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Abstract
Portfolio optimization encompasses the optimal assignment of limited capital to dif-
ferent available financial assets to achieve a reasonable trade-off between profit and 
risk. This paper focuses on a portfolio selection model with interval-typed random 
parameters considering risk measures as value-at-risk (VaR). The value-at-risk is 
expressed by means of the interval-typed of random parameters and associated with 
Markowitz’s model. The purpose of this opinion is to design an interval mean-VaR 
portfolio optimization model with the objective of minimization of VaR. A method-
ology is developed to obtain an efficient investment strategy using interval analysis 
with the parametric representation of the interval. The theoretical developments are 
illustrated based on a historical data set taken from the National Stock Exchange, 
India.
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1 Introduction

The portfolio optimization aims to find the best option among all the alternatives 
for the investors. For this, Markowitz   [55] initiated the portfolio optimization 
(known as mean-variance (��) model), which consists of picking the best stock 
either one to maximize the future return for a fixed risk or minimize variance 
for a fixed return. The fundamental idea behind the mean-variance model is that 
the portfolio’s expected return is considered the investment return, and the vari-
ance of the portfolio return is used as a risk measure. Thereafter, several portfo-
lio selection methodologies are established considering other parameters related 
to the financial market (such as different types of risks   [53], transaction costs   
[8, 9, 46], liquidity  [22, 66], etc.), which also affect the portfolio selection pro-
cess. Due to the mean-variance model’s computational difficulty, somewhat dif-
ferent methods have been proposed, particularly to characterize risk measures for 
assets’ return. For example, the mean absolute deviation risk measure [35, 36], 
semi absolute deviation [62, 63], semi-variance risk measure [54], minimax risk 
measure [14] and the VaR [6, 17, 18, 25].However, the VaR measure disregards 
the loss beyond VaR and contempt the existence of subadditivity and convexity 
[3]. Moreover, asset selection and allocation of total investment with a VaR meas-
ure is computationally difficult [21]. Nevertheless, VaR has become an essential 
measure of risk for a securities portfolio among various financial markets’ risk 
measures. At present, it has become a vital tool for risk management and part of 
automated regulatory mechanisms in the financial industry. Therefore, a consider-
able number of researchers have been studied in recent years about the develop-
ment of a portfolio optimization model based on the concept of VaR, such as 
[7, 15, 19, 23, 59, 61], etc. Some research work is briefly described further. A 
methodology to obtain optimal investment strategies is introduced by Campbell 
et  al.   [15] for the maximizing expected return of portfolio subject to a down-
side risk constraint rather than standard deviation alone. In addition, Alexander 
and Baptista   [1, 2] examined the mean-VaR model’s economic implications for 
portfolio selection by making connections of value-at-risk with mean-variance 
analysis and showed that higher variance portfolios might have lower VaR. Gaiv-
oronski and Pflug  [23] presented a technique for calculating efficient portfolios, 
which provides the minimum VaR for a specified expected return. They have also 
found that resulting efficient frontiers are relatively different from mean-variance 
efficient frontier. Mansini et  al.   [52] have studied linear programming problem 
based mean-conditional value at risk portfolio selection model. Considering the 
more realistic factor of a financial market with downside risk measure, Baixauli-
Soler et al.  [5] and Babazadeh and Esfahanipour  [4] have formulated the mean-
VaR model introducing the minimum transaction cost, non-linear cost structure, 
etc., as constraints, and proposed a solution technique based on the multi-objec-
tive genetic algorithm. Many fuzzy portfolio selection models[10, 34, 51, 58] 
are formulated too in different aspects in which the parameters (such as expected 
return, variance, VaR, entropy, etc.) of it are assumed either as fuzzy triangular 
numbers or as fuzzy trapezoidal number. Although Lwin et al.  [50] proposed an 
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efficient learning hybrid evolutionary algorithm to solve the mean-VaR portfolio 
optimization problem with realistic constraints such as cardinality, quantity, pre-
assignment, round-lot, and class constraints.

Due to the incomplete information provided by the financial market and human 
subjective judgments, the uncertain return rates are often problematic to present pre-
cisely. Therefore, to describe and analyze such types of uncertainties in some param-
eters of the existing portfolio optimization models (as given in the above-mentioned 
articles) such as expected returns, risk, liquidity, etc., probability theory or fuzzy 
set theory or possibility theory, etc., are generally used. For which, the distribu-
tion function or membership function or possibility distribution is to be assumed 
in advance [57]. In reality, it is too complicated to categorize such functions. How-
ever, an investor can easily state these parameters in the form of an interval whose 
lower and upper bound can be found either from historical data or based on the 
expert’s knowledge. As a result, a portfolio optimization problem becomes an inter-
val optimization problem and can be dealt using interval analysis. In the previous 
two decades, many researchers [28, 29, 31, 37, 43, 57] have used the closed interval 
to describe and analyze uncertain parameters of the portfolio optimization problem. 
In this perspective, quite a lot of portfolio selection models associated with interval 
parameters have been developed such as [16, 24, 30, 33, 38, 43, 45], etc. An inter-
val portfolio selection model [43, 60] has established and developed a methodology 
based on partial order relationship to obtain an efficient portfolio as a linear interval 
programming problem. Ida [30] considered the returns’ variances, covariances and 
the expected return of assets as interval and has proposed a mean-variance model in 
the form of multi-objective programming problem using interval uncertainty. Giove 
et al. [24] have applied the minimax regret approach based on a regret function to 
find an efficient solution for portfolio optimization model with interval parameters. 
A possibilistic portfolio selection model is established by Li and Xu [45], in which 
the expected rates of return of assets are treated as fuzzy or possibilistic variables. 
To express these parameters, they used closed intervals and converted the portfolio 
selection model into a nonlinear goal programming problem. They also obtained a 
satisfactory solution using a genetic algorithm. Furthermore, considering the mean-
absolute deviation risk measure, Liu  [47] introduced a portfolio selection model in 
which an interval represents the return of assets. In the same way, Tan [64] devel-
oped a portfolio selection model with interval parameters by taking into considera-
tion of liquidity as a constraint in the mean-variance model. However, Wu et al.  [65] 
have obtained a non-inferior solution of an interval portfolio selection model that 
improves and generalizes Markowitz’s �� model. A portfolio rebalancing model 
is presented by Kumar et al.   [39], where the parameters such as return of assets, 
the covariance of returns, and transaction costs are in the form of intervals. Bhurjee 
et  al.   [11, 13] formulated an optimal Sharp ratio model as an interval fractional 
programming problem and found the bound of the objective function. The multi-
period portfolio selection problem with parameters (such as returns, risk, liquidity, 
etc.) of securities in terms of intervals is proposed by [48, 49, 56, 67, 68]. Li and 
Jin  [44] established a portfolio optimization model associated with interval number 
and interval type random variable, where the probabilistic risk measure is flexible 
for investors with different risk tolerance. Kumar et  al.   [40, 41] have formulated 
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single and multiple objective portfolio selection models with interval parameters 
and interval decision variables, respectively. A stochastic technique is proposed by 
Kumar et al.  [42] to solve the portfolio selection problem with minimax risk meas-
ure and bounded parameters. Recently, a multi-objective interval portfolio selection 
is developed based on investment decisions under different risk assumptions in [27]. 
One can observe from the above mentioned brief literature review of the portfolio 
optimization model with interval parameters that the majority of the models focus 
either on addressing semi-absolute deviation or variance as a risk measure, only a 
few focus on minimax risk measures. It is also seen that in the current scenario, 
downside risk measure as value at risk is receiving more attention from researchers, 
market analysts, and the financial institution. However, no one has described and 
analyzed VaR in the portfolio selection associating with the interval parameters in 
the model.

The accurate prediction of VaR is a crucial task in applied financial risk manage-
ment. Even though significant progress has been documented in the financial econo-
metrics field of study over the last decades, these approaches are not applicable in 
the financial industry due to the complexity that such approaches involve. Tradition-
ally, the value of VaR is presumed to be a real number. However, this value is not 
necessarily estimated precisely because of ambiguity in the data set due to human 
error, complexity in the environment, a limited numerical representation capability 
of digital computers, etc. For example, most of VaR’s rational value (for any confi-
dence level) as 1/3, 1.67839, 2.20347, etc., have infinite digits in their decimal repre-
sentation computer work with rounded floating-point numbers. Algebraic operations 
on floating points numbers might be accumulated errors that may be significant. A 
way to work with this type of error is to understand real-interval spaces better [20]. 
In the literature, it is observed that VaR’s value also depends on the information 
about the expected return of the portfolio. Expected returns are usually estimated 
using given periods of recorded returns of all the assets; the data fluctuations might 
be altered due to some influences such as time and external environment. Such influ-
ences are too complicated to be appropriately described. Therefore, one may use 
interval numbers to represent these uncertain parameters (see [57]) to successfully 
overcome the ambiguity mentioned above in the data set.

