobalt 
(WC–Co) composite with ultrasonic machining (USM) method. The infiltration 
rate is the term which describes about the rate of indentation or penetration (cut-
ting capacity per unit of length undertaken) during the ultrasonic machining of 
considered composite material. For evaluating the machining capability of any 
process, it is needed to explore its overall machining performance in terms of 
different machining characteristics. The utility of artificial neural network-based 
modeling and optimization is another novel attempt made for the present research 
investigation. The consideration of some specific input variables i.e. tool profile, 
work thickness, etc. further makes the work more interesting in the current sce-
nario of advanced processing of composites.

The basic principle and working mechanisms of USM process has been discussed 
in introduction section. The details about the set-up used and material selection have 
been explored in second section of the paper i.e. materials and methods. The third 
section on results and discussion is detailing about the findings (machining output) 
after applying the design of experiments in terms of taguchi’s approach and novel 
artificial neural network method to optimize the process parameters for achieving 
optimum level of infiltration rate in USM of WC–Co composite material. The con-
clusion section is provided to report the major research findings in more precise 
manner.

2  Materials and methods

This article investigates the effect of different process parameters on infiltration rate 
in USM of WC–Co material composite. For the identification of various influen-
tial variables for infiltration rate in ultrasonic drilling operation, fish-bone diagram 
(Fig. 1) was designed. In present research, materials to be worked on were selected 
with 6% and 24% cobalt content and thickness of 3 mm and 5 mm were used. Tool 

Fig. 1  Cause and effect diagram
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was provided with two different geometries namely; solid and hollow. Abrasive used 
in the study was Boron carbide. Table  1 explores the various levels of inputs for 
employing DOE. The selection of parameters and their levels for main experiments 
has been made based on the conducted pilot or trial runs [4, 5]. These trial runs 
have been performed based on one-factor at a time approach i.e. varying one fac-
tor/parameter at a time (tool, work material, grit size, power rating, and abrasive) 
and keep the remaining factors at some fixed values (tool: stainless steel; grit size: 
200 mesh; abrasive: boron carbide; power rating: 40%). The effects of these trial 
runs have been observed by looking into their influences over the considered process 
characteristics for trial runs. Therefore, the final values of input parameter levels 
decided accordingly where the factors were influencing the considered responses 
more impressively [6, 12].

The setup used for performing all set of experiments was an ‘AP-450 model’ 
USM. Figure 2 clearly shows the arrangement of various constituents of USM setup 
namely; Slurry pump, coupler, transducer, slurry tank, etc. Machining region pri-
marily contains work-piece and fixture on mill stand, and tool, all are represented 
in Fig. 2. For recording experimental time for each run a stop watch was attached. 
Infiltration rate was calculated as a fraction of depth of hole (drilled) to time for 
operation, for a quantified depth. For the pilot experimentation, blind holes upto the 
depth of 1 mm were drilled in workpiece, as shown in Fig. 3. Tools were designed 
in a such a way that, each one is having equal weight. The mass of each tool was 
fixed to 9 g, in order to ensure the vibration of the tools at the resonant frequency, 
as per the specification of the manufacturer (Sonic-Mill, USA). The mass of tool 
become further more crucial when it comes to machine with hollow tool with very 
fine dimensions. All the tools were fabricated as single piece unit by turning using 
a centre lathe machine. The detailed geometries of tool all well illustrated in Fig. 4.

Taguchi’s theory based orthogonal matrix  (L36) was selected for experimental 
plan, because plan is consisted of mixed level factors and also to study the interac-
tion between the factors. Overall 6 factors were analyzed for experiment and with 
variation in levels which made them mixed in nature, same was explained by Tagu-
chi and many researchers also used the design for designing the experiments [13, 
15]. By selecting L-36 design, the minimum requirement for degree of freedom was 
fulfilled as required was 15(DOF) and available with L-36 was 35(DOF). The strate-
gic experiments are displayed in Table 2. Two replicate runs were also incorporated 

Table 1  USM Process Parameters and Levels

Emblem Inputs Level 1 Level 2 Level 3

A Cobalt (wt%) 6% 24% -
B Work Thickness 3 mm 5 mm -
C Tool Profile Solid Hollow -
D Tool material Stainless steel Silver steel Nimonic-80A
E Grit size (µm) 74 44 25
F Power rating 40% 60% 80%
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in the schemed tests with all runs in randomize order, to curtail all nuisance present 
in the experimental plan.