In view of the facts mentioned above, motivated to fill this void in the portfolio 
optimization problem, in this paper,

• a portfolio optimization model with bounded parameters is dealt with by intro-
ducing the risk measure as VaR using an interval-typed random rate of assets 
return. The VaR is here allied with the �� analysis, and a portfolio optimiza-
tion model with interval parameters is formulated, namely the interval mean-VaR 
model.

• The proposed model sets up as an interval non-linear programming problem, 
where the objective function is to minimize the portfolio’s VaR for a specified 
level of return of total investments. A methodology is developed with the help of 
interval optimization using the parametric definition of the interval and obtained 
efficient investment strategy by transforming the primary model into an equiva-
lent deterministic model.
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• Empirical results based on the historical data set taken from National Stock 
Exchange, India demonstrate that the quality of the suggested approach’s solu-
tions is better than that of the existing other models.

The rest of the paper is planned as follows: we present preliminary of interval analy-
sis and introduction of interval- typed random variable in Sect. 2. In Sect. 3, VaR is 
formulated by making connections with �� analysis and designed the mean-VaR 
model using an interval form of the parameters. A solution methodology is also 
developed in this section with its existence. Section 4 presents a numerical analy-
sis based on a case study using the data from the National Stock Exchange, India. 
Finally, concluding remarks is given in Sect. 5.

2  Preliminary

The basic concepts and properties of interval analysis are presented in this section.

• A closed interval � with lower bound (aL) and upper bound (aU) is denoted by 
bold capital letter ( � ) and represented by � = [aL, aU] i.e. aL ≤ aU . If aL = aU , 
then � is called degenerate interval. The set of all closed intervals on ℝ is 
denoted by 𝕀(ℝ) . A closed interval is said to be non-negative if aL ≥ 0.

• An interval can also be expressed in terms of a parameter in several ways. 
Any point in � may be expressed as at , where at = aL + t(aU − aL), t ∈ [0, 1]. 
Throughout this paper, a specific parametric representation of an interval is con-
sidered as � = [aL, aU] = {at ∣ t ∈ [0, 1]}.

• (𝕀(ℝ))k = The product space 𝕀(ℝ) × 𝕀(ℝ) ×⋯ × 𝕀(ℝ)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

k times

.

• �k
v
∈ (𝕀(ℝ))k represents interval vectors of k−dimesinional i.e., 

�k
v
= (�1,�2,… ,�k)

T , where each �j = [cL
j
, cU

j
], j ∈ Λk; Λk = {1, 2,… , k}. 

The parametric form of �k
v
 is the set 

• The interval matrix �m ∈ (𝕀(ℝ))p×q of order p × q and �m = (�ij)p×q , 
�ij = [aL

ij
, aU

ij
], i ∈ Λp, j ∈ Λq. �m ∈ (𝕀(ℝ))p×q is the set of real matrices, 

The binary operation ⊛ between two closed intervals � = [aL, aU] and � = [bL, bU] 
in 𝕀(ℝ) is defined to be �⊛ � = {a ∗ b ∶ a ∈ �, b ∈ �} , where ∗∈ {+,−, ⋅, ∕} . These 
interval operations can also be performed with respect to parameters as follows:

(1)

{
ct| ct = (c1

t1
, c2

t2
,… , ck

tk
)T , c

j

tj
= cL

j
+ tj(c

U
j
− cL

j
),

t = (t1, t2,… , tk)
T , 0 ≤ tj ≤ 1, j ∈ Λk

}
.

(2)

{
A(t)| A(t) = (a

ij

tij
)p×q, a

ij

tij
=aL

ij
+ tij(a

U
ij
− aL

ij
),

0 ≤ tij ≤ 1, i ∈ Λp, j ∈ Λq

}
.
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Hence, we have

The set of closed intervals, 𝕀(ℝ) is not a totally ordered set. Several partial order rela-
tions exist on 𝕀(ℝ) in the literature (see [32, 57]). Here we consider a partial ordering 
due to Bhurjee and Panda  [12] defined as follows:.

Definition 1 [12]  For �,� ∈ 𝕀(ℝ) , at ∈ � and bt ∈ �

Note that � ⪯ � is not same as �⊖ � ⪰ �. For example [3, 5] ⪯ [4, 9] , but 
[4, 9]⊖ [3, 5] = [−1, 6]  �.

Interval valued function: Many researchers (see [26, 57]) have defined an 
interval valued function in different ways. In this paper, we consider the defini-
tion of the same as defined by Bhurjee and Panda  [12].

Definition 2 For �t ∈ �k
v
, let f

�t
∶ ℝ

n
→ ℝ . For a given interval vector �k

v
∈ �

k , 
define an interval valued function �

�k
v
∶ ℝ

n
→ 𝕀 by

For every fixed x, if f
�t
(x) is continuous in t then min

t∈[0,1]k
f
�t
(x) and max

t∈[0,1]k
f
�t
(x) , exist. In 

that case

If f
�t
(x) is linear in t then mint∈[0,1]k f�t (x) and maxt∈[0,1]k f�t (x) exist in the set of verti-

ces of �k
v
. If f

�t
(x) is monotonically increasing in t, then �

�k
v
(x) = [f

�0
(x), f

�1
(x)].

�⊛ � =
{
at1 ∗ bt2 | t1, t2 ∈ [0, 1]

} ≡ [
min

t1, t2∈[0,1]
(at1 ∗ bt2 ), max

t1, t2∈[0,1]
(at1 ∗ bt2)

]
.

�⊕ � ={at1 + bt2 | t1, t2 ∈ [0, 1]} ≡ [aL + bL, aU + bU],

�⊖ � ={at1 − bt2 | t1, t2 ∈ [0, 1]} ≡ [aL − bU , aU − bL],

�⊙ � ={at1 ⋅ bt2 | t1, t2 ∈ [0, 1]} ≡ [
min

t1, t2∈[0,1]
(at1 ⋅ bt2), max

t1, t2∈[0,1]
(at1 ⋅ bt2)

]
,

�⊘ � =
{
at1∕bt2 | t1, t2 ∈ [0, 1], bt2 ≠ 0

} ≡ [
min

t1,t2∈[0,1]
(at1∕bt2 ), max

t1,t2∈[0,1]
(at1∕bt2 )

]
,

k� ={kat | t ∈ [0, 1]} ≡ [ min
t∈[0,1]

(kat), max
t∈[0,1]

(kat)], k ∈ ℝ.

(3)
� ⪯ � if and only if at ≤ bt ∀ t ∈ [0, 1],

� ≺ � if and only if at < bt for at least one t ∈ [0, 1],

� ≠ � if and only if at ≠ bt for at least one t ∈ [0, 1].

�
�k

v
(x) =

{
f
�t
(x)

||| f�t ∶ ℝ
n
→ ℝ, �t ∈ �

k
v

}
.

�
�k

v
(x) =

[
min

t∈[0,1]k
f
�t
(x), max

t∈[0,1]k
f
�t
(x)

]
.
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2.1  Interval‑typed random variable

The definition of an interval-typed random variable due to Li and Jin   [44] is given 
as follows: A variable � = [�L,�U] is said to be an interval-typed random variable if 
both lower bound �L and upper bound �U are random variables, and the mathematical 
expectation �(�L) ≤ �(�U).

Suppose �L and �U follow a normal distribution with mean �(�L) , �(�U) and 
standard deviation ��L , ��U ; in short �L ∼ N(�(�L), �2

�L
) , �U ∼ N(�(�U), �2

�U
) , 

respectively. Also, if �(�L) = �(�U) and ��L = ��U , then [�L,�U] degenerate a tradi-
tional normally distributed random variable.

Clearly, based on the above definition if �1 and �2 are two interval-typed random 
variables then addition and constant multiplication are well defined as follows:

• �1 ⊕ �2 = 
[

min
t1,t2∈[0,1]

(�t1
+ �t2

), max
t1,t2∈[0,1]

(�t1
+ �t2

)
]
 ≡ [�L

1
+ �L

2
,�U

1
+ �U

2
].

• For k ∈ ℝ , k� = {k�t | t ∈ [0, 1]} ≡
[
min
t∈[0,1]

(k�t), max
t∈[0,1]

(k�t)

]
≡ [k�L, k�U] , 

k ≥ 0.

Property 1 Let �1,�2,… ,�n be the n number of interval-typed random variables, 
where �L

i
∼ N

(
�(�L

i
), �2

�L
i

)
 , i = 1, 2,… , n, and �U

i
∼ N

(
�(�U

i
), �2

�U
i

)
 , 

i = 1, 2,… , n. The lower bounds �L
1
,�L

2
,… ,�L

n
 are mutually independent with each 

other, the upper bounds �U
1
,�U

2
,… ,�U

n
 are also mutually independent with each 

other. Thus,

is an interval-typed random variable with �
L ∼ N

� n∑
i=1

�(�L
i
),

n∑
i=1

�2

�L
i

�
 and 

�
U ∼ N

� n∑
i=1

�(�U
i
),

n∑
i=1

�2

�U
i

�
.

Property 2 If � is an interval-typed random variable then the cumulative distribu-
tion function for � is an extension of the traditional cumulative distribution function 
as follow:

where F(xt) = ��[�t ≤ xt] , for all t ∈ [0, 1].

�1 ⊕ �2 ⊕⋯⊕ �n =

n∑
i=1

� i = �(say)

�(�) = ��[� ⪯ �] ≡ {��[�t ≤ xt] ∣ t ∈ [0, 1]}

≡ [ min
t∈[0,1]

{F(xt)}, max
t∈[0,1]

{F(xt)}],
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3  Interval mean‑value‑at‑risk model

As mentioned earlier in this paper, we formulate an interval parameter portfo-
lio optimization problem with risk measure as value-at-risk and called it interval 
mean-value-at-risk model ( ����� ). the following notations are used throughout 
the paper to formulate the model. 

H Total number of time period
rjh Rate of return of the jth stock at time h, for j = 1, 2,… , n  and h = 1, 2,…H.
�j Expected rate of return of the jth stock, i.e. �j =

1

H

∑H

h
rjh.

�j = [�L
j
, �U

j
] Interval rate of return of the jth stock with lower bound �L

j
  and upper bound �U

j
.

�p Interval expected rate of return of the portfolio.
�L
p

Lower bound of expected rate of the return of the portfolio.
�U
p

Upper bound of expected rate of the return of the portfolio.

�ij = [�L
ij
, �U

ij
] represents an interval form of covariance between ith and jth stocks.

�p = [�L
p
, �U

p
] Standard deviation of the portfolio in the form of interval.

�L
p

Lower bound of standard deviation of the portfolio.
�U
p

Upper bound of standard deviation of the portfolio.
xj ∈ [0, 1] Proportion of total investment of jth stock, j = 1, 2,… , n.

3.1  Model formulation

Suppose an investor aims to allocate his/her wealth into n ≥ 2 numbers of risky 
stocks for a fixed time period H of the investment. The interval �j is the mean of 
rate of return of jth stocks, j = 1, 2,… , n . Denote � = (x1, x2,… , xn)

T is a port-
folio of the investor, in such a way that 

∑n

j=1
xj = 1 . Thus the expected rate of 

return of the portfolio is �p =
∑n

j=1
�jxj . Assume that the expected rate of return 

of a stock lies in the closed interval, the expected rate of the portfolio will also be 
contained in an interval [�L

p
,�U

p
] , and correspondingly variance will [�L

p
, �U

p
] . Fol-

lowing is the definition of value-at-risk of the portfolio if the rate of return of a 
portfolio is an interval.

Definition 3 Let � be the interval-typed random variable representing return of a 
portfolio, and �(.) be its interval form of the cumulative distribution function. For a 
given period of time, the VaR at a confidence level �%, � ∈ (0.5, 1) of a portfolio is 
defined as:

where �(�) = ��[� ⪯ �] , � represents an interval rate of return over a given time 
period.

��� = inf {�|�(�) ≥ �},

≡ inf {rt|[min
t
{F(rt)}, max

t
{F(rt)}] ≥ �, t ∈ [0, 1]},
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In particular, consider � represents an interval rate of return of a portfolio over 
the given time period, then the VaR at the �% confidence level is � with the intent 
that �(−�) = 1 − �.

Suppose �∗ ∈ (0,∞) , such that cumulative distribution function of standard normal 
distribution �(−�∗) = 1 − �, for � ∈ (0.5, 1) . Let ℤ be the set of interval-typed ran-
dom variable with normally distributed lower and upper bound. According to Defini-
tion 3, the VaR of portfolio � at the 100�% confidence level is � ≡ −�−1(1 − �) . Since 
for −�,

Thus an interval function � ∶ (0.5, 1) × ℤ → 𝕀(ℝ), defined as

∀ (�,Rp(�)) ∈ (0.5, 1) × ℤ gives the bounds of VaR at 100�% confident level of 
normally distributed random rate of return of portfolio Rp(�) . Based on the above 
interval function (4) refers to VaR of the portfolio, the formulation of the mean-VaR 
portfolio optimization model for the fixed tolerance level of expected rate return �fix 
is given as follows:

where �p(�) and �p(�) are defined as follows:

�(−�) = ��[� ⪯ −�] = 1 − 𝛼

≡ ��[
� ⊖ �p

�
≤ −�⊖ �p

�
] = 1 − 𝛼

≡ ��[
𝜒t − 𝜇t

𝜎t
≤ −vt − 𝜇t

𝜎t
] = 1 − 𝛼,∀ t ∈ [0, 1]

≡ ��[zt ≤ −vt − 𝜇t

𝜎t
] = 1 − 𝛼, where zt =

𝜒t − 𝜇t

𝜎t
,∀ t ∈ [0, 1]

≡ �

[
−(vt + 𝜇t)

𝜎t

]
= 1 − 𝛼 = �(−𝛼∗),∀ t ∈ [0, 1]

≡ vt = 𝛼∗𝜎t − 𝜇t,∀ t ∈ [0, 1]

≡ � = 𝛼∗[𝜎L
p
, 𝜎U

p
]⊖ [𝜇L

p
,𝜇U

p
].

(4)
�(𝛼,Rp(�)) = 𝛼∗[𝜎L

p
(�), 𝜎U

p
(�)]⊖ [𝜇L

p
(�),𝜇U

p
(�)]

≡ 𝛼∗
�p(�)⊖ �p(�) = SVaR(�) (say),

(5)min SVaR(�) = 𝛼∗
�p(�)⊖ �p(�)

(6)subject to �p(�) ⪯ �fix,

(7)
n∑
i=1

xi = 1,
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�m = [�ij]n×n represents interval matrix with components as interval form of covari-
ance between ith and jth stocks; �n

v
= (�1,�2,… ,�n)

T . Hence mean-VaR model (5-
7) becomes as follows:

In order to find lower (�L
p
) and upper (�U

p
) bound of the standard deviation of a port-

folio in ℝ with (�L
p
) ≤ (�U

p
) for ����� can be easily evaluated using variance of the 

portfolio � , so as to find

Using the partial orderings defined in Sect. 2, the feasible region of above problem 
can be expressed as,

where tp ∈ [0, 1] and 
{
A(t)| A(t) = (�

ij

tij
)n×n, a

ij

tij
= aL

ij
+ tij(a

U
ij
− aL

ij
), 0 ≤ tij ≤ 1,

i ∈ Λn, j ∈ Λn

}
.

The equivalent parametric form of ����� is given as follows:

�
2
p
(�) =

n∑
i=1

n∑
j=1

[�L
ij
, �U

ij
]xixj = �

T
�m�,

�p(�) =

n∑
i=1

[�L
i
,�U

i
]xi = �

n
v

T
�,

����� min SVaR(�) = 𝛼∗

√
�T�m�⊖ �

T
�
n
v

subject to �
T
�
n
v
⪰ �fix,

�
T
� = 1, 0 ≤ xj ≤ 1,∀ j = 1, 2,… , n.

����� min SVaR(�) = 𝛼∗
�p ⊖ �

T
�
n
v

subject to �
2
p
= �

T
�m�,

�
T
�
n
v
⪰ �fix,

�
T
� = 1, 0 ≤ xj ≤ 1,∀ j = 1, 2,… , n.

△ = {� ∈ ℝ
n ∶ �

2
p
= �

T
�m�, �

T
�
n
v
≥ �L

fix
, �T� = 1}

≡ {� ∈ ℝ
n ∶ �2

p

L
+ tp(�

2
p

U
− �2

p

L
) = �

TA(t)�,

n�
i=1

�i
ti
xi ≥ �L

fix
, �T� = 1}

≡
⎧⎪⎨⎪⎩
� ∈ ℝ

n ∶ �2
p

L
= min�

t∈[0,1]n×n
�{�TA(t)�}, �2

p

U
= max�

t∈[0,1]n×n
�{�TA(t)�} ;

max
{ti∈[0,1],∀ i}

n�
i=1

�i
ti
xi ≥ �L

fix
, �T� = 1

�
,

(8)�����t min
�∈△

SVaR(�, �) = �∗{�L
p
+ tp(�

U
p
− �L

p
)} − �

T�t� ,
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where � = (tp, t
�) ∈ [0, 1]1+n.

Due to complexity of an interval inequality and interval uncertainty in the 
objective function, the classical optimization technique could not be directly 
applicable to solve nonlinear programming problems. Therefore �����t is fur-
ther transformed into a deterministic optimization problem (which is denoted by 
�����

′ ) as follows:

where w ∶ [0, 1]1+n → R+ , �t� ∈ �
n
v
 , d� = dtpdt

�
1
dt�

2
… dt�

n
 . This model is a deter-

ministic nonlinear programming problem and can be solved by using Karush-Kuhn-
Tucker (KKT) conditions with the help of any optimization software like Lingo, 
Mathematica, etc.