Larger the best

3  Results and discussion

After analyzing the outcomes conquered with variance test, the influence of each 
input factor on infiltration rate has been studied. In this section variation drifts for 
several responses have been perceived and discussed. Figure 5 illustrates the normal 
probability plots of residuals for infiltration rate. It was discovered that the residuals 
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Fig. 2  USM set-up used for experimentation
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were dwindling on straight contour, which implies inaccuracies are normally spread-
out. This validates the model conventions made for variance test (ANOVA).

As per the mean effect plot (Fig. 6) for infiltration rate, Cobalt wt% has no sub-
stantial effect on the infiltration rate within defined levels. Plot also shows the effect 
of work piece thickness on infiltration rate in a manner that if work piece thickness 
increases it resulted in a consistent decrement in IR, because feeding of slurry to 
the work zone hampers drastically which also affect the MRR. The similar behav-
iors have also been reported by past investigators in the same domain [2–4]. Study 
also reveals that the Tool’s Profile also have noteworthy effect on the infiltration 
rate, hollow tool gives enhanced abrasive flow than solid tool which is the dominant 

Fig. 3  Holes drilled in workpiece during pilot experiments

Fig. 4  Detailed drawings of tools used
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parameter to affect the infiltration rate. Hollow tools possess better inertia, effective 
distribution of abrasive particles during the machining, and less surface area. These 
traits contribute in the increasing of IR. Different tool material has different effect 
on IR, nimonic-80A produces maximum IR in the workpiece whereas stainless and 

Table 2  Experimental plan with 
Response

Exp No Inputs IR (µm/sec.)

A B C D E F IR 1 IR 2 Mean S/N ratio

1 1 1 1 1 1 1 1.077 0.928 1.003 − 0.049
2 1 1 1 1 2 2 1.060 1.183 1.122 0.957
3 1 1 1 1 3 3 1.282 0.933 1.108 0.563
4 1 2 2 1 1 1 0.632 0.398 0.515 − 6.438
5 1 2 2 1 2 2 1.308 1.600 1.454 3.121
6 1 2 2 1 3 3 1.335 1.118 1.227 1.672
7 2 1 2 1 1 1 0.957 0.515 0.736 − 3.858
8 2 1 2 1 2 2 1.398 2.098 1.748 4.326
9 2 1 2 1 3 3 1.512 1.360 1.436 3.105
10 2 2 1 1 1 1 0.493 0.632 0.563 − 5.195
11 2 2 1 1 2 2 0.678 0.783 0.731 − 2.790
12 2 2 1 1 3 3 0.885 0.583 0.734 − 3.238
13 1 1 1 2 1 2 1.628 1.422 1.525 3.605
14 1 1 1 2 2 3 1.958 2.458 2.208 6.713
15 1 1 1 2 3 1 0.197 0.383 0.290 − 12.129
16 1 2 2 2 1 2 1.798 1.935 1.867 5.403
17 1 2 2 2 2 3 3.437 3.762 3.599 11.097
18 1 2 2 2 3 1 0.373 0.453 0.413 − 7.796
19 2 1 2 2 1 2 2.087 2.012 2.049 6.227
20 2 1 2 2 2 3 2.962 3.115 3.038 9.644
21 2 1 2 2 3 1 0.247 0.395 0.321 − 10.577
22 2 2 1 2 1 2 0.843 1.070 0.957 − 0.568
23 2 2 1 2 2 3 1.398 1.325 1.362 2.672
24 2 2 1 2 3 1 0.205 0.347 0.276 − 12.057
25 1 1 1 3 1 3 3.427 4.098 3.763 11.405
26 1 1 1 3 2 1 1.103 0.873 0.988 − 0.278
27 1 1 1 3 3 2 0.533 0.463 0.498 − 6.113
28 1 2 2 3 1 3 3.258 3.795 3.527 10.871
29 1 2 2 3 2 1 0.712 0.540 0.626 − 4.316
30 1 2 2 3 3 2 1.647 1.445 1.546 3.727
31 2 1 2 3 1 3 4.153 4.815 4.484 12.962
32 2 1 2 3 2 1 1.367 0.955 1.161 0.883
33 2 1 2 3 3 2 0.812 0.627 0.719 − 3.079
34 2 2 1 3 1 3 2.735 2.913 2.824 9.004
35 2 2 1 3 2 1 0.658 0.715 0.687 − 3.287
36 2 2 1 3 3 2 0.370 0.457 0.413 − 7.817
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silver steel have contributed less towards IR. This basically depends on the whether 
both the tool and workpiece are shows higher hardness values. The result shows that 
nimonic-80A tool (with superior hardness values) contributes the deeper dents into 
the work surface, stimulating the increased rate of machining.