3.2  Existence of solution of interval mean VaR optimization problem

Definition 4 A point �∗ ∈ △ is called as an efficient solution of ����� if there is 
no � ∈ △ , � ≠ �∗ such that SVaR(�) ≤ SVaR(�

∗) and SVaR(�) ≠ SVaR(�
∗).

Definition 5 �∗ is called an properly efficient solution of ����� if �∗ ∈ △ 
is an efficient solution of ����� and there is a real number 𝜆 > 0 so that for 
some � ∈ [0, 1]1+n and every � ∈ △ with SVaR(�, �) < SVaR(�

∗, �) , at least one 
�� ∈ [0, 1]1+n , � ≠ �′ exists with SVaR(�, �

�) > SVaR(�
∗, ��) and

Note 1 Every properly efficient solution for a problem is an efficient solution to the 
problem. However, the converse is not true.

Theorem 1 A point �∗ ∈ △ is an optimal solution of �����
′ then �∗ is a properly 

efficient solution of �����.

Proof Let �∗ be an optimal solution of �����
′ . Assume that �∗ is not a properly 

efficient solution of ����� . So for some � ∈ [0, 1]1+n and some � ∈ △ with 
SVaR(�, �) < SVaR(�

∗, �) . Select a weight function w ∶ [0, 1]1+n → ℝ+ which is con-
tinuous. Then we choose � = max

{
w(��)

w(�)

}
 , � ≠ �′ , �, �� ∈ [0, 1]1+n , w(�) > 0 

satisfying

and for all �� ∈ [0, 1]1+n with SVaR(�, �
�) > SVar(�

∗, ��).

�����
� min
�∈△

SVaR(�) = ∫
1

0 ∫
1

0

⋯∫
1

0
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1+n

w(�)
(
�∗{�L

p
+ tp(�

U
p
− �L

p
)} − �

T�t�

)
d�,

SVaR(�
∗, �) − SVaR(�, �)

SVaR(�, �
�) − SVaR(�

∗, ��)
≤ �.

SVaR(�
∗, �) − SVaR(�, �)

SVaR(�, �
�) − SVaR(�

∗, ��)
> 𝜆,
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This gives

After integrating on both sides with respect to the parameter � and �′ , we have

which is a contradiction that �∗ is an optimal solution of �����
′. Hence �∗ is a 

properly efficient solution of ����� .   ◻

4  Numerical example

The efficacy of the above-developed model and its solution methodology is 
explained as a case study using the historical data collected from the National 
Stock Exchange, India. Firstly, a step-by-step procedure is explained to estimate and 
implement the above-developed methodology. This algorithm will help for obtain-
ing optimal bounds of the VaR with efficient investment strategies, which is given as 
follows:

4.1  Algorithm

Step 1: Input
(a) Number of stocks(n).
(b) Collect historical opening(popen

jh
 ), maximum(pmax

jh
),  minimum(pmin

jh
 ), and clos-

ing(pclose
jh

 ) prices of each stock for a given time period(H).
(c) Fix the values of � and �∗.
Step 2: (a) Calculate rate of return corresponding to each price using the formula 

r
price

jh
=

p
price

jh
−p

price

jh−1

pjh−1
, where price ∈ {opening,maximum,minimum, closing}.

(b) Calculate �price

j
=

1

H

∑H

h=1
r
price

jh
 , for j = 1, 2… n.

(SVaR(�
∗, �) − SVaR(�, �)) > 𝜆(SVaR(�, �

�) − SVaR(�
∗, ��))

>
w(��)

w(�)
(SVaR(�, �

�) − SVaR(�
∗, ��)).

w(�)(SVaR(�
∗, �) − SVaR(�, �)) > w(��)(SVaR(�, �

�) − SVaR(�
∗, ��)).

∫
1

0 ∫
1

0

⋯∫
1

0
���������������

1+n

w(�)(SVaR(�
∗, �) − SVaR(�, �))d� >

∫
1

0 ∫
1

0

⋯∫
1

0
���������������

1+n

w(��)(SVaR(�, �
�) − SVaR(�

∗, ��))d��.

SVaR(�
∗) > SVaR(�),
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(c) Estimate, for all j = 1, 2,… , n , �L
j
= min{�

open

j
,�max

j
,�min

j
,�close

j
} and �U

j
= 

max{�
open

j
, �max

j
, �min

j
,�close

j
} .

Step 3: (a) Compute �L
ij
 and �U

ij
 for all i = 1, 2,… , n , j = 1, 2,… , n as follow: 

 where r̃it denotes the return of ith stock at time t, for every i, t, corresponding to 
the sample returns of ith stock from which the lower bound of expected return 
�L
i
 is obtained. Similarly, r̂it denotes value of sample return of ith stock at time 

t which is associated with the sample return from which the upper bound of 
expected return �U

i
 is obtained.

(b) If 𝜎L
ij
> 𝜎U

ij
 , then arrange �L

ij
= �U

ij
 and �U

ij
= �L

ij
 and vice-versa.

Step 4: (a) Choose �∗ ∈ (0,∞) and weight function w(�) in such way that 

(b) Make deterministic model SVaR(�).
Step 5: Evaluate efficient portfolio �∗ by solving the model formulated in previous 

Step 4 (b) for given values of �∗ and �fix with the help of any software, which 
supports non-linear optimization problem.

Step 6: Obtain the bound of value at risk for the portfolio �∗.

In order to explain the above-given step by step procedure, we collect firstly (Step 
1: (a) and (b) of the algorithm 4.1) the data sets of the daily, opening price, maxi-
mum price, minimum price, and closing price of fifty stocks listed in National Stock 
Exchange(NSE), India, for a time period January 1, 2017, to December 31, 2019. 
The name of all 50 stocks is given in Table 1.

Based on each type of price, we calculate each stock’s rate of return according to 
Step 2: (a). Using Step 2: (b) and (c), the bound of the expected return of each stock 
has been calculated, which are listed in Table 2.

In Step 3, bounds of covariance between two stocks have also been evaluated 
using the technique explained in the expression (9) and (10).

In Step 4, the estimated bounds of the expected rate of return of each stock and 
covariance between the stocks (which are obtained in Step 2 and Step 3, respec-
tively) have considered in the terms of the input data for developed portfolio selec-
tion model to find the optimum bounds of value-at-risk of the portfolio. Simulta-
neously, we select three different values of �∗ = 4.50, 3.55, 1.88 , and individually 

(9)𝜎L
ij
=

1

H − 1

H∑
t=1

(r̃ih − 𝜇L
i
)(r̃jh − 𝜇L

j
) and

(10)𝜎U
ij
=

1

H − 1

H∑
t=1

(r̂ih − 𝜇U
i
)(r̂jh − 𝜇U

j
),

∫
1

0 ∫
1

0

⋯∫
1

0
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1+n

w(�)d� = 1.
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evaluate optimal investment strategies for a given tolerance level of the rate of the 
expected return of portfolio �fix . For this, we construct first deterministic model 
by choosing w(�) = 1 based on the Step 4 (a), and then obtain the efficient port-
folios with each of the three values of �∗ , for all the values of �fix = [0.010 , 
0.012], [0.0120,  0.0140], [0.0140,  0.0160], [0.0160,  0.0180], [0.0180,  0.0200], 
[0.0200, 0.0220], [0.0220, 0.0240] and [0.0240, 0.0260] using LINGO 11 software 
as explained in Step 5. Finally, the bounds of VaR for each portfolio is calculated in 
Step 6. A complete list of the efficient portfolios for each value of �∗ at all values of 
�fix are given in Tables 3, 4 and 5.

The result of Table  3 gives the details of the lower and upper bound of VaR, 
standard deviation, and the expected return of the portfolio for fixed �∗ = 4.50 , cor-
responding to each the tolerance range of �fix . These results are obtained through the 
equivalent deterministic model SVaR(�) of ����� . One may also observe from 
Table 3 that the efficient bound of VaR changes as the lower bound of �fix changes, 
simultaneously the optimal investment strategies stuff happens the different for all 
the possible tolerance levels of expected return. Similarly, Table  4 and Table  5 
describe the same type of result as given in Table 3 for the values of �∗ = 3.50 and 
�∗ = 1.88 , respectively. One can also see from the results obtained in Tables 3, 4, 
and  5 that a group of the same stocks is obtained for different values of �∗ conform-
ing to each lower bound �L

fix
 . Although the proportions of the total investment for 

each value of �L
fix

 are different with different ranges of VaRs. The portfolios obtained 
based on three different value of �∗ in Tables 3, 4, and 5 are also represented graphi-
cally in Figs.  1 and 2. From these figures, one can be shown that the portfolios 
obtained for different values of �∗ are different and changed with the different values 
of �L

fix
.