Two more factors which influence the IR in the work material are abrasive 
grain size and power rating. Grit size is directly proportional to IR, increase in 
grit size signifies increase in weight and hence contribute to higher impact force 

Fig. 5  Normal Probability plot for infiltration rate

Fig. 6  Mean effect plots for infiltration rate (raw data)
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which results in greater dimension of micro-chips removal from the work mate-
rial as well from tool contact surface. Such behaviors have also been revealed by 
past researchers in the similar domain [3, 12]. Power rating relates with energy 
by which the abrasives are colliding the work surface, therefore if power rat-
ing is increased, it further augments the energy of the abrasive particles, thus 
increasing IR.

For production point of view, infiltration rate must be higher to meet present 
industry scenario. So, as a response it must be treated as “larger the best”, there-
fore higher IR is desirable. Infiltration rate is “larger the best” type outcome. So, the 
desired value is high for IR. As reflected in Fig. 6, the finest input setting for infiltra-
tion rate is; cobalt- 6%, thickness of work- 3 mm, material for tool- nimonic-80A 
alloy, tool profile- hollow, size of abrasive- 200 (mesh), and power- 80%. The main 
consequence graph for S/N ratio is presented in Fig. 7. The S/N ratio is attained to 
be premier at these settings, which signals the intensification of the preferred out-
come value with least influence of noise. The relative influences for raw data and 
S/N data have been exposed in Figs. 8, 9. There are no any significant interactions 
between the factors.

To appraise the connotation of the considered inputs that contribute to the devi-
ation in infiltration rate, the variance analysis test was executed. The raw data of 
ANOVA test for infiltration rate are shown in Table 3. Grit size, tool material, power 
rating and tool profile are the most significant parameters for raw data. Additionally, 
no interactive relationship is significant, as explored in Table 3. Based on raw data 
variance analysis test results for infiltration rate, the input factors could be arranged 
in descendent order of their importance as; power (47%), abrasive size (22%), tool 
material (7.7%), tool profile (5.72%), work thickness (1.52%), and cobalt % (0.58%). 
Table 4 also illustrates the variance test results for the infiltration rate (S/N data).

Fig. 7  Mean effect plots for infiltration rate (S/N data)
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Figure 10 shows the edge quality of hole drilled in WC-6%Co (for Exp. no. 30) 
at the magnification of 100 × and 200 × . It can be concluded that the edge qual-
ity is good and there is no appearance of cracks or burr/chipping on the edge. The 
entrance side of the hole depicts a smooth surface.

Fig. 8  Interaction plot for Interaction plots (raw data)

Fig. 9  Interaction plot for Interaction plots (S/N data)
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3.1  ANN model

The most complex and exciting product of evolution is human brain. Till date it 
is also the most powerful data processing tool available. On the other hand, Arti-
ficial Neural Network (ANN) is a systematic system whose architectural theme is 
extracted from Biological Neural Networks (BNN) [16]. Human brain learns from 
examples and parallel processing with the help of neural network which is linked 
with numerous neurons. ANN model is highly motivated by the human brain that 

Table 3  ANOVA outcomes for 
IR (Raw data)

A-cobalt content, B-thickness of work piece, C- profile of tool, D- 
material of tool, E-grit size, F-power rating
* Significant at 95% confidence level
S = 0.0273886 R-Sq = 86.43% R-Sq(adj) = 82.79%