Next, a single tolerance level of the expected return of portfolio �fix = [0.02, 0.22] 
is selected and obtained an efficient portfolio varying the value of �∗ in Step 5. 
Accordingly, the optimal investment strategy has been acquired using LINGO 11 
software for each value of �∗ = 1.85, 2.05, 2.25, 2.45, 2.65, 2.85, 3.05, 3.25, and 
3.45, respectively.

The optimal bounds of VaR of portfolios with the proportion of the total invest-
ment on stocks corresponding to each value of �∗ for a fixed �fix = [0.02, 0.022] are 
given in Table 6. The values of �L

p
 , �U

p
 , �L

p
 , �U

p
 , VaRL and VaRU are evaluated via the 

proportions of the total investment for each portfolio. All these values are also given 
in the table. One can observe from Table 6 that as the confidence level increases, 
the upper bound of VaR increases; that is, the range of VaR increases. This can be 
clearly seen in Fig. 3, where x-axis indicates different values of �∗ and y-axis indi-
cates values of VaR. The lower bound of the VaRs represents VaR’s possible accept-
able value for the worst scenario of the market. Thus it is the same for all values of 
�∗ . However, the upper bound of VaRs represents the optimistic value of VaR when 
everything in the financial market goes in the right way.

Based on Table 6, another graph is drawn to explain the relation between upper 
bounds of VaR (VaRU) (last rows in the table) and upper bound of standard devi-
ations (�U

p
) of the portfolio, where x-axis indicates different values of �U

p
 and the 

y-axis indicates values of VaRU . This is given in Fig. 4. From this figure, one can see 



57

1 3

OPSEARCH (2022) 59:41–77 

Table 3  The proportion of investment on each stock for lower bounds of different �fix and �∗ = 4.50

�
L

fix
0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
A3 0.02148 0.02148 0.02148 0.02003 0.01525 0 0 0
A4 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0
A10 0.02398 0.02398 0.02398 0.03191 0.04947 0.07277 0.10092 0.15992
A11 0 0 0 0 0 0.01439 0.06411 0.09037
A12 0.00346 0.00346 0.00346 0.00833 0.01648 0.03216 0.05340 0.05845
A13 0.00167 0.00167 0.00167 0.01171 0.02169 0.02170 0.02218 0
A14 0.00578 0.00578 0.00578 0.00803 0.00952 0.01714 0.04549 0.03592
A15 0.04598 0.04598 0.04598 0.03316 0.00551 0 0 0
A16 0.03464 0.03464 0.03464 0.03741 0.04402 0.04780 0.00786 0
A17 0.08257 0.08257 0.08257 0.07856 0.06966 0.04902 0.02699 0
A18 0 0 0 0 0.02967 0.07061 0.14039 0.19484
A19 0 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0
A23 0.03702 0.03702 0.03702 0.04104 0.05091 0.05982 0.03376 0
A24 0.06186 0.06186 0.06186 0.06408 0.06769 0.07292 0.09341 0.07390
A25 0 0 0 0 0 0 0 0
A26 0 0 0 0 0 0 0 0
A27 0 0 0 0 0 0 0 0
A28 0.08519 0.08519 0.08519 0.09126 0.08815 0.06399 0.02234 0
A29 0.18126 0.18126 0.18126 0.18587 0.18697 0.18588 0.19912 0.18008
A30 0.02332 0.02332 0.02332 0.01715 0.00140 0 0 0
A31 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0
A35 0 0 0 0 0 0 0.00251 0.10324
A36 0.09098 0.09098 0.09098 0.07636 0.04854 0.00060 0 0
A37 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0
A40 0.07326 0.07326 0.07326 0.08101 0.08608 0.09446 0.06236 0
A41 0.00460 0.00460 0.00460 0.00671 0.00990 0.01502 0.01682 0.00541
A42 0.13819 0.13819 0.13819 0.12558 0.10498 0.07200 0 0
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that the value of �U
p

 decreases, the value of VaRU increases, which means that lower 
value of standard deviation, a higher value of VaR.

Based on the above discussion, we observe that one can obtain a suitable invest-
ment policy of investment by solving �����′ for a fixed value of �fix and a confi-
dence level (i.e., �∗ ). Selecting the values of the parameters �fix and �∗ (according to 
the investors’ frame of mind), the investor might be accomplished a preferred port-
folio investment policy.

For the verification of the results obtained from our developed model ����� , 
we consider the results obtained based on the deterministic mean-value-at-risk 
model (�����) , Markowitz’s mean-variance model ( �� ), and mean-absolute 
deviation model ( ��� ); which have been developed by Alexander and Baptista 
[1]) Markowitz [55], and Konno & Yamazaki [36], respectively. To evaluate the 
optimal investment strategies of all ����� , �� and ��� models, the same data 
sets for the same period has been used. Among the data, only the closing price of all 
the 50 stocks is used to estimate each stock’s expected rate of return and variance/
covariance between stocks. Using these estimated parameters as inputs, we create an 
efficient portfolio of all three models for each of the given expected return of port-
folio (�fix) , viz., 0.0100, 0.0120, 0.0140, 0.0160, 0.0180, 0.0200, 0.0220 and 0.0240. 
The proportion of total investment in each stock of the portfolios obtained based on 
the ����� model with optimally calculated variance for �∗ = 4.50 are given in 
Table 7. The optimal variance of each portfolio of the �� model with the propor-
tion of total investment of each stock is given in Table 8. The proportion of total 
investment in each stock of the portfolios obtained based on the ��� model with 
calculated expected return and variance are given in Table 9.

With the help of results obtained in Table 8, the efficient frontier for Markowitz’s 
mean-variance model is given in Fig. 5.

Table 3  (continued)

�
L

fix
0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A43 0.04115 0.04115 0.04115 0.03369 0.02649 0.02468 0 0
A44 0 0 0 0 0 0 0 0
A45 0.00202 0.00202 0.00202 0 0 0 0 0
A46 0 0 0 0 0 0 0 0
A47 0.04158 0.04158 0.04158 0.04811 0.06763 0.08505 0.10834 0.09787
A48 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0
�L
p

0.01233 0.01233 0.01233 0.01325 0.01517 0.01713 0.01909 0.02052
�U
p

0.01505 0.01505 0.01505 0.01600 0.01800 0.02000 0.02200 0.02400
�L
p

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
�U
p

0.00066 0.00066 0.00066 0.00068 0.00076 0.00087 0.00108 0.00159

VaR
L − 0.01505 − 0.01505 − 0.01505 − 0.01600 − 0.01800 − 0.02000 − 0.02200 − 0.02400

VaR
U − 0.00938 − 0.00938 − 0.00938 − 0.01017 − 0.01175 − 0.01322 − 0.01425 − 0.01338
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Table 4  The proportion of investment on each stock for lower bounds of different �fix and �∗ = 3.50

�L
fix

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
A3 0.020505 0.020505 0.020505 0.020163 0.015365 0 0 0
A4 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0
A10 0.02974 0.02974 0.02974 0.03189 0.04947 0.07278 0.10084 0.15994
A11 0 0 0 0 0 0.01454 0.06436 0.09028
A12 0.00699 0.00699 0.00699 0.00825 0.01639 0.03204 0.05348 0.05845
A13 0.00902 0.00902 0.00902 0.01137 0.02133 0.02128 0.02190 0
A14 0.00746 0.00746 0.00746 0.00817 0.00969 0.01749 0.04609 0.03593
A15 0.03680 0.03680 0.03680 0.03330 0.00564 0 0 0
A16 0.03660 0.03660 0.03660 0.03741 0.04403 0.04777 0.00747 0
A17 0.07903 0.07903 0.07903 0.07803 0.06915 0.04865 0.02668 0
A18 0 0 0 0 0.02975 0.07067 0.14065 0.19490
A19 0 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0
A23 0.03981 0.03981 0.03981 0.04097 0.05086 0.05978 0.03359 0
A24 0.06374 0.06374 0.06374 0.06428 0.06787 0.07295 0.09349 0.07388
A25 0 0 0 0 0 0 0 0
A26 0 0 0 0 0 0 0 0
A27 0 0 0 0 0 0 0 0
A28 0.09038 0.09038 0.09038 0.09182 0.08865 0.06431 0.022078 0
A29 0.18483 0.18483 0.18483 0.18599 0.18703 0.18587 0.199217 0.180061
A30 0.01913 0.01913 0.01913 0.01738 0.00158 0 0 0
A31 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0
A35 0 0 0 0 0 0 0.00211 0.10318
A36 0.07986 0.07986 0.07986 0.07598 0.04819 0.00046 0 0
A37 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0
A40 0.07917 0.07917 0.07917 0.08118 0.08620 0.09441 0.06243 0
A41 0.00661 0.00661 0.00661 0.00695 0.01012 0.01519 0.01691 0.00537
A42 0.12823 0.12823 0.12823 0.12515 0.10458 0.07178 0 0
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Next, a comparative study of the outcomes found based on the ����� , 
����� , �� and ��� models are presented, which are mentioned in Tables 3, 7, 
8 and 9, respectively. One may observe in Table 6 that the proportion of the total 
investment obtained in each stock from ����� for all tolerance levels of the 
expected return of the portfolio for �∗ = 4.50 is different for different �L

fix
 . For exam-

ple, if �L
fix
= 0.01, then the portfolio consists 20 stocks, viz., A3, A10, A12, A13, 

A14, A15, A16, A17, A23, A24, A28, A29, A30, A36, A40, A41, A42, A43, A45 
and A47 with proportion of the total investment 0.02148, 0.02398, 0.00346, 
0.00167, 0.00578, 0.04598, 0.03464, 0.08257, 0.03702, 0.06186, 0.08519, 0.18126, 
0.02332, 0.09098, 0.07326, 0.00460, 0.13819, 0.04115, 0.00202 and 0.04158, 
respectively. Correspondingly the calculated upper- and lower-bound of standard 
deviation of portfolio are 0.00066 and zero, respectively. While, the portfolio con-
sists of 18 stocks for �L

fix
= 0.020 , viz., A10, A11, A12, A13, A14, A16, A17, A18, 

A23, A24, A28, A29, A36, A40, A41, A42, A43 and A47 with proportion of the 
total investment 0.07277, 0.01439, 0.03216, 0.02170, 0.01714, 0.04780, 0.04902, 
0.07061, 0.05982, 0.07292, 0.06399, 0.18588, 0.00060, 0.09446, 0.01502, 0.07200, 
0.02468 and 0.08505, respectively, accordingly the calculated range of optimal 
�p = [0, 0.00087].

However, one can see that the portfolios which are obtained by using both the 
����� and �� model consists 15 stocks for the fixed value of expected return 
�fix = 0.010 , viz., A3, A9, A10, A12, A15, A16, A17, A19, A23, A25, A26, A28, 
A29, A42 and A43 with the proportion of the total investment 0.02787, 0.02519, 
0.03151, 0.03361, 0.05773, 0.08080, 0.07439, 0.02048, 0.11765, 0.11177, 
0.10642, 0.08554, 0.02134, 0.15403 and 0.05168, respectively with variance 
0.00033. For the fixed value of expected return �fix = 0.020 , the portfolio contains 
only 13 stocks, viz., A10, A12, A16, A17, A23, A24, A25, A26, A28, A29, A35, 

Table 4  (continued)

�L
fix

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A43 0.03588 0.03588 0.03588 0.03371 0.02654 0.02496 0 0
A44 0 0 0 0 0 0 0 0
A45 0 0 0 0 0 0 0 0
A46 0 0 0 0 0 0 0 0
A47 0.04622 0.04622 0.04622 0.04801 0.06757 0.08505 0.10872 0.09799
A48 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0
�L
p

0.01302 0.01302 0.01302 0.01325 0.01518 0.01714 0.01910 0.02052
�U
p

0.01576 0.01576 0.01576 0.01600 0.01800 0.02000 0.02200 0.02400
�L
p

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
�U
p

0.00068 0.00068 0.00068 0.00068 0.00076 0.00087 0.00108 0.00159

VaR
L − 0.01576 − 0.01576 − 0.01576 − 0.01600 − 0.01800 − 0.02000 − 0.02200 − 0.02400

VaR
U − 0.01066 − 0.01066 − 0.01066 − 0.01086 − 0.01251 − 0.01409 − 0.01533 − 0.01497
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Table 5  The proportion of investment on each stock for lower bounds of different �fix and �∗ = 1.88

�L
fix

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
A3 0.00352 0.00352 0.00352 0.00352 0.00352 0.00026 0 0
A4 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0
A10 0.06861 0.06861 0.06861 0.06861 0.06861 0.07276 0.10055 0.16003
A11 0.01036 0.01036 0.01036 0.01036 0.01036 0.01509 0.06531 0.08996
A12 0.02859 0.02859 0.02859 0.02859 0.02859 0.03157 0.05380 0.05844
A13 0.02072 0.02072 0.02072 0.02072 0.02072 0.01974 0.02081 0
A14 0.01611 0.01611 0.01611 0.01611 0.01611 0.01873 0.04842 0.03597
A15 0 0 0 0 0 0 0 0
A16 0.04767 0.04767 0.04767 0.04767 0.04767 0.04758 0.00595 0
A17 0.05081 0.05081 0.05081 0.05081 0.05081 0.04729 0.02549 0
A18 0.06369 0.06369 0.06369 0.06369 0.06369 0.07097 0.14165 0.19516
A19 0 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0
A23 0.05842 0.05842 0.05842 0.05842 0.05842 0.05953 0.03290 0
A24 0.07268 0.07268 0.07268 0.07268 0.07268 0.07323 0.09379 0.07380
A25 0 0 0 0 0 0 0 0
A26 0 0 0 0 0 0 0 0
A27 0 0 0 0 0 0 0 0
A28 0.07159 0.07159 0.07159 0.07159 0.07159 0.06576 0.02104 0
A29 0.18613 0.18613 0.18613 0.18613 0.18613 0.18596 0.19958 0.17998
A30 0 0 0 0 0 0 0 0
A31 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0
A35 0 0 0 0 0 0 0.00062 0.10297
A36 0.00855 0.00855 0.00855 0.00855 0.00855 0 0 0
A37 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0
A40 0.09318 0.09317 0.09318 0.09318 0.09318 0.09426 0.06266 0
A41 0.01492 0.01492 0.01492 0.01492 0.01492 0.01590 0.01725 0.00522
A42 0.07702 0.07702 0.07702 0.07702 0.07702 0.07068 0 0
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A41 and A43 with proportion of the total investment 0.02290, 0.05547, 0.10004, 
0.10140, 0.08323, 0.01138, 0.09408, 0.13826, 0.10059, 0.15876, 0.05166, 
0.00122 and 0.08100, respectively with variance 0.00063. Similarly, the portfolio 
obtained (using ��� model) in Table 9 consists 12 stocks for the fixed value of 
expected return �fix = 0.010 , viz., A3, A9, A10, A12, A15, A16, A17, A23, A26, 
A28, A29 and A42 with proportion of the total investment 0.03808, 0.05431, 
0.02925, 0.00438, 0.11331, 0.07607, 0.09263, 0.06557, 0.14277, 0.05337, 
0.16198 and 0.16828, respectively with the calculated optimal �p = 0.00068 . 
While, for the fixed value of expected return �fix = 0.020 the portfolio contains 13 
stocks, viz., A10, A12, A15, A16, A17, A23, A26, A28, A29, A35, A41, A42 and 
A43 with proportion of the total investment 0.03712, 0.02569, 0.07567, 0.13014, 
0.04944, 0.05515, 0.11475, 0.04521, 0.20129, 0.13951, 0.03531, 0.06904 and 
0.02168, respectively with the calculated range of optimal �p = 0.00082 . Hence, 
the ����� model provides a more diversify portfolio as compared to the 

Table 5  (continued)

�L
fix

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A43 0.02531 0.02531 0.02531 0.02531 0.02531 0.02566 0 0
A44 0 0 0 0 0 0 0 0
A45 0 0 0 0 0 0 0 0
A46 0 0 0 0 0 0 0 0
A47 0.08212 0.08212 0.08212 0.08212 0.08212 0.08503 0.11017 0.09846
A48 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0
�L
p

0.01682 0.01682 0.01682 0.01682 0.01682 0.01715 0.01911 0.02052
�U
p

0.01966 0.01966 0.01966 0.01966 0.01966 0.02000 0.02200 0.02400
�L
p

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
�U
p

0.00085 0.00085 0.00085 0.00085 0.00085 0.00087 0.00108 0.00159
VaRL − 0.01966 − 0.01966 − 0.01966 − 0.01966 − 0.01966 − 0.02000 − 0.02200 − 0.02400
VaRU − 0.01522 − 0.01522 − 0.01522 − 0.01522 − 0.01522 − 0.01551 − 0.01709 − 0.01754

-0.02000

-0.01800

-0.01600

-0.01400

-0.01200

-0.01000

-0.00800
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0.00000
0.008 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

V
aR

^U
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VaR-MU(α*=4.5) VaR-MU(α*=3.5) VaR-MU(α*=1.88)

(a)

-0.03000

-0.02500

-0.02000
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-0.00500
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Fig. 1  The graph between �fix and the bounds of VaR corresponding to �∗ =4.50, 3.50, and 1.88
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other methods (��,����� and���) , which helps to reduce the risk of the 
portfolio.