Source DOF Seq SS Adj SS Adj MS F P

A 1 0.001846 0.001846 0.001846 2.46 0.122
B 1 0.004755 0.004755 0.004755 6.34 0.015*
C 1 0.017727 0.017727 0.017727 23.63 0.000*
D 2 0.024052 0.024052 0.012026 16.03 0.000*
E 2 0.068141 0.068141 0.034071 45.42 0.000*
F 2 0.147472 0.147472 0.073736 98.30 0.000*
A × D 2 0.000717 0.000717 0.000359 0.48 0.622
B × D 2 0.000402 0.000402 0.000201 0.27 0.766
C × D 2 0.002432 0.002432 0.001216 1.62 0.207
Error 56 0.042007 0.042007 0.000750
Total 71 0.309553

Table 4  ANOVA outcomes for 
IR (S/N data)

A, cobalt content; B, thickness of work piece; C, tool profile; D, tool 
material; E, grit size; F, power rating
* Significant at 95% confidence level
S = 2.40532 R-Sq = 92.76% R-Sq(adj) = 87.33%

Source DOF Seq SS Adj SS Adj MS F P

A 1 18.216 18.216 18.216 3.15 0.091
B 1 25.293 25.293 25.293 4.37 0.050*
C 1 85.805 85.805 85.805 14.83 0.001*
D 2 44.040 44.040 22.020 3.81 0.040*
E 2 456.711 456.711 228.355 39.47 0.000*
F 2 835.248 835.248 417.624 72.18 0.000*
A × D 2 1.140 1.140 0.570 0.10 0.907
B × D 2 8.027 8.027 4.014 0.69 0.511
C × D 2 8.306 8.306 4.153 0.72 0.500
Error 20 115.712 115.712 5.786
Total 35 1598.497
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can train with the help of a teacher, who specifically defines the right responses to 
input variables [17]. Both ANN and BNN are similar in many ways, to summarize 
similarities a comparison chart is presented in Table 5 and presented in Fig. 11 [18].

As in ultrasonic machining mathematical equations don’t predict actual values 
because this process is very random in nature and all responses are highly corre-
lated. Hence data is employed to model such speculative methods by ANN tactic 
grounded on error back-propagation. Using neural network gives an advantage to 
easily design a model founded on provided input, whereas outcome is proficient, 
according to input data, to forecast method robustness. ANN approach is recom-
mended in various methods where a sufficient knowledge of the realistic mechanism 
is quite tough to grasp similar like in the content of ultrasonic machining.

3.2  Prediction of infiltration rate

A neural network consists of a minimum of two physical constituents, called dispen-
sation elements and the interconnection amid them. The dispensation elements in a 
neural environment known as neurons and the interconnection between these neu-
rons are called as linkages [19]. Each linkage has a unique influence (weight) fac-
tor concomitant with it. Individual neuron accepts provocation input from adjacent 
neurons which are connected to it by linkages, they further process the information 
and contributes in the form of output. There are several conducts through which the 
intimation can be treated by a neuron and various means of concerning the neurons 
to another one. Several neural mesh arrangements can be built by employing distinct 
dispensation elements and through precise means in which they are associated.

Ultrasonic machining was modeled by multi-layer feed forward neural architec-
ture, which contains of three main layers: input, hidden, and output layers. The input 
layer is consisting of 6 neurons which signify the six input parameters and one neu-
ron in output layer. The node transition functions are the logsig and tansig functions 
[19], shown by following Eqs.

Fig. 10  Edge quality of USMed hole
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The neural network structure shown in Fig. 12 contains 6 input neurons and 10 
neurons in hidden layer. Network was trained with data set of 16 experiments and 
validation was performed for 9 experiments. The sum-squared error was minimized 
with high iteration numbers of 10,000 iterations (Table 6). Further increasing the 
iterations gives constant output, or in other words no more error. The learning data 
of ANN for Infiltration rate was shown in Fig. 13. As mentioned earlier, the ANN 
trained model was validated for accuracy using the experimental values selected 
from the experimental result which had not been used for the training the network. 
The comparative representation of the forecasted and investigated values of infiltra-
tion rate for the authentication of data set is reflected in Fig. 14. It has been revealed 
from the plotted results that the foreseen outcome is quite nearby and practically the 
equivalent tendency as the experimental data set.

Three confirmation experiments were performed and mean is taken to find the % 
error. Table 7 shows confirmation trial experiments for infiltration rate. The regres-
sion analysis between experimental data (including the training data) and predicted 
data is shown in Figs. 15 and 16.