Although, the efficient portfolios obtaining from the �� model are different for 
all given expected returns of the portfolio in Table 8. But the results obtained by the 
����� model are the same as the results obtaining by the �� model as given 
in Tables   7 and 8. All efficient portfolios (obtaining in Table  3) of ����� are 
different from the efficient portfolio obtained from the �� (in Table 8), ����� 
( in Table  7)) and ��� (in Table  9) models for all possible value of �fix . It can 
also be seen that the efficient frontier drawn between the calculated variance and 
the expected return of each portfolio relative to all models is different except the 
efficient frontier of �� model and ����� model. This can be easily viewed in 
Fig. 6. In this figure, the x-axis represents the calculated variance of the portfolio 
and the y-axis represents the expected return � of the portfolio.

In Fig. 6, two curves DMVAR and MV represent the relation between the values 
of �p and �p , which are given in the last and the first row of Table 7, and the second 
and the first row of Table 8 respectively. Similarly, the relation between the values of 
�U
p

 with values of �L
p
 and �U

p
 of Table 3 is represented by two curves IMVAR(Lower) 

and IMVAR(Upper), respectively in the figure. The curve MAD represents the 
efficient frontier making from the last two rows ( �p and �2

p
 ) of Table 9. One may 

observe from the figure that curves DMVAR and MV coincide with each other, 
while MAD, IMVAR(Upper), and IMVAR(Lower) are inside of the curve. All the 
efficient frontiers are inside of the feasible region of �� efficient set. However, the 
efficient set obtained using VaR as a measure of risk is smaller than the mean-vari-
ance efficient group. Still, then again, we find that the efficient portfolio obtained by 
the mean-VaR model is economically better diversified than the efficient portfolio 
obtained by other models, which are described below.

-0.03000

-0.02500

-0.02000

-0.01500

-0.01000

-0.00500

0.00000
0.00060 0.00080 0.00100 0.00120 0.00140 0.00160

V
aR

σ
VaR^L(α*=4.5) VaR^L(α*=3.5) VaR^L(α*=1.88)

VaR^U(α*=4.5) VaR^U(α*=3.5) VaR^U(α*=1.88)

Fig. 2  VaR-� graph for each value of �∗ =4.50, 3.50, and 1.88
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Table 6  The proportion of total investment on each stock and bounds VaR for different values of �∗ at a 
fixed value of �fix = [0.02, 0.022]

�∗ 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45

A1 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0 0
A3 0.00028 0.00017 0.00006 0 0 0 0 0 0
A4 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0 0
A10 0.07276 0.07277 0.07279 0.07280 0.07279 0.07279 0.07278 0.07278 0.07278
A11 0.01511 0.01499 0.01491 0.01483 0.01476 0.01469 0.01464 0.01459 0.01455
A12 0.03155 0.03165 0.03174 0.03181 0.03187 0.03192 0.03196 0.03200 0.03203
A13 0.01969 0.01999 0.02025 0.02048 0.02068 0.02085 0.02100 0.02113 0.02125
A14 0.01877 0.01854 0.01835 0.01817 0.01800 0.01785 0.01773 0.01761 0.01752
A15 0 0 0 0 0 0 0 0 0
A16 0.04756 0.04766 0.04770 0.04773 0.04774 0.04775 0.04776 0.04777 0.04777
A17 0.04725 0.04752 0.04775 0.04795 0.04813 0.04828 0.04841 0.04853 0.04863
A18 0.07098 0.07089 0.07083 0.07079 0.07076 0.07074 0.07071 0.07069 0.07068
A19 0 0 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0 0
A23 0.05952 0.05961 0.05967 0.05971 0.05973 0.05974 0.05976 0.05977 0.05978
A24 0.07325 0.07316 0.07308 0.07302 0.07300 0.07299 0.07298 0.07296 0.07295
A25 0 0 0 0 0 0 0 0 0
A26 0 0 0 0 0 0 0 0 0
A27 0 0 0 0 0 0 0 0 0
A28 0.06581 0.06547 0.06516 0.06492 0.06477 0.06464 0.06452 0.06442 0.06433
A29 0.18597 0.18591 0.18588 0.18587 0.18587 0.18587 0.18587 0.18587 0.18587
A30 0 0 0 0 0 0 0 0 0
A31 0 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0 0
A35 0 0 0 0 0 0 0 0 0
A36 0 0 0.00010 0.00019 0.00026 0.00032 0.00037 0.00041 0.00045
A37 0 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0 0
A40 0.09425 0.09431 0.09432 0.09432 0.09435 0.09437 0.09438 0.09440 0.09441
A41 0.01592 0.01577 0.01563 0.01552 0.01544 0.01537 0.01531 0.01525 0.01520
A42 0.07063 0.07093 0.07116 0.07134 0.07145 0.07154 0.07163 0.07170 0.07176
A43 0.02567 0.02564 0.02558 0.02550 0.02536 0.02525 0.02515 0.02506 0.02498
A44 0 0 0 0 0 0 0 0 0
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The efficacy of the investment strategy obtained from all models is examined by 
evaluating the portfolios’ actual monthly return obtained from all the models men-
tioned above, including the interval parameter semi-absolute portfolio selection 
model (developed by Lai et al.  [43]).

The proportions of total investment used to calculate the actual monthly return of 
portfolios are listed in Table  10. The proportions of the total investment based on 
the model of Lai et al.  [43] are obtained using the same data sets (where w1 = 0.08 , 
w2 = 0.09 ) that have been used for our method. The actual returns of all stocks 
(listed in Table 1) are evaluated using the monthly closing prices from January 1, 
2020, to December 31, 2020. The actual monthly return of the portfolios are calcu-
lated for every nine monthly returns corresponding to all �����, �����, �� , 
��� and Lai et al.’s models. The actual return of portfolio corresponding to each 
model are listed in Table 11.

Table 6  (continued)

�∗ 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45

A45 0 0 0 0 0 0 0 0 0
A46 0 0 0 0 0 0 0 0 0
A47 0.08503 0.08502 0.08503 0.08504 0.08504 0.08504 0.08504 0.08504 0.08504
A48 0 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0 0

�L
p

0.01715 0.01715 0.01715 0.01714 0.01714 0.01714 0.01714 0.01714 0.01714

�U
p

0.02000 0.02000 0.02000 0.02000 0.02000 0.02000 0.02000 0.02000 0.02000

�L
p

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

�U
p

0.00087 0.00087 0.00087 0.00087 0.00087 0.00087 0.00087 0.00087 0.00087

VaR
L − 0.02000 − 0.02000 − 0.02000 − 0.02000 − 0.02000 − 0.02000 − 0.02000 − 0.02000 − 0.02000

VaR
U − 0.01554 − 0.01536 − 0.01519 − 0.01501 − 0.01484 − 0.01466 − 0.01449 − 0.01431 − 0.01414

Fig. 3  VaR-�∗ graph
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The graphical representations of actual monthly returns of all five models are 
given in Fig. 7, where x−axis represents months of the portfolio and y−axis means 
actual returns. The months Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, and Oct, are 
denoted as 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively, in the figure. It is clear from 
Table 10 that the total amount is distributed in more stocks by our model ����� 
compared to other models. That means the ����� model is provided a more diver-
sified portfolio than the existing model.

From Fig. 7, it can be seen that actual returns of the portfolio related to our model 
����� gives negative return only on two months Feb and Mar. It is very close to 
zero as compared to another one. However, the portfolio’s actual monthly returns 
corresponding to the other four models give negative returns on three months (Feb, 
Mar and Apr). These all returns are a bit far away from zero compared to our model. 
If we are assumed Zero expected return as a baseline, then returns obtained by our 
method are more consistent than returns received by �����, �� , ��� and Lai 
et al.’s methods. Hence, ����� provides a well-diversified portfolio with less risk.

5  Conclusion

This paper deliberated the VaR risk measure of the portfolio optimization problem 
under interval uncertainty by defining interval-type random parameters. The mean-
VaR model is formulated with parameters expected return and risk in the form of 
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) of the portfolios for 
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Table 7  The proportion of total investment on each stock for all the given expected returns of the portfo-
lio for the (DMVAR) model at �∗ = 4 ∶ 50

�fix 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
A3 0.02786 0.01508 0.00248 0 0 0 0 0
A4 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0.02520 0.00415 0 0 0 0 0 0
A10 0.03150 0.03382 0.03495 0.03449 0.03150 0.02290 0.00769 0
A11 0 0 0 0 0 0 0 0
A12 0.03361 0.04301 0.04612 0.04695 0.04842 0.05547 0.07186 0.08490
A13 0 0 0 0 0 0 0 0
A14 0 0 0 0 0 0 0 0
A15 0.05774 0.05414 0.03769 0.01699 0 0 0 0
A16 0.08080 0.09291 0.09867 0.09938 0.10052 0.10004 0.09944 0.09846
A17 0.07440 0.06208 0.06601 0.07258 0.08269 0.10140 0.12537 0.13726
A18 0 0 0 0 0 0 0 0
A19 0.02048 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0
A23 0.11765 0.11126 0.10513 0.09767 0.09340 0.08323 0.07004 0.05460
A24 0 0 0 0 0.00124 0.01138 0.02082 0.03298
A25 0.11177 0.12957 0.12774 0.11651 0.10630 0.09408 0.08071 0.05693
A26 0.10641 0.12688 0.13228 0.14724 0.14966 0.13826 0.10959 0.06813
A27 0 0 0 0 0 0 0 0
A28 0.08553 0.09251 0.09796 0.10611 0.11136 0.10059 0.07837 0.05926
A29 0.02133 0.02956 0.06710 0.11738 0.14933 0.15876 0.15236 0.14978
A30 0 0 0 0 0 0 0 0
A31 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0
A35 0 0 0 0 0.01686 0.05166 0.09420 0.12164
A36 0 0 0 0 0 0 0 0
A37 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0
A40 0 0 0 0 0 0 0 0.02087
A41 0 0 0 0 0 0.00122 0.01475 0.02410
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Table 7  (continued)

�fix 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A42 0.15404 0.14659 0.11013 0.06510 0.02499 0 0 0
A43 0.05168 0.05843 0.07374 0.07959 0.08374 0.08100 0.07480 0.06465
A44 0 0 0 0 0 0 0 0
A45 0 0 0 0 0 0 0 0
A46 0 0 0 0 0 0 0 0
A47 0 0 0 0 0 0 0 0.02643
A48 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0
�2

p
0.00033 0.00035 0.00038 0.00044 0.00052 0.00063 0.00076 0.00093

Table 8  The proportion of total investment on each stock of the portfolio with optimal variance for all 
given expected returns (�fix) of the Markowitz’s Mean-Variance Model

�fix 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

Variance 0.00033 0.00035 0.00038 0.00044 0.00052 0.00063 0.00076 0.00093
A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
A3 0.02787 0.01508 0.00248 0 0 0 0 0
A4 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0.02519 0.00416 0 0 0 0 0 0
A10 0.03151 0.03381 0.03496 0.03449 0.03151 0.02291 0.00768 0
A11 0 0 0 0 0 0 0 0
A12 0.03361 0.04301 0.04613 0.04695 0.04842 0.05547 0.07186 0.08492
A13 0 0 0 0 0 0 0 0
A14 0 0 0 0 0 0 0 0
A15 0.05773 0.05414 0.03770 0.01699 0 0 0 0
A16 0.08080 0.09291 0.09867 0.09938 0.10051 0.10004 0.09944 0.09844
A17 0.07439 0.06210 0.06601 0.07259 0.08269 0.10137 0.12536 0.13726
A18 0 0 0 0 0 0 0 0
A19 0.02048 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0
A23 0.11765 0.11126 0.10512 0.09767 0.09340 0.08323 0.07004 0.05462
A24 0 0 0 0 0.00123 0.01132 0.02083 0.03304
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Table 8  (continued)

�fix 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A25 0.11177 0.12956 0.12776 0.11651 0.10630 0.09412 0.08072 0.05694
A26 0.10642 0.12688 0.13227 0.14723 0.14967 0.13823 0.10959 0.06814
A27 0 0 0 0 0 0 0 0
A28 0.08554 0.09250 0.09795 0.10611 0.11136 0.10060 0.07837 0.05924
A29 0.02134 0.02956 0.06711 0.11738 0.14936 0.15880 0.15235 0.14971
A30 0 0 0 0 0 0 0 0
A31 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0
A35 0 0 0 0 0.01685 0.05166 0.09420 0.12164
A36 0 0 0 0 0 0 0 0
A37 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0
A40 0 0 0 0 0 0 0 0.02084
A41 0 0 0 0 0 0.00123 0.01476 0.02413
A42 0.15403 0.14660 0.11013 0.06511 0.02499 0 0 0
A43 0.05167 0.05842 0.07372 0.07959 0.08372 0.08102 0.07480 0.06464
A44 0 0 0 0 0 0 0 0
A45 0 0 0 0 0 0 0 0
A46 0 0 0 0 0 0 0 0
A47 0 0 0 0 0 0 0 0.02644
A48 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0
�2

p
0.00033 0.00035 0.00038 0.00044 0.00052 0.00063 0.00076 0.00093

Fig. 5  Risk-return graph of the 
Markowitz’s mean-variance 
model
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Table 9  The proportion of total investment on each stock for all the given expected returns of the portfo-
lio for the ��� model

�fix 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
A3 0.03808 0.04787 0.05236 0.02091 0.00281 0 0 0
A4 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0
A9 0.05431 0.01545 0 0 0 0 0 0
A10 0.02925 0.02758 0.02594 0.03197 0.03942 0.03712 0.03862 0.02038
A11 0 0 0 0 0 0 0 0
A12 0.00438 0.02098 0 0.00531 0.02148 0.02569 0.06857 0.09168
A13 0 0 0 0 0 0 0 0
A14 0 0 0 0 0 0 0 0
A15 0.11331 0.10736 0.11279 0.10443 0.09914 0.07567 0.05832 0
A16 0.07607 0.07768 0.06873 0.09750 0.11424 0.13014 0.11084 0.10725
A17 0.09263 0.09644 0.09985 0.07283 0.05167 0.04944 0.02853 0.05639
A18 0 0 0 0 0 0 0 0
A19 0 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0
A23 0.06557 0.06303 0.02329 0.03879 0.04018 0.05515 0.07567 0.09659
A24 0 0 0 0 0 0 0 0
A25 0 0 0 0 0 0 0 0
A26 0.14277 0.14762 0.18256 0.18256 0.16673 0.11475 0.19689 0.13719
A27 0 0 0 0 0 0 0 0
A28 0.05337 0.05503 0.06779 0.05708 0.05398 0.04521 0.04138 0.03084
A29 0.16198 0.18760 0.22628 0.20807 0.19043 0.20129 0.18503 0.18177
A30 0 0 0 0 0 0 0 0
A31 0 0 0 0 0 0 0 0
A32 0 0 0 0 0 0 0 0
A33 0 0 0 0 0 0 0 0
A34 0 0 0 0 0 0 0 0
A35 0 0.00620 0.02682 0.06789 0.10508 0.13951 0.12746 0.16723
A36 0 0 0 0 0 0 0 0
A37 0 0 0 0 0 0 0 0
A38 0 0 0 0 0 0 0 0
A39 0 0 0 0 0 0 0 0
A40 0 0 0 0 0 0 0 0
A41 0 0 0 0 0.00563 0.03531 0.05645 0.02625
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intervals. A solution technique is developed by transforming the ����� model 
into a classical deterministic nonlinear model �����

′ using the parametric defi-
nition of interval. The existence of an optimal investment strategy for an optimal 
range of VaR is discussed. The mean-VaR model is also analyzed through a case 
study based on the National Stock Exchange of India’s data set. Characterization 
of the existence of an optimally weighted combination of stocks with an optimal 
range of VaR of the ����� shows that for an obtainable objective minimum VaR, 
one must be careful in selecting the confidence level and fixing a tolerance level of 
expected return. Suppose the tolerance level of the expected return at which VaR 

Table 9  (continued)

�fix 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024

A42 0.16828 0.14717 0.11360 0.10608 0.08996 0.06904 0.00509 0
A43 0 0 0 0.00655 0.01925 0.02168 0 0.04994
A44 0 0 0 0 0 0 0 0
A45 0 0 0 0 0 0 0.00714 0.03449
A46 0 0 0 0 0 0 0 0
A47 0 0 0 0 0 0 0 0
A48 0 0 0 0 0 0 0 0
A49 0 0 0 0 0 0 0 0
A50 0 0 0 0 0 0 0 0
�p 0.01259 0.01294 0.01353 0.01433 0.01520 0.01632 0.01753 0.01890
�2

p
0.00040 0.00043 0.00048 0.00056 0.00068 0.00082 0.00093 0.00108
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Fig. 6  The relation between expected return and standard deviation of the portfolios obtained based on 
all three models �����

′ , ����� , �� and ���
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is computed is sufficiently large. In that case, the minimum VaR portfolio may not 
exist, and the mean-VaR efficient set may be empty. The computational results show 
that the ����� provides better investment strategies with minimum VaR to the 
risk aversion of an investor using interval data.
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Table 11  The actual monthly 
returns of the portfolio related to 
all five models

Month IMVAR DMVAR MV MAD Lai et al

Feb − 0.00701 − 0.01287 − 0.01287 − 0.01029 − 0.04924
Mar − 0.13812 − 0.16476 − 0.16476 − 0.19092 − 0.19098
Apr 0.10132 0.09091 0.09091 0.10486 0.12487
May 0.00676 − 0.02214 − 0.02214 − 0.01877 − 0.02996
Jun 0.04079 0.05245 0.05244 0.08254 0.04548
Jul 0.07818 0.10011 0.10010 0.08702 0.15305
Aug 0.00326 0.02186 0.02186 0.02483 0.03776
Sep 0.02076 0.04346 0.04346 0.01301 0.03629
Oct 0.05340 0.05727 0.05728 0.04414 0.03665
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Fig. 7  Actual monthly returns
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