According to Table  8, the maximum predicted error is around 2.5% which cor-
responds to nearly 8 BHN and the trend of prediction data is in accordance with the 

(2)f (x) =
1

1 + e−2x

(3)f (x) =
1

1 + e−2x
− 1

Fig. 11  Structural similarity between BNN and ANN
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Fig. 12  Proposed Neural Structure of ANN

Table 6  MLP parameters Parameters Quantities

Iteration number 10,000
Input layer 6
Output layer 1
Hidden layer 10

Fig. 13  Comparison in Training Output of ANN and Experimental data for Infiltration Rate
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experimental values. The coefficient of correlation (R) between the output and target 
values explains how fit the difference in the outcome is clarified by the objectives. 
The value of R is one which further explains the faultless relationship between outputs 
and targets. In attempted work, the value for R is 0.9248 for the training data set and 
0.96676 for the testing pattern, which optimum correlation. Figure 17, shows the decre-
ment in error as the epochs are approaching its targeted value i.e., 10,000.

Fig. 14  Comparison in Test Run Output of ANN and Experimental data for Infiltration Rate

Table 7  Confirmation trial 
experiments for IR

Trial No Inputs Predicted Actual

A B C D E F IR (µm/sec.) IR (µm/sec.)

1 1 1 1 3 1 3 3.754 3.563
2 1 2 2 3 2 1 1.687 0.692
3 1 2 2 1 2 2 1.594 1.612
4 2 1 2 3 1 3 3.684 4.524
5 2 2 1 1 1 1 0.611 1.041
6 2 1 2 1 1 1 0.701 0.724
7 1 1 1 1 1 1 1.108 2.781
8 2 2 1 3 3 2 0.482 0.548
9 1 2 2 1 1 1 0.488 0.471
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4  Conclusions

To examine the impact of input parameters on infiltration rate in USM of WC–Co 
composite material, an experimental study has been conducted. Optimization of 
the process parameters has also been undertaken using taguchi approach. The 

Fig. 15  Regression Plot for 
Training ANN model

Fig. 16  Regression Plot for 
Testing ANN model
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following inferences can be drawn through this experimental and ANN modelling 
work based experimental study:

• Elevated infiltration proportion has been attained by employing tool as Nimonic-
80A alloy. It was credited towards the fact of extensive properties (namely; hard-
ness, and optimum impact strength) of the investigated tool sample i.e. Nimonic-
80A.

Table 8  RMS Error assisted 
with Predictive ANN model

Test Runs Actual Predicted Error Error% RSME

1 254.8 248.0515 6.748549 2.648567 4.771945
2 246.7 246.5582 0.141792 0.057475 0.100262
3 244.9 246.5127 − 1.61267 0.6585 1.140328
4 243.2 248.243 − 5.04298 2.073594 3.565926
5 246.3 247.3352 − 1.03517 0.420289 0.731977
6 248.1 246.5097 1.590345 0.64101 1.124543
7 246.3 249.4141 − 3.11409 1.264349 2.201995
8 253.6 247.4078 6.192187 2.441714 4.378537
9 249.9 246.1723 3.727665 1.491662 2.635857

Fig. 17  Mean Squared Error Plot for Training, Validation and Test Iterations
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• The studied factors i.e. tool materials, abrasive grit size, and power rating were 
attained as the majorly momentous inputs for infiltration rate. The hollow pro-
filed tools yielded grander infiltration rate since hollow formed tools pos-
sess enhanced characteristics of abrasive flow. This finding can be contributed 
towards the effective flushing of the micro-formed chippings from the machin-
ing zone. The utmost infiltration rate was acquired at an amalgamation of the 
advanced power rating and grit size of coarse type.

• The ideal parametric combination for infiltration rate has been developed as; 
cobalt- 6%, work thickness- 3  mm, tool- hollow, tool material- nimonic-80A 
alloy, abrasive size- 200, and power rating- 80%. The presented ANN model 
depicts a healthy link for both training and testing facts, thereby authenticating 
the developed model. The higher RMS inaccuracy amid the investigational and 
forecasted infiltration rate was observed to be 4.7 approx.

• Microstructure analysis revealed that good edge quality with no appearance of 
cracks or burr/chipping on the edge of the drilled holes which further ensured the 
quality level of hole drilling using attempted USM process.
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